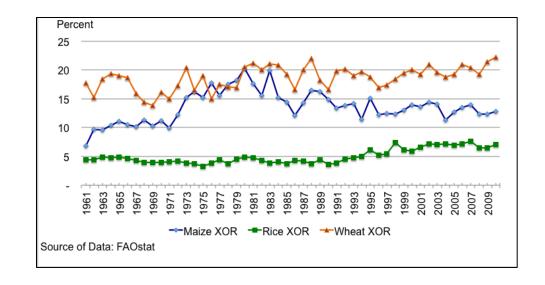
Rice trade and price volatility: Implications on ASEAN and global food security

Dr. Ramon L. Clarete, Professor,
University of the Philippines

E-mail: ramonclarete@econ.upd.edu.ph

ASEAN Rice Trade Puzzle

♦ How does one promote rice trade in ASEAN when member states do not want to liberalize rice trade?



3-4 MAY 2010, THAILAND

♦ Answer: talk about rice price volatility.

Why rice trade is thin

- Internal distortion in importing countries requiring domestic rice farmers to import competition
- Virtual self-insurance against a food insecurity risk with a thin trade in rice

Relative cereal price fluctuations

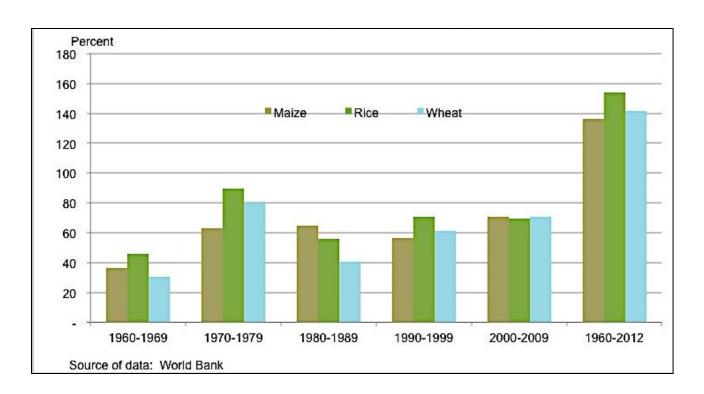
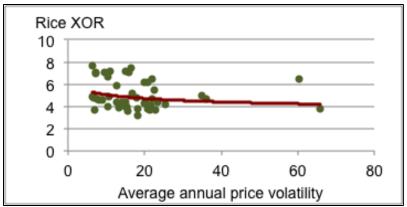

- ♦ About 95% of price fluctuations are between + or 20%
- ♦ Rice has most extreme fluctuations.

Table 5. Frequency distribution of monthly cereal price fluctuations, Feb 1960 - May 2012 (in percent)						
Categories of rates of monthly price changes	Maize	Rice	Wheat			
>-0.3 or <=-0.2	-	-	-			
>-0.2 or <=-0.1	0.48	0.16	0.16			
>-0.1 or <=0	3.34	3.50	2.55			
>0 or <=0.1	48.09	45.70	49.84			
>0.1 or <=0.2	43.95	47.29	43.63			
>0.2 or <=0.3	3.98	2.23	3.03			
>0.3 or <=0.4	0.16	0.64	0.64			
>0.4 or <=0.5	-	0.16	-			
>0.5 or <=0.6	-	0.16	-			
>0.6 or <=0.7	-	0.16	0.16			
0.7	-	-	-			
Total	100	100	100			
>0.3 or <=0.4 >0.4 or <=0.5 >0.5 or <=0.6 >0.6 or <=0.7 0.7	0.16 - - - 100	0.64 0.16 0.16 0.16	0.			

Source of data: World Bank


Relative price volatility of cereals

Rice has relatively the highest price volatility in most decades.

Tradability and price volatility of rice

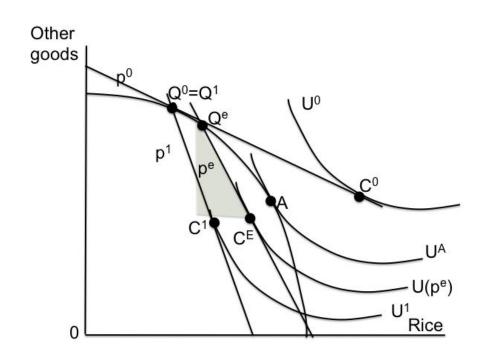

- In case of rice, tradability is inversely correlated with average price volatility.
- The inverse relationship does not hold up in the case of wheat or maize.

Table 6. Average Cereal Price Volatility and Export to Output Ratios: 1961 to 2010								
(in percent)								
	Maize		Rie	ce	Wheat			
	Price Volatility	XOR	Price Volatility	XOR	Price Volatility	XOR		
1961- 1969	32.64	9.99	44.97	4.46	29.40	16.95		
1970- 1979	62.72	14.88	89.45	3.94	80.86	17.07		
1980- 1989	64.78	16.20	56.02	4.21	40.73	19.97		
1990- 1999	56.19	13.29	70.69	5.20	61.46	18.64		
2000- 2010	74.52	13.18	71.41	6.86	80.22	20.18		
1961 - 2010	133.72	13.57	152.28	4.98	139.08	18.63		
Source of Data: FAO for trade data; WB for prices								

Effect of rice price volatility on trade

- Short run adjustment cost inhibits more output response.
- Extreme rice price volatility reduces rice trade.
- ♦ Self-sufficiency (U^A) can be preferred to U(p^e), expected welfare.

Granger causality test

♦ Excessive price volatility appears to cause rice trade to be low.

Test #1: Price volatility Granger causes lower trade			Test #2: Low trade Granger causes price volatility						
Dependent variable: quant (Rice exports)			Dependent variable: extreme price volatility (exconst)						
Log likelihood = -1.163e+11				Log likelihood = -7602.101					
quant Co		td. ERR,	Z	Remarks	quant	Coef.	Std. ERR,	Z	Remarks
Dependent	variable: quant						,		
quantlag	0.3695033	0.0292251	12.64		excon				
quantlag2	0 0596144	0.0155061	3.84		stlag	-0.0564815	0.0220887	0.011	
exconstlag	0.0417605			*significant at 10 %	excon stlag2	0.0596603	0.0201787	0.003	
exconstlag 2	- 0.0539147	0.0402726	-1.34	insignificant	quantl ag	0.000671	0.0134203	0.960	insignificant
Wald chi2(4) = 242.09		Prob > chi2 =	= 0.0000	quantl				
Prob > chi2	Prob > chi2 = 0.0649* pairwise significant at 10%			ag2	-0.0163969	0.0123545		insignificant	
Wald cl				ni2(4) = 14.89	Pro	b > chi2 = 0.0049			

Estimates from a gravity model of rice trade

Table 2. Contribution of extreme rice price volatility to rice export volumes

	Doois	Alternat	ive Extreme Volatility		
	Basic		Measures		
	model	A^1	B^2	C_3	
In GDP agriculture of exporting country	0.66***	0.76***	0.73***	0.75***	
In GDP per capita of importing country	-0.49*	-0.51*	-0.50*	-0.51*	
In population of exporting country	0.6300	0.41	0.51	0.47	
In population of importing country	0.11	0.05	0.08	0.07	
time trend	0.03*	0.03*	0.03*	0.03	
standard deviation of 24 monthly price fluctuations	-0.08***	0.03	0.01	0.00	
standard deviation of 24 monthly prices one year lag	-0.06*	0.01	0.00	0.01	
extreme volatility A ¹		-0.18***			
extreme volatility A one year lag		-0.26***	-	1	
extreme volatility B ²			-0.18**		
extreme volatility B one year lag			-0.11	,	
extreme volatility C ³				-0.16**	
extreme volatility C one year lag				-0.21***	
F-test: 2 Extreme Var:		0.00***	0.06*	0.01***	

F-Test results denote P-value that the 2 extreme variables jointly exceed zero.

Source: Labao, A. (2012)

- Volatility dampens rice trade
- Estimates
 from a
 gravity
 model of
 trade
- Excessive
 volatility
 reduces
 trade.

¹ 97.5 % quantile estimated assuming that the rates of monthly price changes are normally distributed

² 97.5 % quantile estimated using a non-parametric generalized-additive-model of commodity price movements estimated using the spline-backfitted-kernel (SBK) estimator (see Martins-Filho, et al. (2009)

³ 97.5 % quantile esimated using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (Bollerslev, T., 1986)

Reducing extreme rice price volatility: a framework

- ♦ Rice stocks
- ♦ Rice market information and intelligence
- ♦ Rice trade facilitation

Rice stocks

- Rice market vulnerable to extreme price volatility with low stocks to use ratios
- → Reserves strengthen confidence of stakeholders in rice trade.
- → Timmer suggests: reserves at four levels, private, country reserves (small importing), country reserves (large producing, importing), and international reserves.

Proposals on rice stocks

- ♦ Increase stocks to use ratios
- ♦ Information sharing about rice stocks.
- International food agency to coordinate the operations of the reserves, to gather and disseminate information about food stocks.
- ♦ Emergency reserves, von Braum and Torero suggests about 5 % of food aid flows.

What ASEAN may consider

- ♦ Determining the appropriate size of reserves
 - Strategic reserves depend upon the reliability of sourcing imports from sources, availability of substitutes, and the holding cost.
- ♦ ASEAN Plus 6 emergency rice reserves?
 - Bangladesh, India, and Pakistan

Market information and intelligence (1)

- → Trade shocks are not fundamental explanations for the price bubble in 2008.
- ♦ Speculative herding behavior
- Importance of generating and disseminating accurate market information
- ♦ More important side is the interpretation of the information.
- Need for tools to analyze the impact of supply and demand shocks as well as policy changes.

Market information and intelligence (2)

- AFSIS as gathering basic statistics about the regional rice market.
- Need for sharing market intelligence (e.g. close to real time stocks to use ratios, trade flows, policy developments, supply and demand shocks, etc.)

Policy options for trade

- Coordinated investments to expand export capacity of ASEAN in Myanmar and Cambodia
- Reduced self-sufficiency targets for guaranteed rice imports
- ♦ Clear set of criteria on the ATIGA waiver (Article 24)
- ♦ A de-coupled Thailand's paddy pledging program

Rice trade forum

- ASEAN rice trade forum, platform for (1) sharing market information and intelligence, (2) coordinating policy responses to crisis situations, and (3) negotiations among importers and exporters.
- ♦ Continue the implementation of the Rice Trade Forum in ASEAN.

Thank you.

For information, contact:

Dr. Lourdes S. Adriano

ladriano@adb.org

Prof. Ramon L. Clarete

ramonclarete@econ.upd.edu.ph