Technology Affordances in Earth Science Education

Concepts in Earth Science can be challenging for students to grasp as real examples relating to curricular content are often difficult or simply cannot be brought into the classroom to provide students with first-hand experience with them. Size and accessibility are factors which compromise students’ abilities to form mental models that accurately reflect scale, so comparative models are often relied on in place of actual phenomena or their processes. For students to conceptualize these appropriately, spatial-thinking and scale must be understood which requires abstract reasoning that teachers cannot presume is already present. Lack of opportunities to collect first-hand data presents an additional problem, which results in an over-reliance on data banks that detract from the authentic mirroring of processes within the scientific community.

Technology offers innovative means of exploring Earth Science phenomena through computer-generated simulations and models as well as methods of data collection, data analysis, and ways of communicating scientific research (Edelson, 2001). It is a component of authentic scientific practice reinforcing its inclusion in classrooms, and considering its potential as a catalyst for educational reform, devising specific uses of computers to bridge content and process standards in science may provide educators with a sustainable approach for technology integration. It can also enhance the inquiry process by breaking down the walls of the classroom to connect with information and individuals worldwide, store content for future use or reflection, and present student learning to both a local and global audience synchronously or asynchronously.

With WorldWatcher being designed to “bring the power of scientists’ computational tools to learners (Gordin & Pea in Edelson, 2001), it presents an authentic learning environment in which students can develop inquiry skills through a scientific research process. Using data visualization and tools for analysis, students can explore Earth science phenomena and identify emerging patterns in data using scaled models. This provides a feasible solution to the challenge of students accessing realistic representations of the Earth by providing a window into understanding complex phenomena that students are known to develop misconceptions about. Not only do students have the opportunity to work with data collected by the scientific community in WorldWatcher, they’re also presented with the chance to apply their understanding from previous scaffolded lessons as they create and collect their own geographic data to further investigate the relationship between geography and temperature. This technology merges practical and realistic scientific inquiry-based pedagogy that motivate students to construct and refine knowledge that “support its future retrieval and use” (lEdeslon, 2001) and students’ ability to transfer this useful knowledge to new contexts.

image: Earth from Space by NASA Goddard Photo and Video released under a CC Attribution license


References

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385.

Edelson, D., Salierno, C., Matese, G., Pitts, V. & Sherin, B. (2002). Learning-for-use in Earth Science: Kids as climate modelers. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA.

Using Technology to Create Powerful & Effective Learning Environments

Using anchored instruction in the Jasper series, instructional designers sought to create effective learning environments that were knowledge-centered, learner-centered, assessment-centered, and community-centered encapsulating the four dimensions of How People Learn. Authentic complex problems became the anchors around which activities and instruction were based helping students connect with a wider community while providing a window into the relevance of math and science outside the classroom. The possibility for multiple solutions also offered students greater perspective on the application of math concepts in the real world, and having access to multiple perspectives in the classroom exposed students to different perceptions among individuals and the collective. The challenges integrated experiential learning, guided learning and active learning promoting increased opportunity for developing “adaptive expertise” rather than limiting students to “routine expertise” which does not require depth of understanding to complete tasks quickly and accurately (Corte, 2007). Teachers were encouraged to further support students increasing flexibility of transfer by exposing them to analog problems designed to stimulate the invention of solutions for recurring problems, consequently enhancing students’ willingness and readiness to take risks with new learning challenges and seek effective solutions.

Technology played a key role in the designers’ efforts to integrate instructional strategies and tools that supported meaningful learning through the investigation of authentic problems within a scaffolded environment. Using video, complex problems involving the practical use of mathematical skills could be introduced to students in an authentic context that could be view and reviewed. This created a unified foundation for the students who then worked collaboratively to generate ideas while still allowing for the development of multiple perspectives promoting increased flexibility of thought. Incorporating technology also offered increased learner engagement and a creative method of introducing math-related scenarios that cannot be duplicated within a classroom without it. Access to important information and data was improved with the development of technology tools allowing student navigation of the video story in a non-linear fashion, emphasizing that authentic problem solving does not require a rigid set of rules that must be followed in a particular manner – it is a process of visiting and revisiting data, as well as refining and applying potential solutions. The technology base helped strengthen the development of a community of learners through collaborative inquiry working towards finding a common goal, although greater gains could have been achieved if the Jasper technology had offered similar social opportunities to the SMART model whereby students had access to a more robust collection of alternate perspectives, including real students’ work. In addition, technology could have afforded increased formative assessment opportunities (self, peer, teacher) encouraging conceptual growth and greater understanding about the value of revision. As noted by Pellegrino and Brophy (2008), the depth of formative assessment and community building within the Jasper project could have been improved upon. Technology could have help the designers balance the four dimensions of How People Learn to a greater extent; however, technology that could facilitate these two areas has improved tremendously over the last two decades and the options for integrating it for these purposes today presents a different context than what was available to the Jasper designers at the time.

 


Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315.

Corte, E. (2007). Learning from instruction: The case of mathematics. Learning Inquiry, 1, 119–30. doi: 10.1007/s11519-007-0002-4.

Pellegrino, J.W. & Brophy, S. (2008). From cognitive theory to instructional practice: Technology and the evolution of anchored instruction. In Ifenthaler, Pirney-Dunner, & J.M. Spector (Eds.) Understanding models for learning and instruction, New York: Springer Science + Business Media, pp. 277-303.

image: Anchor by Keka 😉 released under a CC Attribution – Noncommercial – No Derivative Works license