WISE Foundations vs Application of Inquiry

Although the motivation exists, building inquiry into the science classroom to better mirror realistic scientific discovery has been hampered by the need to reach a plethora of curriculum standards. The motivation behind the development of WISE is derived from the desire to remedy this. Linn, Clark & Sotta (2003) define inquiry as “engaging students in the intentional process of diagnosing problems, critiquing experiments, distinguishing alternatives, planning investigations, revising views, researching conjectures, searching for information, constructing models, debating with peers, communicating to diverse audiences, and forming coherent arguments” (Linn, Clark & Slotta, 2003). Through the use of a revised Scaffolded Knowledge Integration framework and its four main tenets (making thinking visible, making science accessible, helping students learn from each other, and promoting lifelong learning), this was a much needed shift towards inquiry-based learning positioning WISE as an innovator in the field of science education.

With these design principles in mind, my exploration of some of the projects within WISE has prompted more inquiry into how it might be used in a classroom, the thinking and understanding it encourages in students, and the overall instructional design as it applies to learning theory. The theory behind the design offers great potential for Vygotsky-inspired social constructivist activities in that the intent is to provide students with a model that promotes meaning making and the construction of knowledge along with learning with and from others, as well as teacher scaffolding that includes the introduction of necessary cognitive tools . A deeper analysis  of an independently chosen project – Photosynthesis 2012 – uncovered a number of issues I feel may become obstacles to WISE’s progress towards meeting social constructivist goals. Given the evolution of the possible online learning spaces, WISE appears very linear in nature (more like an LMS), fairly dependent on a text-based medium (i.e. understanding is demonstrated primarily through reading and writing activities similar to pieces of worksheets), and offers limited opportunities for collaborative and social learning. In reading the Quick Start Guide and the Teaching Tips available within the project overviews, it appears that one of the founding principles, “helping students learn from each other”, is primarily addressed within teacher-designed activities external to the WISE project. Teachers are encouraged to group students in pairs during the project process, structure discussion and discourse within the classroom, and integrate group/partner activities to meet the goal of socially constructed learning. WISE offers an asynchronous discussion forum that can be a powerful medium for sharing and reflecting on student perspectives, but it seems to fall short of embedding truly collaborative opportunities. In the case of the photosynthesis project that I selected to revise, not one asynchronous discussion activity had been included. Students seem to continue to be on the consuming end rather than the producing end and while the foundation for knowledge integration is present in WISE, what’s stopping a teacher from using it to perpetuate a transmission model of learning? Because it is possible to revise projects for this purpose as well. Online learning environments like WISE have incredible potential to redefine students’ classroom experiences, but they are only as effective as the individuals using and adapting them for their own pedagogical use. Developers envision  a more critical approach to science process and concepts being implemented using the WISE, but as the educational philosopher Paulo Freire pointed out “computers were not technologically determined to compel students to use them in a critically conscious manner”  (Papert in Kahn & Kellner, 2007), so how well WISE helps students develop inquiry skills is dependent on the individual designing it and the individual wielding it. Likewise, Ivan Illich’s cautionary advice  that “technologies like computers could either advance or distort pedagogy, depending on how they were fit into a well-balanced ecology of learning” (Kahn & Kellner, 2007) is an integral component of WISE’s future success in bringing a greater degree of inquiry into the science classroom.

Using the Authoring Tool, I explored the inner framework of the Photosynthesis 2012 project after saving a copy of it so I could edit and revise it as my own. My version has been renamed Exploring Photosynthesis. As I investigated the three activities that each included multiple steps, I made improvements to ambiguous language and sentence structure. I also altered the html code to add more text features, like bolded and italicized words as well as bulleted lists to separate ideas. I was also able to locate the code for the hover text for glossary words so I added it into the first page where it suggested students explore an example of it, but no example was to be found. I felt it was necessary to embed a short video in Step 1.6 as this form of media had not been previously included within other steps, yet it stands to enrich the options for presenting critical information to students. I was surprised to find that video wasn’t used more often, although there are far more projects within the WISE pool than I had time to explore. I was heartened to discover an audio tool within the Extras of the Authoring Tool, but I was disheartened to find that I was unable to access it to see what it offers. When considering diversified instruction, balancing the text with audio components would meet more students needs and potentially minimize the barrier of language that can impede conceptualization for some students. I also found that some steps lacked sufficient information for students without considerable background knowledge (even if the intent was to cover some concepts during class) to proceed and be motivated to innately inquire further. I was happy to see that the steps involving MySystem technology offered students opportunities to revise and apply feedback as well as potentially share their understanding with others if this is enabled. I intend to investigate this option further to get a better grasp of its benefits. With this particular project, I found instructional strategies frequently utilized that seemed to focus on recall, which could be improved on while still maintaining the scaffolding principle that is an integral component of WISE. Effort had been made to scaffold the acquisition of content; however, the development of inquiry skills, which was the underlying goal of this environment, was not adequately supported in a manner that provides students with opportunities to “improve their art and technique of inquiry” (Nicaise, Gibney, & Crane, 2000) through repeated and explicit practice. There are opportunities to use inquiry skills within the steps, but  without initial steps that help students hone inquiry skills and deepen their motivation to inquire more. While I haven’t added the extra step yet, I feel it’s important to ask students about what questions they need to ask and be able to answer if the intention is to discover the best method of growing energy-rich plants. Knowing how to formulate “good” questions is a critical skill in the inquiry process. I also found it interesting that the initial inquiry question had minimal impact at the conclusion of the project. Emphasis was not placed on presenting their understanding to peers or the teacher regarding how they can help Mary. My subsequent investigations and revisions will hopefully ascertain whether this is a grievous oversight or an inadequate inquiry question that can be revised and strengthened to promote greater learning. Time will also tell if these first impressions are substantiated by my future investigations into alternate projects or if the developers of WISE are steadfast in their desire to continue revising and collecting data on the effectiveness of this learning environment in the pursuit of meaningful inquiry-based pedagogy.


image: Why by Tintin44 – Sylvain Masson released under a CC Attribution – Noncommercial – No Derivatives Works license

 


 References

Kahn, R. & Kellner, D. (2007). Paulo Freire and Ivan Illich: technology, politics and the reconstruction of education. Policy Futures in Education, 5(4), 431-448. doi:10.2304/pfie.2007.5.4.431

Linn, M. Clark, D. & Slotta, J. (2003). WISE design for Knowledge Integration. Science Education, 87(4), 517-538.

Nicaise, M., Gibney, T. & Crane, M. (2000). Toward an understanding of authentic learning: student perception of an authentic classroom. Journal of Science Education and Technology, 9(1), 79-94, doi: 10.1023/A:1009477008671