PLANT OF THE DAY: Marsh-elder

- •Close relative of ragweed and sunflower
- •Domesticated in eastern North America as an oilseed
- •Domesticated form now extinct

Crop domestication

Big Questions:

- Where, why and when were plants domesticated?
- What are domestication traits?
- What is the difference between domestication, diversification and improvement?
- What kinds of genetic changes are under selection during domestication?

Centres of domestication

Archaeological evidence suggests that hunter-gatherers independently began cultivating food plants in at least 12 regions of the world (Doebley et al. 2006)

Speed of domestication

Emmer = Tetraploid wheat Einkorn = Diploid wheat

Purugganan 2019

Domestication / Improvement Bottlenecks

Yamaski et al. 2005

Domestication / Improvement Bottlenecks

- Loss of diversity often seems to be linear with time rather than clear bottlenecks.
- The level of diversity loss depends on the species and the level of domestication.
- Breeding between cultivars or with wild progenitors can restore diversity.

Domestication Syndrome

A domestication syndrome describes the properties that distinguish a certain crop from it's wild progenitor.

Trait	Wild Plant	Domesticated Crop
Height	Tall	Short/dwarf
Growth Habit	Branched/Bushy	Compact
Ripening	Asynchronous	Synchronous
Seed Dormancy	Present	Absent
Seed Shattering	Shattering heads	Non-shattering heads
Fruit/Seed Size	Small	Large
Ease of dispersal	Highly dispersible	Loss of dispersal
Threshing	Hard	Easy
Reproduction	Out-breeding	Self-fertilizing
Germination	Asynchronous	Synchronous
Hairs/spines	Present	Absent/reduced
Toxins	Present	Absent/reduced

Table 1. Traits associated with plant domestication (Murphy 2007)

Domestication traits

Loss of Shattering

Domestication traits

Less branching

Domestication traits

Fewer larger fruits

Domestication as a Process

- The distinction between 'domesticated' or 'not domesticated is an oversimplification
- Some crops have moved further along this process than others.

Domestication process

Domestication

Diversification

Improvement

Meyer and Purugganan, 2013

Domestication process

Domestication

Diversification

Improvement

How might improvement traits be different from domestication traits?

Meyer and Purugganan, 2013

Domestication process

- Plants can have multiple origins of domestication
- Examples include barley, bottlegourd, coconut, common bean
- Gene flow between cultivate crops and wild progenitors during domestication is also possible

Morrell & Clegg, 2007

Estimated probabilities of eastern and western wild barley origin in red and blue

Maize domestication

Maize domestication

Single origin

Hufford et al. 2012

Sunflower domestication

Domestication genes

- A majority of domestication genes are transcription factors
- Are enriched for genes of large effect (loss of function alleles)
- Can be new mutations or be found in the wild progenitor

Domestication genes

Meyer & Purugganan 2013

Nature Reviews | Genetics

Genetic parallelism

- Sticky rice is caused by a mutation in the WAXY gene
- Mutations in the same gene cause sticky varieties in broomcorn millet, foxtail millet and three *Amaranthus* spp. pseudocereals

Polyploidy and domestication

Polyploidy and domestication

Unanswered questions

- Why are some crops only weakly domesticated?
- Are the major effect domestication genes cloned so far representative of other domestication genes?
- What is the role of reproductive isolation in domestication?