Tag Archives: open ended questions

Initial Reflections on the Jasper Series

Before reading the article about Jasper anchored instruction, I explored the videos just to get a feel for what this series entailed.  I also wanted to get my initial impressions without having much background. The first thing that struck me was that they were posed as challenges, which I believe would be engaging to students. Then I noticed that they were real-life explorations and I reflected that they would foster rich discussion amongst students. These problems or “situations” would allow students to test out, hypothesize, work and rework as they problem solved. It would be messy but rewarding. They may require some facilitation along the way or a sounding board, but the problem solving would be student centered.

Some questions I had after watching the videos were:

  1. Would it be possible to have the students conduct some of these situations in real-life? (as an adjunct to the videos)
  2. What background in mathematical terminology would the students require?
  3. Could the students competently solve these problems without some prior math knowledge in the area of exploration (rate, capacity, range, temperature, etc.)
  4. What software or platform was used to create and share the videos?

After reflecting on the videos I read the essential article, ” The Jasper Experiment: An Exploration of Issues in Learning and Instructional Design Cognition and Technology”. I was happy to see that many of my reflections correlated with the article.

Within the situational videos basic skills are important, but students develop them in the context of meaningful problem posing and problem-solving activities rather than as isolated “targets” of instruction. (    )students must learn to identify and define issues and problems on their own rather than simply respond to problems that others have posed. I also found it interesting that the videos naturally encourage cooperative learning in which students have opportunities to discuss and explain which can assist in solidifying understanding. It is also interestingly noted that working in these cooperative groups allows the students to monitor one another and thus keep one another on track. This would definitely allow the teacher to take on a facilitation role more naturally.

The videos align with the goals of the NCTM as well. These include an emphasis on complex, open-ended problem solving, communication, and reasoning. In addition, connecting mathematics to other subjects and to the world outside the classroom is encouraged. The Jasper videos seem to fit the bill.

Within the article it explains that educators allow the students as much time and room to work on these problems without teacher interaction. Some may see this as foolhardy and may contest that certain skill sets need to be taught before complex problem solving can occur. The Jasper Experiment believes that engaging students in real-world problems that are inherently interesting and important helps students understand why it is important to learn various sub skills and when they are useful. The Jasper adventures are purposely created to reflect the complexity of real world problems.

Within the article it is also noted that Jasper developers are continuing to work with teachers in order to collect “scaffolding” or “guidance” information to include  with the videos. So although the goal of anchored instruction is situated in engaging, problem-rich environments that allow sustained exploration by students and teachers, some purposeful scaffolding and guidance can assist the problem solving process in some situations.

The Jasper Experiment: An Exploration of Issues in Learning and Instructional Design Cognition and Technology Group at Vanderbilt Educational Technology Research and Development Vol. 40, No. 1 (1992), pp. 65-80

 

Observing and Analyzing Digital Technology In Science Classes-Video Reflections

Following are some of my reflections after watching the first set of videos in the “grounding issues” section of the course.

Firstly, the educators believed that technology allowed them to provide the students with open ended questions that allowed them to do more critical thinking, think more in-depth and to actually try alot harder when they tackled problems posed. So, teacher perspective on the value of technology was a factor.

In addition, when viewing the video in which the students are growing crystals, I found it interesting that this was actually not part of their curriculum but the educator saw the connections between the growing of crystals and his subject area (physics) and so allowed them to do the experiment and find connections betweeen the chemistry and physics organically. This interdisciplinary approach allowed the students to work on an engaging activity while still learning about thermodynamics (for example).

Technology was used through a “mini-computer” that allowed the students to regulate and display temperature, amongst other capabilities and thus combined chemistry with electrical engineering. The learning looked to be cooperative and engaging and one of the students remarked that “experiencing” the learning first hand was of great value to him.

One thing I thought of when watching these videos is that the technological competence of the teacher seemed high, and this may not be so for all teachers. He would be a great resource in a school as his expertise could be used to help other educators to incorporate technology in their classrooms. I also wondered if he learned this on his own because of his self-interest in technology or if there was training provided.

So some main ideas:

Interdisciplinary Approach

Teacher Efficacy

Open Ended Problem Solving Approach

Cooperative Learning