
Korea University Dept. of Computer Science and Engineering

> Joong Heon Kim Gene Moo Lee

Applied Number Theory Introduction Introduction • Analyzing the cryptosystems that we learned in this class Implementing the systems in computer program

Implementation

Implementation

§ Environment :

- Language : Visual C++ 6.0
- Operating System : Windows 2000

§ Programming :

- JH Kim : Caesar, Affine, Vigenere, Autokey
- GM Lee : Hill, Exponentiation, RSA

Implementation

Caesar Cipher

```
74 void caesar_encryption()
75 {
76
            index = 0;
77
            for(i=0;i<sequence flag;i++)</pre>
78
79
                     for (j=0; j<LENGTH; j++)</pre>
80
81
                               if(entered_sequence[i]==alphabet[j])
82
                                        index = (j+key)%LENGTH;
83
84
                                        encrypted sequence[i] = alphabet[index];
85
86
                     3
87
            }
88 }
```

Implementation

Caesar Cipher

```
90 void caesar decryption()
91 {
92
             index = 0;
93
            for(i=0;i<sequence flag;i++)</pre>
94
95
                      for (j=0; j<LENGTH; j++)</pre>
 96
                               if(encrypted sequence[i]==alphabet[j])
 97
98
                                         if(j-key>=0)
 99
.00
                                                  index = (j-key)%LENGTH;
02
03
                                         else
104
105
                                                  index = (LENGTH-(key-j))%LENGTH;
106
                                         decrypted sequence[i] = alphabet[index];
107
108
                               }
109
                      }
110
111 }
```

Implementation

Affine Cipher

```
75 void affine encryption()
76 {
77
            index = 0;
           for(i=0;i<sequence flag;i++)</pre>
78
79
                     for (j=0; j<LENGTH; j++)</pre>
80
81
                              if(entered sequence[i]==alphabet[j])
82
83
                                        index = (j*keyA+keyB)%LENGTH;
84
                                        encrypted_sequence[i] = alphabet[index];
85
86
87
88
89 }
```

Implementation

Affine Cipher

```
90 void affine decryption()
 91 {
             int inverse keyA;
 92
             inverse keyA = 0;
 93
             for (i=0; i<LENGTH; i++)</pre>
 94
 95
 96
                      if(((keyA * i)%LENGTH)==1)
 97
 98
                               inverse keyA = i;
 99
100
101
             for(i=0;i<sequence flag;i++)</pre>
102
             ł
103
                      for (j=0; j<LENGTH; j++)</pre>
104
105
                               if(encrypted sequence[i]==alphabet[j])
106
                               {
107
                                        if(j-keyB>=0)
108
109
                                                  index = ((j-keyB)*inverse keyA)%LENGTH;
110
111
                                        else
112
113
                                                  index = ((LENGTH-(keyB-j)) *inverse keyA)%LENGTH;
114
115
                                        decrypted sequence[i] = alphabet[index];
116
                               }
117
                      }
118
             }
119 }
```

Implementation

Vigenere Cipher

```
76 void vigenere_encryption()
 77 {
 78
             index = 0;
 79
             for(i=0;i<sequence_flag;i++)</pre>
 80
             {
 81
                      if((i%3)==0)
 82
                      {
 83
                               for (j=0; j<LENGTH; j++)</pre>
 84
 85
                                         if(entered sequence[i]==alphabet[j])
 86
 87
                                                   index = (j+keyA) \& LENGTH;
 88
                                                   encrypted sequence[i] = alphabet[index];
 89
 90
 91
                      }
 92
                      else if((i%3)==1)
 93
                      ₹.
 94
                               for (j=0; j<LENGTH; j++)</pre>
 95
 96
                                         if(entered_sequence[i]==alphabet[j])
 97
 98
                                                   index = (j+keyB)%LENGTH;
 99
                                                   encrypted sequence[i] = alphabet[index];
100
101
102
103
                      else if((i%3)==2)
104
105
                               for (j=0; j<LENGTH; j++)</pre>
106
107
                                         if(entered_sequence[i]==alphabet[j])
108
109
                                                   index = (j+keyC)%LENGTH;
110
                                                   encrypted_sequence[i] = alphabet[index];
111
112
113
                      >
114
             }
115 }
```

12

Implementation

Vigenere Cipher

```
117 void vigenere decryption()
118
   8
119
             index = 0;
120
             for(i=0;i<sequence flag;i++){</pre>
121
                      if((i%3)==0)
122
                               for (j=0; j<LENGTH; j++)</pre>
123
                                         if(encrypted sequence[i]==alphabet[j]) {
124
                                                  if(j-keyA>=0)
                                                                   {
125
                                                           index = (j-keyA)%LENGTH;
126
                                                  }
127
                                                  else
128
                                                           index = (LENGTH-(keyA-j))%LENGTH;
129
130
                                                  decrypted sequence[i] = alphabet[index];
131
132
                               3
 33
                      else if((i%3)==1){
                               for (j=0; j<LENGTH; j++) {</pre>
135
                                         if(encrypted sequence[i]==alphabet[j]) {
137
                                                  if(j-keyB>=0)
                                                                    {
138
                                                           index = (j-keyB)%LENGTH;
139
                                                  }
140
                                                  else
                                                            {
141
                                                           index = (LENGTH-(keyB-j))%LENGTH;
142
                                                  }
L43
                                                  decrypted sequence[i] = alphabet[index];
144
                                         3
4.5
                               3
L46
147
                      else if((i%3)==2){
148
                               for (j=0; j<LENGTH; j++)</pre>
                                         if(encrypted sequence[i]==alphabet[j]) {
149
150
                                                  if(j-keyC>=0)
                                                                   {
151
                                                           index = (j-keyC)%LENGTH;
152
                                                  }
153
                                                  else
154
                                                           index = (LENGTH-(keyC-j))%LENGTH;
155
                                                  3
156
                                                  decrypted sequence[i] = alphabet[index];
157
                                         )
158
                               }
159
                      }
```

Implementation

Autokey Cipher

```
75 void autokey encryption()
76 {
           for (i=0; i<LENGTH; i++)</pre>
77
78
                     if(encrypted sequence[0]==alphabet[i])
79
80
81
82
            index = 0;
83
           for(i=0;i<sequence flag;i++)</pre>
84
85
                     for (j=0; j<LENGTH; j++)</pre>
86
87
                               if(entered sequence[i]==alphabet[j])
88
89
                                        index = (j+seed)%LENGTH;
90
                                        encrypted sequence[i] = alphabet[index];
91
                                        seed = index;
92
93
                     }
94
            з
95 }
```

Implementation

Autokey Cipher

```
96 void autokey decryption()
 97 {
 98
             index decryt 1 = seed ;
 99
             for(i=0;i<sequence flag;i++)</pre>
100
101
                     for (j=0; j<LENGTH; j++)</pre>
102
103
104
                               if(encrypted sequence[i]==alphabet[j])
105
                               {
                                        if((j - index decrypt 1)>=0)
106
107
108
                                                  index_decrypt_2 = j - index_decrypt_1;
                                                  decrypted_sequence[i] = alphabet[index decrypt 2];
109
110
111
112
                      3
113
114
             }
115 }
```

Implementation

Hill Cipher

	AT MAN A PROVIDENCE OF A REAL OF
"C:\Documents and Settings\jhkim99\H당 화면\appNumTheory\Debug\Hill_cipher,exe"	- 🗆 ×
Hill cipher	
enciphering(e) or cracking(c)? (press e or c)	
e	
Input the plaintext:	
thisisahillcipher	
numerical equiv for the input	
190708180818000708111102081507041723	
num equiv for ciphertext	
251516201620100906110908080513141515	
ciphertext	
zpququkjgljiifnopp	
25	
cracked text	
thisisahillcipherx	
Press any key to continue	
	A CONTRACTOR OF

Implementation

Exponentiation Cipher

"C:₩Documents and Settings₩jhkim99₩바탕 화면₩appNumTheory₩Debug₩Exp_cipher,exe"	
Exponentiation cipher	
enciphering(e) or cracking(c)?	
enciphering(e) or cracking(c):	
p:47 e:13	
input the plaintext:	
thisisanexponentiationcipher	
28	
thisisanexponentiationcipher	
numerical equiv	
19070818081800130423151413041319080019081413020815070417	
ciphertext	
35251802180200230810442123082335180035182123141844250842	
p:47 e:13 d:39	
cracked text	
thisisanexponentiationcipher	
Press any key to continue_	

Implementation

RSA Cryptosystem

"C:\Documents and Settings\jhkim99\H탕 화면\Debug\block.exe"

- 🗆 ×

Enter the ciphertext:

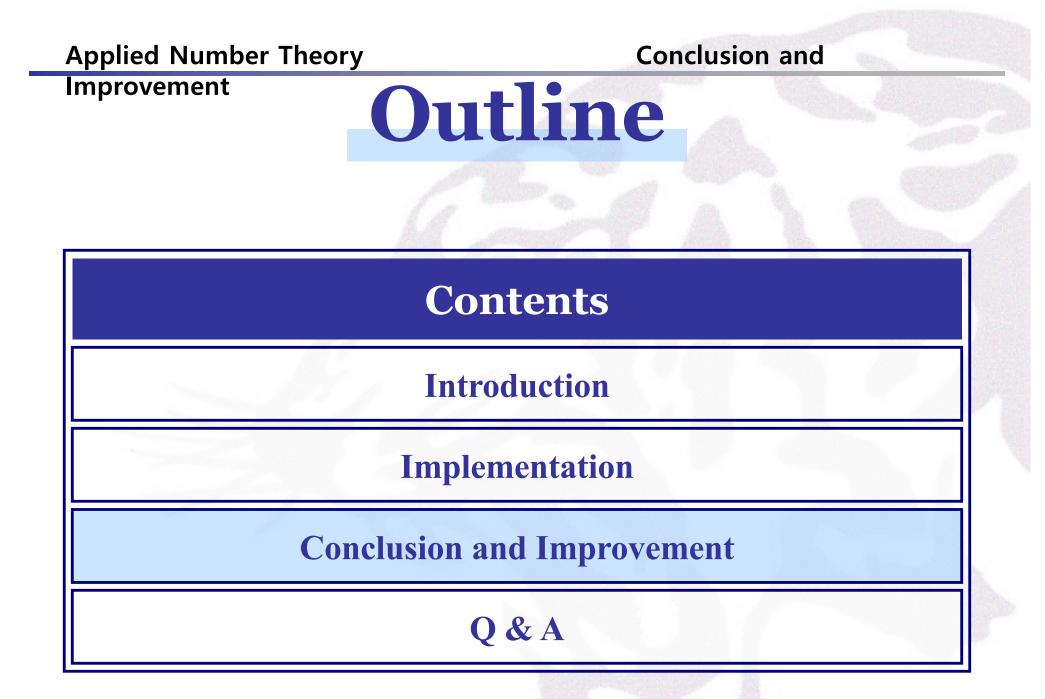
16331106171001431236016200530279016201431710163317100162035203130000014300530000 13990854000111651519014317100352059801830143000012360183116502791633016201431165 0143163308540053

EXP

numerical equiv for the input cipher

16 33 11 06 17 10 01 43 12 36 01 62 00 53 02 79 01 62 01 43 17 10 16 33 17 10 01 62 03 52 03 13 00 00 01 43 00 53 00 00 13 99 08 54 00 01 11 65 15 19 01 43 17 1 0 03 52 05 98 01 83 01 43 00 00 12 36 01 83 11 65 02 79 16 33 01 62 01 43 11 65 01 43 16 33 08 54 00 53

RSA


numerical equiv for the input cipher

1633 1106 1710 0143 1236 0162 0053 0279 0162 0143 1710 1633 1710 0162 0352 0313 0000 0143 0053 0000 1399 0854 0001 1165 1519 0143 1710 0352 0598 0183 0143 0000 1236 0183 1165 0279 1633 0162 0143 1165 0143 1633 0854 0053 p:47 g:37 n:1739 phi_n:1656 e:13 d:637

cracked text

thiscompositionwasmadebyusingrsacryptosystem

Press any key to continue_

Improvement

Conclusion and

Readability

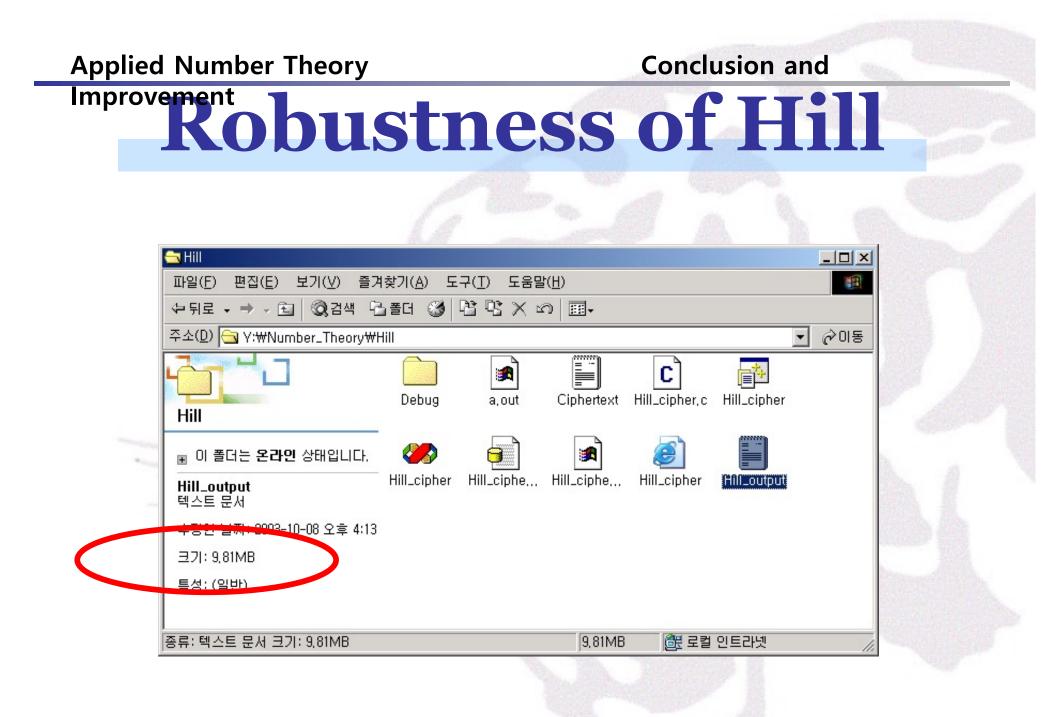
AFRIENDINNEEDISAFRIENDINDEED

• JOONGHEONKIMGENEMOOLEE

Conclusion and

Improvement

Readability

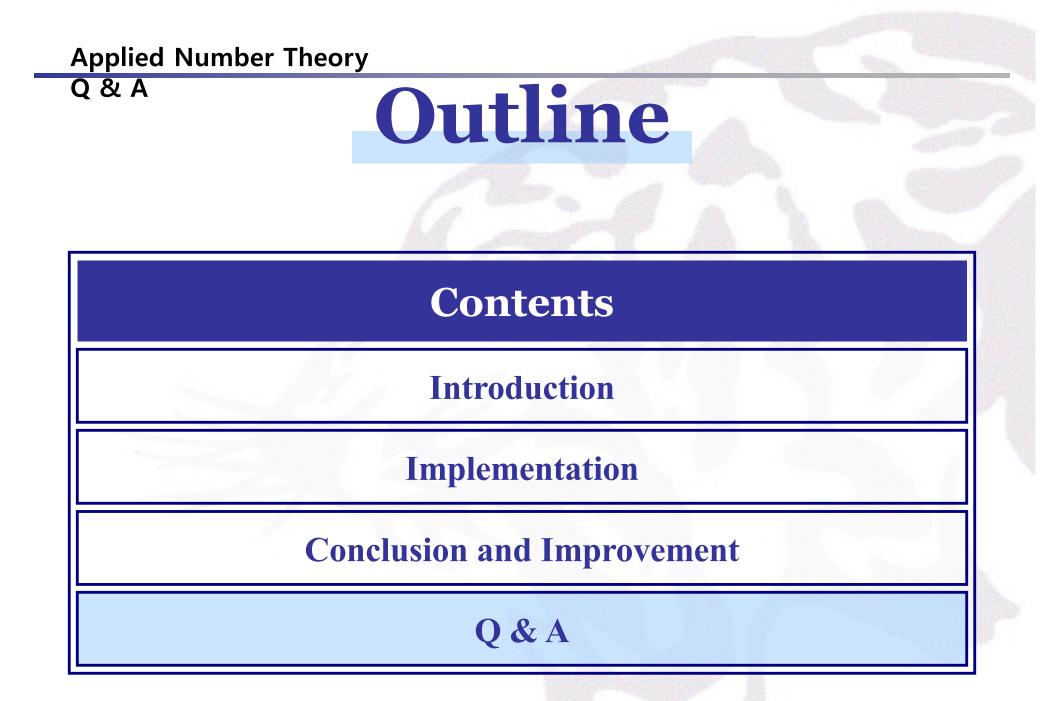

Dec	Hx	Oct	Chai	r S	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	: Hx	Oct	Html Cl	hr
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	«#64;	0	96	60	140	`	
1	1	001	SOH	(start of heading)	33	21	041	!	!	65	41	101	A	A	97	61	141	a	a
2	2	002	STX	(start of text)	34	22	042	"	**	66	42	102	& # 66;	в	98	62	142	b	b
3	3	003	ETX	(end of text)	35	23	043	#	#	67	43	103	C	С	99	63	143	c	C
4	4	004	EOT	(end of transmission)	36	24	044	\$	ş	68	44	104	D	D	100	64	144	d	d
5	5	005	ENQ	(enquiry)	37	25	045	%	**				E		101	65	145	e	e
6	6	006	ACK	(acknowledge)				&		70	46	106	G#70;	F	102	66	146	f	f
7	7	007	BEL	(bell)	39	27	047	'	1	71	47	107	6#71;	G	103	67	147	g	g
8	8	010	BS	(backspace)	40	28	050	((72	48	110	6#72;	H				h	
9	9	011	TAB	(horizontal tab)	41	29	051))	73	49	111	6#73;	I	105	69	151	i	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	6#42;	*	74	4A	112	6#74;	J	106	6A	152	j	Ĵ
11	в	013	VT	(vertical tab)	43	2B	053	+	+	75	4B	113	6#75;	K	107	6B	153	k	k
12	С	014	FF	(NP form feed, new page)	44	2C	054	,	,	76	4C	114	& # 76;	L	108	6C	154	l	1
13	D	015	CR	(carriage return)	45	2D	055	«#45;	-	77	4D	115	6#77;	М	109	6D	155	m	m
14	Ε	016	SO	(shift out)	46	2E	056	.		78	4E	116	6#78;	N	110	6E	156	n	n
15	F	017	SI	(shift in)	47	2F	057	6#47;	1	79	4F	117	O	0	111	6F	157	o	0
16	10	020	DLE	(data link escape)	48	30	060	0	0	80	50	120	P	P	112	70	160	p	p
17	11	021	DC1	(device control 1)	49	31	061	1	1	81	51	121	Q	Q	113	71	161	q	q
18	12	022	DC2	(device control 2)	50	32	062	2	2	82	52	122	R	R	114	72	162	r	r
19	13	023	DC3	(device control 3)	51	33	063	3	3	83	53	123	S	S	115	73	163	s	S
20	14	024	DC4	(device control 4)	52	34	064	4	4	84	54	124	T	Т	116	74	164	t	t
21	15	025	NAK	(negative acknowledge)	53	35	065	5	5	85	55	125	U	U	117	75	165	u	u
22	16	026	SYN	(synchronous idle)	54	36	066	6	6	86	56	126	V	V	118	76	166	v	v
23	17	027	ETB	(end of trans. block)	55	37	067	7	7	87	57	127	G#87;	W	119	77	167	w	W
24	18	030	CAN	(cancel)				8		88	58	130	X	Х				x	
25	19	031	EM	(end of medium)	57	39	071	9	9	89	59	131	Y	Y	121	79	171	y	Y
26	1A	032	SUB	(substitute)	58	ЗA	072	:	:	90	5A	132	Z	Z	122	7A	172	z	z
27	1B	033	ESC	(escape)	59	ЗB	073	;	2	91	5B	133	& # 91;	[123	7B	173	{	{
		034		(file separator)				<					& # 92;						
29	1D	035	GS	(group separator)				l;]	_				}	
30	lE	036	RS	(record separator)	62	ЗE	076	& # 62;	>	94	5E	136	¢#94;					~	
31	lF	037	US	(unit separator)	63	ЗF	077	 <i>4</i> #63;	2	95	5F	137	« # 95;	_	127	7F	177		DEL
														~				-	

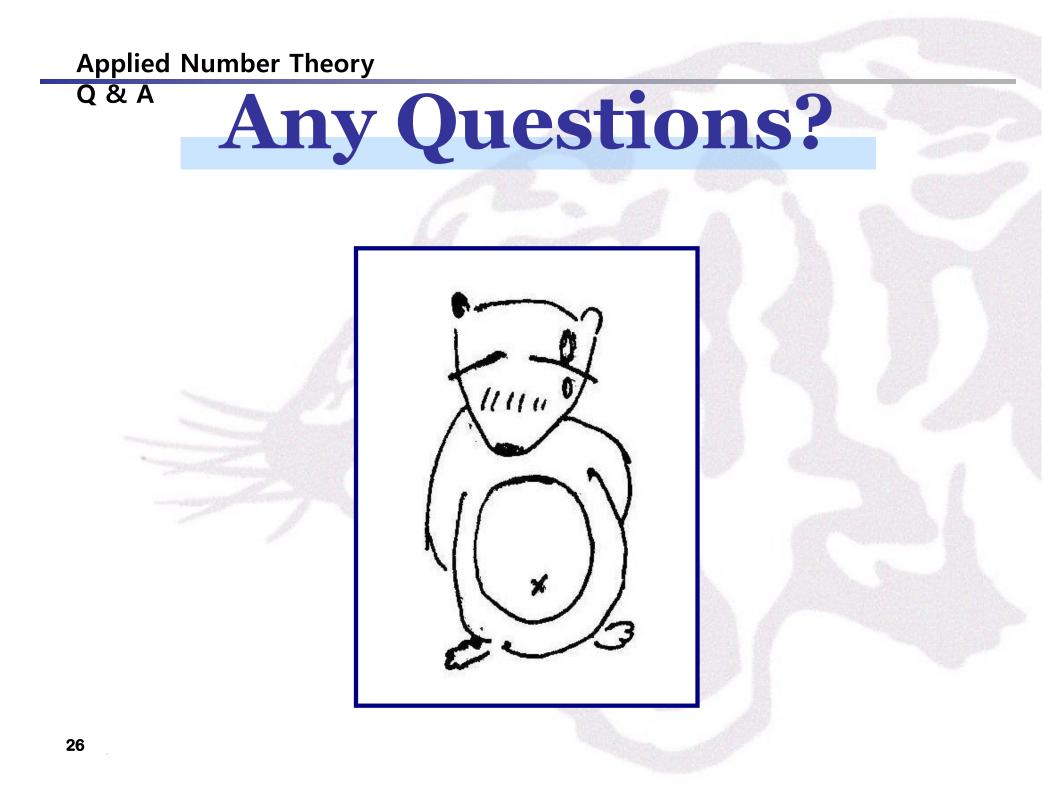
Source: www.asciitable.com

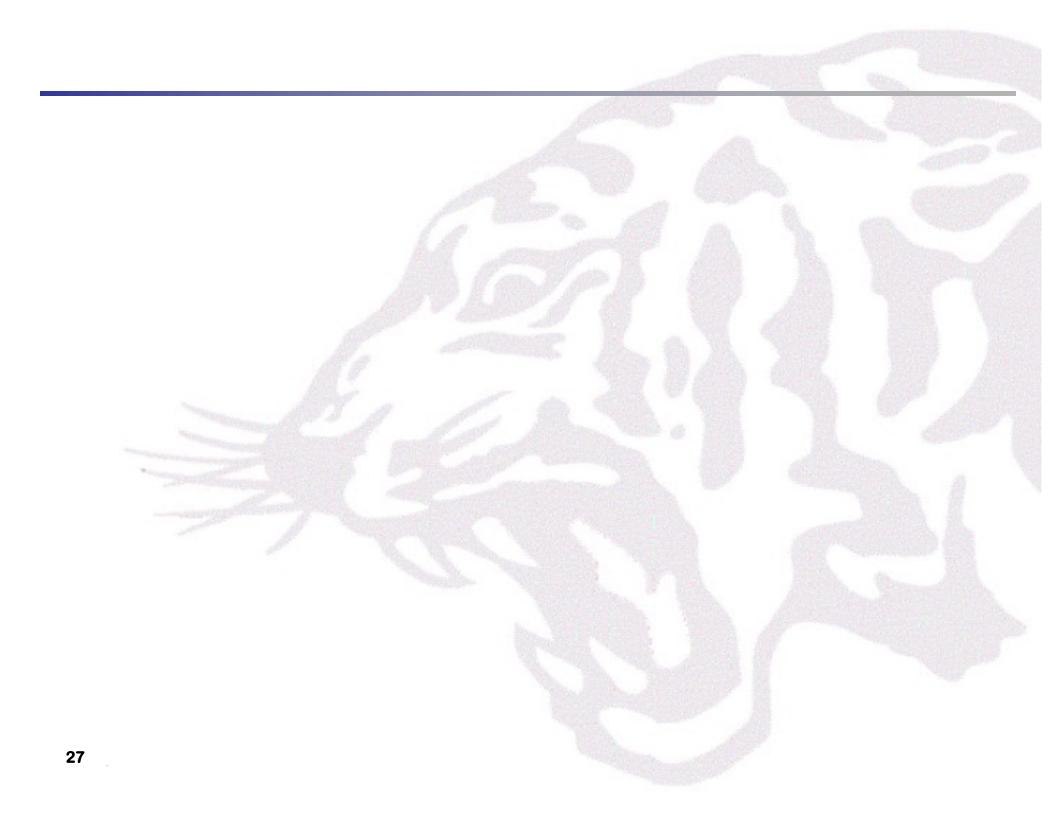
Conclusion and

Improvement Robustness of Hill

Cipher	Number of Possible Cases
Caesar	26
Affine	312
Vigenere	9
Autokey	9
Hill	157248
Exponentiation	16
RSA	51


Conclusion and


Improvement Improvement Improving of EXP & RSA


💌 "Y:\Number_Theory\Exp\Debug	/Exp_cip	her, ex	ke"											_ 0
Exponentiation cipher														
enciphering(e) or cracking(c)	>?													
e														
p:47 e:13														
input the plaintext:														
babababababbbbbbbbbaaaa														
23														
babababababbbbbbbbbaaaax														
numerical equiv														
01 00 01 00 01 00 01 00 01 00	0 01 0	1 01	01	01	01	01	01	01	00	00	00	00	23	
ciphertext														
01 00 01 00 01 00 01 00 01 00	0 01 0	1 01	01	01	01	01	01	01	00	00	00	00	10	
p:47 e:13 d:39														
cracked text														
babababababbbbbbbbbaaaax														

Press any key to continue

Using additional cipher system, Remove the filtered characters.

