
Fingerprinting and De-anonymizing Mobile Users

Gene Moo Lee
University of Texas at Austin

gene@cs.utexas.edu

ABSTRACT

Mobile devices are the avatars in our daily lives. We surf

webs, play mobile apps, search new information, enjoy location-

based services, and do social networkingwith small but pow-

erful devices. All these activities reveal a lot about ourselves,

which makes big privacy concerns.

This paper conducts a passive attack against an anonymized

mobile trace from an operational cellular provider. First,

we profile each mobile user by extracting various features

in mobile data activities. Then we analyze the feasibility to

construct user fingerprints that can serve as quasi-identifiers.

Lastly, we conduct two de-anonymization attacks using Face-

book as an auxiliary public source.

1. INTRODUCTION

Mobile devices are the avatars in our daily lives. We surf

webs, play mobile apps, search new information, enjoy loca-

tion based services, and connect with friends with the power-

ful personal devices. All these activities in mobile networks

reveal a lot about ourselves, which makes big privacy con-

cerns.

Problem statements: In this project, we study mobile user

activities by analyzing a mobile trace from an operational

cellular service provider.

First we measure the diversity of mobile user activities

to check the feasibility to extract fingerprints of individual

users. The mobile activities in consideration include mo-

bile web browsing activities, mobile app usages, search key-

words, geographic locations, social networking activities, and

so on.

Once we have mobile fingerprints from users, the next

step is to link these mobile users to the identities in the pub-

licly available auxiliary data sources. We will use social net-

work data which provide various user information publicly.

2. DATA DESCRIPTION

In this section, we describe the datasets used in this project.

Our main target is a cellular network trace from an opera-

tional cellular service provider. We try to extract various fea-

tures to profile mobile users. For the auxiliary data source,

we use Facebook, the most popular social network, which

data can be obtained by web crawling. Lastly, we will de-

scribe how to build the ground truth of user mapping be-

tween the two datasets.

2.1 Mobile Traces: Our Target

First, we have collected real traces from an operational

cellular service provider based in Chicago. This provider is

one of the top ten largest wireless telecommunication net-

works in the US, serving 5.8 million customers in 26 states.

Currently, we have HTTP sessions of 222K users from

one day in August, 2012. Based on the RADA [11] ses-

sions, which keep track of the base station each user is ac-

cessing, we can map each HTTP session to the correspond-

ing user. The user ID comes with the format of phone#

@provider.com.

The 2.6 TB trace includes all the HTTP sessions generated

by customers. Encrypted HTTPS sessions are not included.

In this project, we will focus on HTTP GET requests each

device has generated, because the information we can obtain

from HTTP GET requests overwhelms other sources such as

POST requests and GET responses. We have not conducted

deep packet inspection (DPI) to analyze payload information

due to the computation overhead.

Schema in HTTP session: For each HTTP session, we have

the following header information: (1) session ID, (2) times-

tamp, (3) protocol, (4) client IP, (5) server IP, (6) host, (7)

path, (8) key-value information. In addition to the schema

we had in the proposal, we now have HTTP cookie infor-

mation as well, which is a valuable source to understand the

HTTP sessions.

Mobile activities: The list of mobile user activities we focus

is the following:

• hosts (H): full domains, second-level domains

• mobile apps (A): app names, categories

• location (L): latitude and longitude, zip code

• facebook (F ): Facebook numeric IDs

Table 1 summarizes the patterns used to extract various high

level user activities from the cellular trace. We will describe

the detailed methods to extract these activities below.
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Category Host Keys Value

Host * N/A domain name

App * msid app name

App * app name app name

App * appname app name

App * bundle app name

App * bundleId app name

Location * lat, lng latitude, longitude

Location * lat, lon latitude, longitude

Location * lat, long latitude, longitude

Location * latitude, longitude latitude, longitude

Facebook *.facebook.com id Facebook ID

Facebook *.facebook.com a Facebook ID

Facebook *.facebook.com tpi Facebook ID

Facebook *.facebook.com actorid Facebook ID

Facebook *.facebook.com user Facebook ID

Facebook *.facebook.com ids[?] Facebook ID

Table 1: Patterns used to extract mobile activities in the

cellular trace.

Hosts (H): As each HTTP header specifies the host infor-

mation, we can clearly see which domain the user accessed.

Note that host information is even available in HTTPS ses-

sion. Even though a passive listener cannot look inside the

HTTPS sessions, still she can learn who is talking to whom.

We might need to differentiate hosts that are manually vis-

ited by web browsing from those accessed by machine codes

from mobile apps. For example, if a user visits austin.

craigslist.org, it is obvious that she is interested in

selling or buying goods. However, other hosts accessed by

mobile apps (e.g., data. flurry.com, androidsdk.

ads.mp.mydas.mobi) do not clearly reveal the nature of

user activities. To handle this, we can analyze host colloca-

tion. Assume we know some sessions are from mobile apps

for sure. Then the temporally neighboring hosts are likely

to come from apps as well. If we aggregate the collocation

information, we can find out the set of hosts are very likely

to come from mobile apps. We may also use top sites ranked

by Alexa [1] for the same purpose.

We can use host information in two ways: to use the host

as it is or to extract the second level domain. In case a ser-

vice is depending on multiple redundant servers for load bal-

ancing, the second level domain will group multiple server

instances while giving enough information about the service.

For example, static.ak.fbcdn.net and profile.ak

.fbcdn.net will be mapped to fbcdn.net.

Mobile apps (A): From the studies about Android apps [6]

and iOS apps [4], we know that over 80% of the free mo-

bile apps reveal personal information of the mobile users

to advertisement/analytics networks (e.g., doubleclick

.net, admob.com, data.flurry.com). In order to

identify themselves to the ad networks, mobile apps use spe-

cific keys (msid, app_name, bundle) in the key-value

chain. We take advantage of this to identify which mobile

apps users are using.

We can treat each mobile app as an individual attribute.

Another option is to use category information to group indi-

vidual apps together. Google Play categorizes each app into

games or applications. We will leave this as a future direc-

tion.

Figure 1 shows a HTTPGET request to doubleclick.net,

which contains the name of mobile app the user was running

(msid=com.igoldtech.an.swiped), which is a puz-

zle game according to the category fromplay.google.com.

In addition, it reveals other personal information such as

gender (cust_gender=2), language (hl=en), and time

zone (u_tz=300).

sessionID: 3743896369240254493

timestamp: 1340161434|06-20-2012|CST|CDT

protocol: HTTP|URLP|GET

client IP: 10.221.4.49

server IP: 74.125.225.154

host: googleads.g.doubleclick.net

path: /mads/gma

key-value: msid=com.igoldtech.an.swiped

&format=320x50_mb&net=ed&hl=en

&cust_gender=2&u_audio=1&u_so=p

&output=html&region=mobile_app&u_tz=300

Figure 1: Trace example: mobile application

Locations (L): For location based services such as local

search and weather updates, mobile devices should reveal

geographic locations to the service providers. We can take

advantage of this aspect to extract the trajectories of mobile

users. Especially, weather services even reveals user loca-

tions periodically for frequent updates.

Figure 2 is a HTTPGET request to search using google.com.

In the key-value information, we know that the search key-

word (q=chris bosh), platform (platform=android),

latitude (41.801719), longitude (-87.616753), region

(gl=US), and language (hl=en).

sessionID: 10610718480380941993

timestamp: 1340161434|06-20-2012|CST|CDT|

protocol: HTTP|URLP|GET

client IP: 166.226.44.25

server IP: 74.125.225.209

host: www.google.com

path: /m/gne/suggest/v2

key-value: q=chris+bosh+&hl=en&app=iss

&appv=133247963&platform=android&gl=US

&sll=41.801719,-87.616753&acc=962

Figure 2: Trace example: search keyword and location.

Once GPS coordinates are extracted, we convert this fine-

grained information to the ZIP codes using a public ZIP code

database [3]. We may choose different levels of granularities

such as city or state. However, we will focus on ZIP codes

for this study.

Facebook IDs (F ): Analyzing the trace, we know that more

than 20% of cellular traffic is related to Facebook, and more

than 90% of users are using Facebook. As our auxiliary

data is Facebook, understanding Facebook traffic from in-

side data will be useful in our analysis. Specifically, we are

interested in the Facebook IDs that appear in Facebook ses-

sions.

There are a variety of key-value pairs in the Facebook

HTTP sessions and we need to figure out which key-value

chains corresponds to Facebook IDs. By cross checkingwith
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the ground truth mapping and Facebook friend list data, we

came up with a few host-key patterns described in Table 1.

Figure 3 shows an example of a HTTP GET request to

Facebook. The key __user indicates the Facebook nu-

meric ID.

sessionID: 223514164345848579

timestamp: 1340161454|06-20-2012|CST|CDT

protocol: HTTP|URLP|GET

client IP: 166.221.26.179

server IP: 66.220.149.97

host: m.facebook.com

path: /ds/search.php

key-value: filter%5B0%5D=user&filter%5B1%5D=page

&filter%5B2%5D=group&filter%5B3%5D=event

&filter%5B4%5D=app&max_results=30

&context=mobile_search_m_site

&viewer=AfMqvQ9KrLpG9vmu

&q=crystal&m_sess=&__user=100001573141234

&__ajax__=true&__metablock__=23

Figure 3: Trace example: Facebook ID

Note that the Facebook IDs we have collected may or may

not be the IDs of the cellular account owner. They may cor-

respond to the identity of the mobile user herself or that of

her friend. But with high probability, the Facebook ID will

be closely related to the cellular user.

2.2 Facebook: Auxiliary Data

Now we describe the Facebook data that will serve as the

auxiliary information that contains the user identities.

2.2.1 Data Collection

We have developed two crawlers to collect Facebook data:

profile crawler and friend list crawler. Unlike other social

network services (e.g., Twitter, Foursquare), Facebook APIs

have a lot of restrictions in the purpose of data collection.

Screen scraping: Thereforewe chose an alternative approach

to use screen scraping. The idea is to pretend to be a normal

Facebook user who is using a standard browser to access the

service. We implement Ruby scripts to initiate a browser

and login to Facebook as a normal Facebook user. Then we

make HTTP requests with the following two URLs to down-

load profile pages and friend list pages:

http://www.facebook.com/profile.php?id=#{FBID}&sk=info

http://www.facebook.com/ajax/browser/list/allfriends

/?uid=#{FBID}&infinitescroll=1&location=

friends_tab_tl&start=#{offset}&__a=1"

Figure 4: Facebook URLs to collect profile pages and

friend lists.

Facebook IDs: Now the question is how do we get the list

of Facebook IDs to collect. For this project, we have used

the Facebook IDs obtained from the HTTP cookies, which

will be described in Section 2.3.

The caveat is that collected data is from known targets

with the help of the ground truth. In reality, we can use

seeds, a handful of Facebook IDs that we know the true

mapping to our target cellular users. We can first start from

the seed Facebook users to collect their profiles and friends.
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Figure 5: Node degrees on Facebook graph.

Once the seed crawling is done, we can collect from the one

degree friends of seeds in a depth first search manner. In our

current analysis, we only have seed data now and we are in

the process to collect more information from the friends of

seeds.

2.2.2 Facebook Graph

Basic statistics: We have crawled 16439 Facebook friend

lists. Then we construct a graph GFB = < VFB , EFB >,

where VFB is the set of all Facebook IDs appearing in the

friend lists and EFB is the set of Facebook friendship. Ta-

ble 2 shows the basic statistics on the Facebook graph.

|VFB | 2,627,000

|EFB| 6,724,000

# of friend lists 16,439

average node degree 205

median node degree 300

Table 2: Basic statistics on collected Facebook Graph

Node degree: The average node degree is 205, which is

much higher than the numbers from other social network

data (e.g., Twitter, LiveJournal, Flickr) in [10]. The CDF

of node degrees is shown in Figure 5.

2.2.3 Facebook Profiles

In a Facebook profile page, we can collect the following

user information: name, gender, current city, hometown, em-

ployers, education, languages, etc. However, due to privacy

concern, many Facebook users reveal limited information to

the public. Our analysis is based on the public information

we can access.

Overview: From the 7740 collected profile pages, 6821 (88%)

reveal the gender information. Facebook users tend to let

gender, high school, current city, hometown information to

be public, whereas other features are mostly private such as

languages, websites, relationship status. Table 3 shows the

statistics on top five public information.

Gender and relationship: Out of 6820 public gender infor-
mation, 3973 (58%) and 2847 (42%) are female and male,

respectively. From the public relationship information, sin-

gle ranked first (46%), followed by married (23%) and in a

relationship (23%) as shown in Table 4.
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Information Count Percentage

# profiles 7,740 100%

w/ gender 6,821 88%

w/ high school 3,954 51%

w/ current city 3,902 50%

w/ hometown 3,538 46%

w/ history 3,164 41%

Table 3: Public information in Facebook profiles.

An interesting experiment would be to predict the gender

or relationship status based on the cellular trace we have,

which may be a follow-up study.

Relationship Count Percent

single 844 46%

married 430 23%

in a relationship 426 23%

Table 4: Relationship in Facebook profiles.

Location: As the service provider is headquartered at Chicago,

a majority of the customers are geographically close to the

greater Chicago area. Top ranked are major cities in the

states of Illinois, Wisconsin, Iowa, North Carolina, Tennessee

as shown in Table 5.

Rank Current City Hometown

1 Chicago, IL Chicago, IL

2 Milwaukee, WI Milwaukee, WI

3 Madison, WI Des Moines, IA

4 Greenville, NC Knoxville, TN

5 Knoxville, TN Tulsa, OK

Table 5: Location information from Facebook profiles.

2.3 Ground Truth

Now we discuss about the ground truth of mapping be-

tween cellular users and social network users. Let GMT =
(VMT , EMT ) be the graph constructed by the mobile trace

where VMT is the set of nodes (e.g., cellular users) andEMT

is the set of edges (e.g., relationship between users) in the

graph.

Node mapping (VMT → VFB): As explained earlier, we

have HTTP cookie information in the trace. So we can ex-

tract the exact Facebook ID used to login to the service. This

gives us a ground truth knowledge to connect Facebook IDs

to the cellular users.

Based on the collected HTTP cookies, we have identified

16, 162 cellular users to their corresponding Facebook IDs.

Note that some cellular accounts are being used by multiple

people (e.g.via tethering). And there are cases where mul-

tiple Facebook IDs are mapped to a single cellular account.

In this case, we accept the mapping as long as one Facebook

ID is not mapped to multiple cellular users.

Notes on node mapping: We want to do some back-of-the-

envelope calculation on the mapping between the cellular

trace and Facebook data. Our target cellular provider is serv-

ing 6 million customers in the US and total US population

is 311 million according to Google Public data [14]. Given

a random US person, the probability the the person uses the

target cellular provider is about 5%. Recall that the average

Facebook node degree is 205, then the number of friends

who is using our target cellular service will be about 4.

Edge mapping (EMT → EFB): Based on the node map-

ping between mobile traces and Facebook, we can also infer

the relationship (VMT ) within mobile traces. Table 6 shows

the information aboutGMT .

As our node mapping only covers a small subset of Face-

book users, the edge coverage is also limited. The average

node degree of GMT is around 2, whereas that of GFB

is 200. It seems that this affects the performance of de-

anonymization process, whichwill be discussed in Section 4.

|VMT | 6,950

|EMT | 15,131

average node degree 2.18

Table 6: Basic statistics on mobile user graph.

3. MOBILE USER FINGERPRINTING

In this section, we first describe the construction of user

attributes from the cellular trace. Then we check the feasibil-

ity of extracting user fingerprints from the attributes. Lastly,

we conduct another feasibility study to check if the attributes

can be served as methods to reconstruct social relationship

within the cellular users.

3.1 Constructing User Profiles

In our user database, each record corresponds to a mobile

user in the trace. Then the attributes are generated from the

raw data (H ,A, L, F ). Based on the properties of each infor-

mation, we will transform raw information to the attributes

in the records.

Counting vs. binary: When we construct the attribute vec-

tor for each user, we may make the attribute value to be bi-

nary (just counting the existence) or weights (to emphasize

the frequency of each attribute). For this study, we will ig-

nore the frequency but just consider the existence of non-

zero attributes.

Example user: Figure 6 shows an example of a user profile

extracted from the cellular trace. Based on the majority vot-

ing, we can guess the Facebook ID: 100000325429162.

We can also confirm the Facebook ID by the HTTP cookie.

Based on the search keywords, we know that this user is in-

terested in used cars, credit reports, Mike Duman auto sales,

and drug (metformin hcl). From apps, we know that the user

plays fishing game and likes military wallpapers. From lo-

cation, the user is related in Virginia and Oregon.

Statistics: Table 7 shows the overall statistics on the con-

structed user profiles. In total, we have 222 thousand pro-

files and 99% of them have host information, which has the
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Cellular ID: 2079312010@uscc.net

Keywords (K):

blue+book+value+for+cars+used 4

free-annual-credit-report.com 3

mikeduman 3

metformin+hcl 2

Apps (A):

jp.pascal.bassfishingfree 8

TN_NAVSERVICE 3

com.best.wallpapers.Military 2

Locations (L):

36.44,-76.76 6

36.62,-76.66 6

42.34,-122.84 5

Facebook ID (F):

100000325429162 38

583963896 2

100000500469179 2

Figure 6: User profile example

highest coverage in terms of the number of users. Only 10%
of profiles include mobile app information, 26% has location

features, and 6% has at least one Facebook ID in the trace.

25% of users have accessed a Facebook domain and 7% of

them left cookie information, which is used as a ground truth

of identity mapping (see Section 2.3).

Count Percentage

# total users 222,874 100.00%

H: # users with hosts 222,680 99.91%

A: # users with mobile apps 24,468 10.98%

L: # users with location 58,389 26.20%

F: # users with FB IDs from traffic 14,083 6.32%

# users with Facebook traffic 55,842 25.06%

# users with Facebook cookies 16,162 7.25%

Table 7: Statistics on user profiles.

Number of attributes per user: Figure 7 shows the CDFs

of the number of unique attributes per cellular user. We can

see that host is again the richest source of information, fol-

lowed by Facebook IDs, mobile apps, then location infor-

mation. Facebook IDs will later be used to de-anonymize

the cellular users to the Facebook ID based on the friendship

information in Section 4. Mobile app information is quite

limited in terms of variety, which may limit the expressive-

ness as a source of fingerprinting. Interestingly, location in-

formation is also quite limited. This may be due to the short

duration of the trace we have processed.

3.2 User Identification by Features

Once we have constructed the user profiles, we want to

check if theHALF information can serve as the quasi-identifier.

First, we will define the similarity measure to quantify how

a pair of user profiles are close to each other. Then we will

see which attributes can be strong differentiators.

Similarity measures: We use the same definition by [9] to
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Figure 8: Similarity scores to the closest neighbors for

cellular users.

measure the similarity between two records in sparse databases.

We need to first define the similarity measure SIM between

two individual attributes. The similarity between two indi-

vidual attributes will be binary, where the function returns 1
if both are non-zeros; it returns 0 otherwise. Then the simi-

larity measure SIM between two profiles is defined as:

SIM(prof1, prof2) =

∑
i
SIM(attr1i, attr2i)

|supp(prof1) ∪ supp(prof2)|
(1)

where supp(prof) is the set of non-zero attributes in the

profile prof .

Similarity of each attribute: In order to check how each

profile is distinguishable against other profiles, we measure

the similarity measures to the closest neighboring profile

(which gives the highest similarity score). Figure 8 shows

the CDF of similarity scores to the closest neighbors.

We can see the Facebook IDs give the largest distinguisha-

bility with smallest similarity scores against the closest pro-

files. Then host information follows next. On the other hand,

ZIP codes and mobile apps features do not provide enough

expressiveness to create user fingerprints.

3.3 Reconstructing Social Graph

In order to conduct a node de-anonymization attack using

graph structures, we need to re-construct the social graph

of cellular users. If we had the call/SMS records, it could

be easily constructed. However, our trace only includes the

mobile data traffic, so the question is how we can infer the

social relationship based on our constructed HALF informa-

tion.

The idea is that if two users have very similar profiles, it is

likely that they are related to each other. For example, if two
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Figure 9: CDF of similarity scores between random pairs

and friends.

users co-located in multiple ZIP codes, they may be friends.

Similarly, we may think that socially closed users are likely

to use similar mobile apps and visit similar hosts.

In order to check this hypothesis, we first calculate the

similarity scores between friends in cellular traces using the

graph GMT from Section 2.3. Then we randomly pick two

cellular users to measure the similarity. We use the same

similarity measure from Section 3.2.

Figure 9 shows the CDF of similarity scores of random

pairs and Facebook friends. For Facebook IDs and ZIP codes,

all randomly chosen pairs do not share any common attributes,

resulting scores of 0, whereas Facebook friends share some

common Facebook IDs or ZIP codes. However, friends do

not share much mobile apps, so apps cannot be used to re-

construct social relationship between cellular users. Table 8

shows the averages, maximum values, and standard devia-

tions for each attribute.

Feature Avg Max Std

Host (Random) 0.02 1.00 0.07

Host (Friend) 0.11 1.00 0.10

App (Random) 0.01 1.00 0.10

App (Friend) 0.02 1.00 0.10

Location (Random) 0.00 0.00 0.00

Location (Friend) 0.12 0.00 0.26

Facebook ID (Random) 0.00 0.00 0.00

Facebook ID (Friend) 0.12 0.00 0.26

Table 8: Comparing similarity scores between random

pairs and friends.

4. DE-ANONYMIZATION ATTACKS

In this section, we conduct two de-anonymization attacks

against the mobile trace. First, we will compare the Face-

book IDs appearing in the trace against the friend list in

GFB . Next, we use graph structures to conduct a node de-

anonymization attack. In doing so, we modify the algorithm

from [10].

4.1 De-anonymizing by Facebook IDs

Algorithm: Our first de-anonymization attack is using a

very straightforward approach to use Facebook IDs appear-

ing the the mobile trace. We collect Facebook IDs (attrFB)

based on the method from Section 2.1. Our assumption is

that those Facebook IDs will closely related to the originat-

ing cellular user. It could be her own Facebook ID or those

from her friends.

For each set of Facebook IDs (attrMT ) from a mobile

user, we compare it against the friend lists (friendsFB) in

the Facebook graphGFB . If attrMT is a subset of friendFB ,

we save this Facebook ID in the candidate set. If there is only

one such Facebook ID, we conclude that the mobile user can

be mapped to the Facebook ID. Figure 10 shows the detailed

algorithm.

for mobile_user in V_MT:

confusion_set = {}

FBID_traffic = (facebook IDs from mobile traffic)

if | FBID_traffic | < THRESH: continue

for facebook_id in V_FB:

FB_friends = (facebook IDs from friends and self)

if FBID_traffic is a subset of FB_friends:

confusion_set.add(facebook_id)

if |confusion_set| == 1:

mapping[mobile_user] = confusion_set

Figure 10: De-anonymization algorithm based on Face-

book IDs.

Precision: We evaluate the performance using two metrics:

precision and coverage. Precision is defined as TP
TP+FP

,

where TP is the number of true positive mappings and FP

is the number of false positive mappings (i.e., mapped to a

wrong Facebook ID). Note that precision is only calculated

over the ground truth mappings, where we know the true

answers by HTTP cookie information. Figure 11 shows the

results. As we have more numbers of Facebook IDs, our pre-

cision goes up. With one Facebook IDs the precision is 80%,

which is still a good number, we can achieve up to 97%with

three Facebook IDs.
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Figure 11: Precision of de-anonymization by Facebook

IDs.

Coverage: Coverage is defined as
|Mapping∩TrueMap|

|TrueMap| , where

Mapping is our constructed mapping and TrueMap is the

ground truth mapping achieved by HTTP cookies. Figure 12

shows that with lower threshold of 1, we can de-anonymize
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Figure 12: Coverage of de-anonymization by Facebook

IDs.

more than 15% of our ground truth. However, increased

thresholds will greatly reduced the coverage.

4.2 De-anonymizing by Graph Structures

Next, we will conduct a more sophisticated de-anonymization

attack using the graph structure of two graphs GMT and

GFB . This work is based on the algorithm from [10].

Algorithm: Briefly explaining the algorithm, it starts with

seed mappings. Those seeds are true mappings between two

graphs, which can be obtained by other channels such as user

IDs, user real names, etc. In our evaluation, we use HTTP

cookie to construct seeds.

Once seeds are generated, we try to propagate the knowl-

edge to the neighboring nodes. If the link structure of two

nodes are very similar with high eccentricity, we map them

together. We repeat this propagation step until convergence.

One difference between the original problem setting from

ours is that we know the Facebook IDs appearing in the traf-

fic. Essentially, we know the set of Facebook nodes that are

possible friends of a given mobile user. We can take advan-

tage of this to update the mobile graph by adding an edge of

two mobile nodes if new mapping reveals that two mobile

users are friends over Facebook network.

The detailed algorithm is described in Figure 13.

Constructingmobile graphs: In the problemdefinition from

[10], we know the graph structures of both sanitized and aux-

iliary ones. However, in our context, it is not clear how cel-

lular users are socially connected to each other.

We can create mobile graphs based on the attributes we

constructed. A simple approach is to create an edge between

mobile users if the similarity measure of two profiles are

above some threshold. However, the constructed graphs did

not give good de-anonymization performances, so it seems

that constructed graphs do not reflect the true relationship.

We need to find a better way to re-construct social relations

based on the mobile activities.

For now, we use the true social graph of GMT where the

edges are constructed based on the friendship fromFacebook

graphGFB .

Evaluation: Again, we evaluate our de-anonymization at-

tack with two metrics: precision and coverage. Figure 14

shows the precision results. In all experiments varying the

number of seeds, the precision was perfect.

// new function

function updateGraph(lgraph, lgraph_cand_nbr, map)

for lnode in map:

rnode = map[lnode]

for (rnode, rnbr) in rgraph.edges:

if rnbr not in invert(map): continue

lnbr = invert(mapping)[rnbr]

if (lnode, lnbr) not in lgraph.edges:

lgraph.add_edge(lnode, lnbr)

for (rnbr, rnode) in rgraph.edges:

if rnbr not in invert(map)[rnbr]: continue

lnbr = invert(map)[rnbr]

if (lnode, lnbr) not in lgraph.edges:

lgraph.add_edge(lnode, lnbr)

function propagationStep(lgraph, rgraph, map)

for lnode in lgraph.nodes:

scores[lnode] = matchScores(lgraph,rgraph,map,lnode)

if eccentricity(scores[lnode]) < theta: continue

rnode = (pick node from rgraph.nodes where

scores[lnode][node] = max(scores[lnode]))

scores[rnode] =

matchScores(rgraph, lgraph, invert(map), rnode)

if eccentricity(scores[rnode]) < theta: continue

reverse_match = (pick node from lgraph.nodes where

scores[rnode][node] = max(scores[rnode]))

if reverse_match != lnode:

continue

map[lnode] = rnode

return map

function matchScores(lgraph, rgraph, map, lnode)

initialize scores = [0 for rnode in rgraph.nodes]

for (lnbr, lnode) in lgraph.edges:

if lnbr not in map: continue

rnbr = map[lnbr]

for (rnbr, rnode) in rgraph.edges:

if rnode in map.image: continue

scores[rnode] += 1 / rnode.in_degreeˆ0.5

for (lnode, lnbr) in lgraph.edges:

if lnbr not in map: continue

rnbr = map[lnbr]

for (rnode, rnbr) in rgraph.edges:

if rnode in map.image: continue

scores[rnode] += 1 / rnode.out_degreeˆ0.5

return scores

function eccentricity(items)

return (max(items) - max2(items)) / std_dev(items)

// main starts here.

until convergence do:

updateGraph(lgraph, lgraph_cand_nbr, map)

map = propagationStep(lgraph, rgraph, map)

Figure 13: De-anonymization algorithm based on graph

structures.
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Figure 14: Precision of de-anonymization by graph

structures.
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Figure 15: Number of additional mappings of de-

anonymization by graph structures.

However, the performance is not satisfactory in terms of

coverage. We totally have more than 16 thousand true map-

ping by HTTP cookies. However we could only de-anonymize

up to 13 additional mappings in all experiments, regardless

of the number of seeds used. We can not experience any

large scale cascading yet. Figure 15 shows the results.

Note on the results: We think that the low node degree is

the reason why massive cascading was not possible. The

average node degrees are from 29.3 to 37.7 in graphs from

[10]. Even our Facebook graph has very high node degree

of 205, the mobile graph has very low average node de-

gree of 2.18. So the remaining question is how we can de-

anonymize graphs in case of substantial differences in sizes.

5. RELATED WORK

De-anonymization: A series of works have been done in

the field of de-anonymization: [2], [15], [10], [13], [5], [7],

[16], [8], [9], [12]. Detailed description and comparison will

come later.

6. CONCLUSION

In this project, we conduct passive attacks against a mo-

bile trace from an operational cellular service provider. Based

on the HTTP session information, we can profile mobile

users in various dimensions: hosts, apps, location, social

networks. We show that very detailed user profiles can be

obtained by simply observing the mobile sessions. We show

the feasibility to use the constructed user profiles as quasi-

identifiers and to re-construct social relations between cellu-

lar users. Lastly, we conduct two de-anonymization attacks

using Facebook as an auxiliary data source. The first attack

uses Facebook ID to achieve high re-identification accuracy

but with limited coverage. We also show preliminary results

on the second attack using the graph structures.
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