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On the Interactions of Overlay Routing

Gene Moo Lee, M.A.
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Supervisor: Yin Zhang

Overlay routing has been successful as an incremental method to improve the cur-

rent Internet routing by allowing users to select the Internet paths by themselves. By its

nature, overlay routing has selfish behavior, which makes impact on the related compo-

nents of the Internet routing. In this thesis, we study three interactions related to overlay

routing. First, overlay routing changes the traffic patterns observed by the network op-

erating side, which uses traffic engineering techniques to cope with the dynamic traffic

demands. We improve thisvertical interactionbetween overlay routing and traffic engi-

neering. Secondly, the performance of overlay routing may be affected by the action of

other coexisting overlays. An initial result on thehorizontal interactionamong multiple

overlays is given. Lastly, within a single overlay network, overlay nodes can be regarded

as independent decision makers, who act strategically to maximize individual gain. We de-

sign an incentive-based framework to achieve Pareto-optimality in theinternal interaction

of overlay routing.
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Chapter 1

Introduction

The Internet is organized as multiple autonomous systems peering each other, and these

systems are operated by independent Internet Service Providers (ISPs), which seek to max-

imize the profit. The Internet paths between ISPs are mainly depending on the business

relationship. Thus, the end-to-end path performance may not be the main concern for inter-

domain routing, and the default Internet routing may not be optimized in the end user’s

point of view. Previous studies [34, 38] have shown that there is inherit inefficiency in

network-level routing.

In addition, today’s Internet only provides a best-effort service. In other words,

the Internet does not guarantee some quality of service (QoS) requirements. For the past

decades, there have been many efforts to provide QoS in the Internet, such as IntServ [11]

and DiffServ [25]. However, those methods have ultimate challenges: the whole IP infras-

tructure needs to be changed for such mechanism to be deployed.

1.1 Overlay Routing

Overlay routing has been proposed as anincrementalmethod to enhance the current Internet

routing without requiring additional functionality from the IP routers. Overlay techniques
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have been successful for many applications, including application-layer multicast [14, 21,

37], web content distribution [1], and overlay routing [8, 34].

In an overlay network, several overlay nodes form an application-layer logical net-

work on top of the IP layer network. Overlay networks enable users to make routing deci-

sions at the application layer by relaying traffic among overlay nodes. We can achieve better

route than default IP routing because some problematic and slow links can be bypassed. In

addition, overlay routing can take advantage of some fast and reliable paths, which could

not be used in the default IP routing due to the business relationship.

1.2 Interactions of Overlay Routing

By its nature, overlay routing has selfish behavior. In other words, overlay acts strategically

to optimize its performance. This nature of overlay makes impact on the related components

of the network. In this thesis, we study various interactions involved with overlay routing

and its related components.

1.2.1 Vertical Interaction

First, overlay routing hasvertical interactionwith IP layer’s traffic engineering. Whenever

overlay network changes its logical routing, the physical traffic pattern changes, which is

observed by the underlay routing. Network operators use traffic engineering techniques

[5, 33, 36] to adapt the routing to cope with the new traffic demands. This new routing,

in turn, changes the link latency observed by the overlay network, and then overlay makes

another decision to change its routing.

Network-layer routing protocols care about the network as a whole, in order to

provide better service to all the users. However, the main objective of overlay routing is to

minimize its own traffic latency. Then an interesting issue is to understand the interaction

between overlay routing and IP routing.

The interaction between overlay routing and traffic engineering was first addressed
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by Qiu et al. [32], where the authors investigate the interaction of overlay routing with

OSPF and MPLS traffic engineering. Keralapura et al. [24] examine the interaction dy-

namics between the two layers of control from an ISP’s view. Liu et al. [27] formulate the

interaction as a two-player game, where overlay attempts to minimize its delay and traffic

engineering tries to minimize the network cost. The paper shows that the interaction causes

a severe oscillation problem to each player and that both players gain little or nothing as the

interaction proceeds.

In this thesis, we proposeTE-aware overlay routing, which takes the objective of

underlay routing into account, instead of blindly optimizing its performance. Moreover, we

argue that it is better off for both players if the underlay routing is oblivious to the traffic

demands. We suggest COPE [39] as a strong candidate for this purpose.

1.2.2 Horizontal Interaction

The second interaction involved with overlay routing is calledhorizontal interaction. Given

that the overlay-based techniques widely get deployed, multiple overlay networks may co-

exist on top of a given underlay network.

Qiu et al. [32] first address interactions between coexisting overlays, where the

authors investigate the performance of selfish routing after the system reaches the Nash

equilibrium point. Seshadri and Katz [35] investigate the performance of greedy route

selection in a variety of scenarios. Their finding is that overlay routing can perform poorly if

the overlay flows comprise a significant fraction of link capacities. Jiang et al. [22] propose

overlay optimal routingand compare the performance with selfish routing. The authors

prove the existence of the Nash equilibrium in the multiple overlay game and show that the

game may not be Pareto optimal in some scenarios. Keralapura et al. [23] describe how

multiple similar or dissimilar overlay networks could experience race conditions, resulting

oscillations in route selection and network load.

Following the related works, we formulate the horizontal interaction as a non-

3



cooperative game among overlays, where each overlay network makes simultaneous moves

based on the observation of the current network status. In addition, we include underlay

routing as another player of the game and analyze the interaction process.

1.2.3 Internal Interaction

Lastly, within a single overlay network, overlay nodes haveinternal interactionwith each

other. Instead of considering the behavior of overlay network as a whole, overlay nodes are

regarded as independent decision-makers to optimize their own performance. In this model,

individual overlay node selectively forwards other’s traffic to maximize its own benefit and

to minimize the cost to relay transit traffic.

There have been extensive research [10, 12, 20, 26, 30] to design incentives to coop-

erate in Peer-to-Peer (P2P) networks. The incentive-based systems in P2P file sharing have

fundamental difference from that of overlay routing: players in overlay routing are well-

identified routers, but P2P users can easily hide their identity to be anonymous players.

Thus, the framework for overlay routing must capture the repeated nature of interactions

among overlays.

In this thesis, we view the transit traffic forwarding in overlay routing as a non-

cooperative two-player repeated game. We propose an incentive-based framework to stim-

ulate the cooperation of overlay nodes. We show the feasibility of our proposed system by

analytic proofs and simulation results.

1.3 Thesis Overview

The thesis is organized as follows. In Chapter 2, we discuss the vertical interactions between

overlay routing and underlay routing. Horizontal interactions among multiple overlays are

studied in Chapter 3. In Chapter 4, an incentive-based framework for internal interaction is

proposed and evaluated. We conclude the thesis and discuss future direction in Chapter 5.
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Chapter 2

Improving the Interaction between

Overlay Routing and Traffic

Engineering

2.1 Introduction

In every networked system, there are two different standpoints involved with it: service

providers who operate the system and individual users who take advantage of the service.

For example, in transportation system, the transportation authority operates the traffic signal

to make efficient traffic flow and to avoid traffic jam. On the other side, the drivers make

their own decisions on the directions to the destination. They try to bypass some congested

roads to arrive their destination as soon as possible.

The authority and drivers have different viewpoints of the transportation. The oper-

ation side has a global view of the transportation system and wants to provide good service

to all people, whereas individual drivers have just local view of the roads and the priority

is their own driving. We have similar situation in the Internet routing. The operating side,

Internet Service Providers, use traffic engineering techniques to adapt the routes to make
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better service to all the customers. Network users together form an overlay network and

make their own routing decisions to achieve better Internet routes.

In an overlay network, several overlay nodes form an application-layer logical net-

work on top of the IP layer network. Overlay network enables users to control their own

Internet paths by relaying traffic through logical links between overlay nodes. We can

achieve better route than default IP routing because some problematic and slow links can

be bypassed. Plus, we can use some fast and reliable paths, which could not be used with

the default routing due to the business relationship or policy issues.

By the underlying definition of overlay routing, it has selfish behavior. In other

words, users just want to get their best performance, regardless of their impact on the whole

network. However, the logical path between two overlay nodes is governed by the underlay

routing protocol, such as OSPF [5], MPLS [33], or BGP [36], which care about the network

as a whole. Then an interesting issue is to understand the interaction between overlay

routing and underlay routing. We term this asvertical interactionof overlay routing.

Qiu et al. [32] shows that the adaptive nature of selfish overlays can significantly

reduce the effectiveness of traffic engineering by making network traffic less predictable.

Liu et al. [27] formalizes this problem as a non-cooperative two-player game, and shows

the actual evidence where this misalignment of optimizations makes inefficiency.

In this chapter, we suggest methods to improve the interaction between overlay

routing and traffic engineering. The basic idea is to modify the objectives of each side to

take other party’s objectives into consideration. First, we make the underlay routing to be

oblivious to the underlay traffic demand so that the change of overlay traffic does not hurt

the performance of traffic engineering. We find COPE [39] as a strong candidate for this

purpose. For the overlay part, we limit the selfishness of the overlay routing to make sure

the behaviors of overlay do not conflict with the objective of underlay routing. We term

that asTE-aware overlay routing. With extensive simulation, we show how the vertical

interaction is improved by the proposed methods.

6



(i, j), l physical link
(i′, j′) logical link
cap(l) capacity of a physical linkl
vst(l) flow of dst on link l

fst(l) fraction ofdst on link l

t(l) traffic rate at linkl

dst total TE demand on physical node pair(s, t)
ds′t′ overlay demand on pair(s′, t′)

dunder
st TE demand due to underlay traffic

doverlay
st TE demand due to overlay flow

P (s′t′) set of logical paths froms′ to t′

δs′t′
p path mapping coefficient

h
(s′t′)
p overlay flow on logical pathp

Table 2.1: Notations for vertical interaction

The remainder of the chapter is as follows. We formally describe underlying model

in Section 2.2. In Section 2.3, we formulate the interaction of overlay routing and traffic

engineering as a non-cooperative two-player game. Then various underlay routing schemes

are described in Section 2.4, and selfish overlay routing and TE-aware overlay routing are

given in Section 2.5. Section 2.6 briefly explains how the implementation is done, and Sec-

tion 2.7 evaluates the proposed methods with simulation. Lastly, we conclude the chapter

and discuss future direction in Section 2.8.

2.2 Model

In this section, we describe the mathematical model, which will be used throughout the

chapter. Basically, traffic engineering and overlay have different viewpoints of the network.

Network operators know all the underlying structure of the physical network, whereas over-

lay has a logical view of the network.

Table 2.1 summarizes the notations for vertical interaction. First, we useG =

(V, E) to denote an underlay network, whereV is the set of physical nodes andE is the set

7



Node S

Node 1

path 1

Node 2

path 2

Node 3

path 3

Node D

path 1 path 2 path 3

Figure 2.1: An overlay network with five nodes: there are three possible logical paths for
the logical demand froms to d.

of edges between nodes. We usel or (i, j) to denote a link andcap(l) to refer the capacity

of link l. For the virtual network of overlay, we useG′ = (V ′, E′). In G′, we usei′ to

represent the overlay node built upon physical nodei in underlay graphG. Overlay nodei′

is connected toj′ by a logical link (i′, j′), which corresponds to a physicalpathfrom i to j

in G.

Now, we need to have different notations for overlay and underlay traffic demands:

dst is used to indicate the total traffic demand from nodes to t, including overlay and non-

overlay traffics, anddst is a sum ofdunder
st anddoverlay

st . dunder
st refers to the background

traffic by non-overlay demands. Next, it is important to differentiatedoverlay
st from ds′t′ :

ds′t′ indicates the logical traffic demand from overlay nodes′ to t′, whereasdoverlay
st is the

physical traffic demand on physical node pair(s, t), generated by overlay network. In other

words,doverlay
st is computed by the overlay routing based on the current logical demand

{ds′t′ |∀s′, t′ ∈ E′}.
The third group of notations is for the overlay routing.P (s′t′) is the set of logical

paths froms′ to t′. δs′t′
p is the path mapping coefficient, where the value is 1, if logical link

(s′, t′) is on logical pathp, and 0, otherwise.h(s′t′)
p is the amount of overlay demandd(s′t′)

flowing on logical pathp. Let us illustrate it by an example. In Figure 2.1, five nodes form

an overlay network. ThenP (s,d) = {s → 1 → d, s → 2 → d, s → 3 → d} and let

8



TE

Overlay

underlay routing       traffic demands

Figure 2.2: vertical interaction game: TE determines the physical routing, which decides
link latency experienced by overlay. Given the observed latency, overlay optimizes its log-
ical routing and changes the physical traffic demands, which, in turn, affects the underlay
routing.

those paths to bep1, p2, p3, respectively. Thenδ values will be as follows:δs1
1 = 1, δ1d

1 =

1, δs2
2 = 1, δ2d

1 = 1, and so on. Sayds′t′ = 3 and the overlay traffic is equally splitted to

the three logical paths, thenhs′t′
1 = hs′t′

2 = hs′t′
3 = 1.

2.3 Vertical Interaction Game

Based on the formulations in the previous section, traffic engineering and overlay routing

are coupled through the mapping from the logical level path to physical level links. We can

formulate the interaction as a non-cooperative two-player game as described in Figure 2.2.

The first player is the ISP’s traffic engineering and the second player is the overlay

routing for the user’s side. The interaction consists ofsequentialmoves of the two players.

Each player takes turn and makes action to optimize its performance. Based on the overlay

demand and flow conditions on the physical links, overlay calculates the optimal flows on

the logical routing. These logical flows and the underlay background traffic are coupled

to form the total traffic matrix, which is the input for traffic engineering. Then traffic en-

gineering optimizes its performance by adapting the flows on the physical links, which in

turn affects the delays experienced by the overlay. This interaction continues until the two

players come up with the Nash equilibrium point [17, 29].

In game theory, the Nash equilibrium (named after John Nash, who proposed it) is a
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kind of optimal collective strategy in a game involving two or more players, where no player

has anything to gain by changing only his or her own strategy. If each player has chosen

a strategy and no player can benefit by changing his or her strategy while the other play-

ers keep theirs unchanged, then the current set of strategy choices and the corresponding

payoffs constitute a Nash equilibrium.

Liu et al. [27] prove the existence of Nash Equilibrium in a simple interaction

game, where the topology consists of three nodes and there is a single demand between two

nodes. Even though we might prove the existence of a convergent point, the interaction

process does not guarantee that two players’ behaviors converge to the Nash equilibrium.

Moreover, if the game gets complicated, it is even harder to anticipate the interaction pro-

cess. The authors show that in a realistic scenario, both traffic engineering and overlay

routing experience substantial performance loss due to the oscillation.

The main direction of our work is to improve the vertical interaction between over-

lay routing and traffic engineering. First, we want the interaction game to converge faster

because the oscillation in this game degrades the performance of both players. Next, we try

to reduce the performance variation in the transient oscillation process.

2.4 Traffic Engineering

In this section, we now formulate three traffic engineering schemes: Multi-Protocol Label

Switching (MPLS) [33], oblivious routing [9], and Convex-hull-based Optimal traffic en-

gineering with Penalty Envelope (COPE) [39]. There are other IP routing protocols not

considered in the thesis, such as Open Shortest Path First (OSPF) [5]. We do not consider

this method because it is shown in [32] the vertical interaction of the scheme is inefficient.

The output of traffic engineering is IP-layer routing, which specifies how traffic of

each Origin-Destination (OD) pair is routed across the network. Typically, there is path

diversity, that is, there are multiple paths for each OD pair, and each path routes a fraction

of the traffic.
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2.4.1 Multi-Protocol Label Switching Traffic Engineering

Multi-Protocol Label Switching (MPLS) [33] provides an efficient support of explicit rout-

ing, which is the basic mechanism for traffic engineering. Explicit routing allows a particu-

lar packet stream to follow a predetermined path rather than a path computed by hop-by-hop

destination based routing such as OSPF or IS-IS.

The combination of MPLS technology and its traffic engineering capabilities enable

the network operator to adaptively load-balance the traffic demands to optimize the network

performance. There are two possible ways to describe the network performance: maximum

link utilization and total link latency.

The first possible performance metric is maximum link utilization. Network opera-

tors sometimes worry about over-loaded links, because these links can be a bottleneck for

the whole network performance. A slight change of the traffic pattern may overload the

over-utilized links. Therefore, we want to minimize the maximum link utilization.

Given the traffic demand matrix{dst|∀s, t ∈ V }, the goal of MPLS traffic engineer-

ing is to choose a physical link flow allocation{fst(l)|∀s, t ∈ V, ∀l ∈ E} which minimizes

the maximum link utilization. The Linear Program model is given as follows:

min r

subject to fst(l) is a routing

∀ link l :
∑
s,t

fst(l)dst/cap(l) ≤ r

Here, the first constraint ensures that the given routing satisfies the flow conservation con-

straints. Basically, for each router, total in-coming traffic should be equal to total out-going
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traffic. It can be described as the following equations:

∑

l|dst(l)=y

fst(l)−
∑

l|src(l)=y

fst(l) =





1 if y = t,

−1 if y = s,

0 otherwise

for each OD pairs, t. Here,l|dst(l) = y indicates all links destined toy, andl|src(l) = y

means all links sourced fromy.

For the next option, we can use total link latency as the network performance metric.

It is clear that faster the link speed is better, and we want to minimize the total link latency

throughout the network. We use theM/M/1 delay formula to calculate link cost. For a

physical linkl with capacitycap(l), if its traffic rate ist(l), the total delay experienced by

traffic engineering on the links is t(l)
cap(l)−t(l) .

Given the traffic demand matrix{dst|∀s, t ∈ V }, the goal of traffic engineering is

to choose a physical link flow allocation{fst(l)|∀s, t ∈ V,∀l ∈ E} that minimizes network

costs:

min
∑

l

t(l)
cap(l)− t(l)

subject to fst(l) is a routing

∀ link l : t(l) =
∑
s,t

fst(l)dst

Note that the link latency function is non-linear, which makes the optimization process

to be time-consuming. According to [18, 19], the cost of a link can be modeled with a

piecewise-linear, increasing, convex function with slopes as follows:
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ul(x/cap) =





1 : x/cap ∈ [0, 1/3)

3 : x/cap ∈ [1/3, 2/3)

10 : x/cap ∈ [2/3, 9/10)

70 : x/cap ∈ [9/10, 1)

500 : x/cap ∈ [1, 11/10)

5000 : x/cap ∈ [11/10,∞)

wherex is the load on linkl with capacitycap. We will use this linear function to calculate

the latency for overlay routing in Section 2.5.

2.4.2 Oblivious Routing

One of the important components of traffic engineering is to understand the traffic flow.

Previously discussed MPLS traffic engineering optimizes the paths based on the currently

observed traffic matrix. Unfortunately, measuring and predicting traffic demands are really

difficult problems. Flow measurements are rarely available on all links and Ingress/Egress

points. Moreover, demands change over time on special events like DoS attack and flash

crowds, or failures internal or external to the network. It seems that the most one can hope

is some approximate picture of demands, not necessarily the very current one.

Oblivious routing [9] is proposed to resolve this issue. It calculates an optimal

routing which performs reasonably wellindependentlyof traffic demands. In other words,

this “demand oblivious” routing is designed with little knowledge of the traffic matrix (TM),

taking only the topology along with link capacities into account. Oblivious routing can be

13



computed by the following Linear Program model:

min r

subject to fst(l) is a routing

∀ link l :
∑
m

cap(m)π(l, m) ≤ r

∀ link l,∀ pairs → t : fst(l)/cap(l) ≤ pl(s, t)

∀ link l,∀ nodes,∀ edgee = t → v : π(l, link-of(e)) + pl(s, t)− pl(s, v) ≥ 0

∀ link l,m : π(l,m) ≥ 0

∀ link l,∀ nodes : pl(s, s) = 0

∀ link l,∀ nodes, t : pl(s, t) ≥ 0

Note that the model above does not include any information about the traffic demand. The

output routing of the optimization is the optimal solution for all possible traffic matrices.

In the case we have some knowledge of traffic demand such as lower bounds and upper

bounds, we can produce an optimal routing for the specific range traffic matrices. Interest-

ing authors may refer to [9] for details.

2.4.3 Convex-Hull-Based Optimal Traffic Engineering with Penalty Envelope

MPLS Traffic Engineering can be regarded as an extreme case of online adaptation. An

advantage of this scheme is that it achieves the best performance for the current traffic de-

mand. However, if there are significantly fast traffic changes, such method can suffer a large

transient penalty. Oblivious routing is a way to handle unpredicted traffic spikes. However,

a potential drawback of completely oblivious routing is its sub-optimal performance for the

normal traffic demand.

Convex-hull-based traffic engineering with penalty envelope (COPE) [39] is pro-

posed as a hybrid combination of predication-based optimal routing and oblivious routing.

COPE handles both dynamic traffic and dynamic inter-domain routes and, at the same time,
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achieves close-to-optimal performance for normal, predicted traffic matrices.

The optimization mainly consists of two parts: convex-hull-based optimal traffic

engineering and penalty envelope constraints. LetD be the convex hull of the set of traffic

matrices{D1, ..., DH}. Then the problem of finding optimal min-max ratio of the network

on the set of traffic matricesD can be formulated as following Linear Program:

min r

subject to fst(l) is a routing

∀ link l, ∀ TM D =
H∑

h=1

αhDh, αh ≥ 0, OU(D) = 1 :

∑
st

dstfst(l)/cap(l) ≤ r

Next, the penalty envelope constraint restricts that the routingf has maximum performance

ratio less than or equal tor. This can be formalized as following set of linear constraints:

∀ link l :
∑
m

cap(m)π(l, m) ≤ r

∀ link l,∀ pairs → t : fst(l)/cap(l) ≤ pl(s, t)

∀ link l,∀ nodes,∀ edgee = t → v : π(l, link-of(e)) + pl(s, t)− pl(s, v) ≥ 0

∀ link l,m : π(l, m) ≥ 0

∀ link l,∀ nodes : pl(s, s) = 0

∀ link l,∀ nodes, t : pl(s, t) ≥ 0

The convex-hull-based Linear Program takes the input as a set of possible traffic matrices.

In our simulation, however, we use a single currently observed traffic matrix. Still, COPE

is shown to make an excellent performance for the dynamic change of the traffic patterns.
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2.5 Overlay Routing

In this section, we formulate the objective functions for overlay routing. We start with the

default overlay routing, which we termselfish overlay routing. Given the current underlay

routing and experienced link latency, selfish overlay tries to minimize its total latency by

changing the loads for each logical path in the overlay network.

Then, we propose a variation of overlay routing. Basically, we include additional

constraints to the original overlay optimization so that overlay takes the presence of traffic

engineering into account. We term this asTE-aware overlay routing.

2.5.1 Selfish Overlay Routing

The overlay routing algorithm determines a logical path flow allocation{hs′t′
p |∀s′, t′ ∈

V ′,∀p ∈ P (s′t′)} that minimizes the average delay experienced by the overlay users,

whereas traffic engineering determines the physical flow. Byhs′t′
p , we denote the logical

overlay demand froms′ to t′ allocated to pathp.

Individual overlay users may choose their routes independently by probing the un-

derlay network. However, we assume that a centralized entity calculates routes for all over-

lay users. Given the physical network topology, underlay routing, and experienced latency

for each link, optimal overlay routing can be obtained by solving the following non-linear

optimization problem:

min
∑

l

t(l)overlay

cap(l)− t(l)

subject to hs′t′
p is a logical routing

∀ link l : t(l) =
∑
s,t

fst(l)(dunder
st + doverlay

st )

∀ link l : t(l)overlay =
∑
s,t

doverlay
st fst(l)

∀s, t ∈ V : doverlay
st =

∑

s′,t′,p

δs′t′
p h(s′t′)

p
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TE-aware-overlay-routing (latency) {
if(latency < avg_latency) load-balancer(latency);
else limited-optimizer(max-load);

}

Figure 2.3: TE-aware Overlay Routing algorithm

The first constraint ensures that the logical routing satisfies the logical flow conservation

constraints. This can be expressed as follows:

∀s′, t′ ∈ V ′ :
∑

p∈P (s′t′)

h(s′t′)
p = d(s′t′)

∀s′, t′ ∈ V ′ : h(s′t′)
p ≥ 0.

Note that the main objective of problem is non-linear. But we can again linearize the

non-linear part of the program by using the same technique used for the traffic engineering

optimization. Refer to the Section 2.4 for details.

2.5.2 TE-Aware Overlay Routing

Based on the selfish overlay routing, we can include additional constraints to ensure the

overlay isTE-aware. By TE-awareness, we mean the selfishness of the overlay is limited by

some bound so that the action of overlay does not offensively affect the traffic engineering’s

optimization process.

The basic idea is this: (1) when the current latency is below the average latency, the

overlay tries to minimize its own traffic amount, given that the current latency is preserved

(load-balancer). (2) If the latency is above the average, then overlay changes the logical

routing to improve the latency, but, at the same time, it avoids a specific link to overloaded

(limited-optimizer). The TE-aware overlay routing algorithm is given in Figure 2.3. The
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first part, load-balancer, can be formalized as the following Linear Program model:

min
∑
s,t

doverlay
s,t

subject to hs′t′
p is a logical routing

∀ link l : t(l) =
∑
s,t

fst(l)(dunder
st + doverlay

st )

∀ link l : t(l)overlay =
∑
s,t

doverlay
st fst(l)

∀s, t ∈ V : doverlay
s,t =

∑

s′,t′,p

δs′t′
p h(s′t′)

p

∑

l

t(l)overlay

cap(l)− t(l)
≤ Θ

Here, the main objective is to minimize the total overlay traffic amount. TheΘ in the last

constraint indicates the current latency.

Secondly, the limited selfish overlay routing can be defined as follows:

min
∑

l

t(l)overlay

cap(l)− t(l)

subject to hs′t′
p is a logical routing

∀ link l : t(l) =
∑
s,t

fs,t(l)(dunder
st + doverlay

st )

∀ link l : t(l)overlay =
∑
s,t

doverlay
st fst(l)

∀s, t ∈ V : doverlay
st =

∑

s′,t′,p

δs′t′
p h(s′t′)

p

∀ link l :
∑
s,t

fst(l)d
overlay
st ≤ θ

Here,θ is the maximum link load that the overlay generates in the past run:

θ = max{t(l)overlay|∀ link l}.
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2.6 Implementation

The vertical interaction game is implemented with a combination of General Algebraic

Modeling System (GAMS) [3] programs and Perl scripts.

The General Algebraic Modeling System (GAMS) is specifically designed for mod-

eling linear, nonlinear and mixed integer optimization problems. We use this modeling

system to implement various optimization procedures for the experiments. The GAMS

program is solved using COIN-OR solver (Computational Infrastructure - Operations Re-

search), which is an initiative to spur the development of open-source software for the oper-

ations research community. The interaction between optimization programs is implemented

by connecting the inputs and outputs of the GAMS programs through Perl scripts.

Given that we run the optimization process for more than hundred iterations, we

need a support of Condor [2], which is a specialized workload management system for

compute-intensive jobs. It provides a job queueing mechanism, scheduling policy, priority

scheme, resource monitoring, and resource management.

2.7 Simulation

This section describes the simulation results of vertical interactions. We first compare

MPLS and COPE as the underlay traffic engineering schemes. Then we evaluate and com-

pare TE-aware overlay routing and selfish overlay routing.

2.7.1 Data Set Description

We perform extensive experiments on a 14-node Tier-1 POP topology described in [28].

The underlay network topology is given in Figure 2.4. On top of the physical network, we

made up a four-node full-meshed overlay networks as given in Figure 2.5. For the traffic

matrix, we generate synthetic traffic demands using gravity model [28].
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Figure 2.4: 14-node Tier-1 backbone topology: each node represents a Point-of-Presence
(POP) and each link represents the aggregated connectivity between the routers belonging
to a pair of adjacent POPs.

Node 3

Node 6

Node 7

Node 11

Figure 2.5: An overlay network used for the vertical interaction experiments. The overlay
traffics are routed through the logical paths. In the simulation, we set all logical paths to
include one transit point.
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2.7.2 MPLS and COPE with Selfish Overlay

We start with the comparison between MPLS and COPE in the operator’s viewpoint. We

fix the overlay routing to be selfish and compare the performance of MPLS and COPE.

For the COPE, we need a prespecified penalty envelope value. We first calculate

the value (1.9969) by running oblivious routing, which finds the optimal routing which

minimizes the oblivious ratio. This can be calculated without any information about traffic

demands because oblivious routing only depends on the network topology information.

Then by multiplying 1.1 to the optimal oblivious ratio, we set the penalty envelope value.

First, we set 10% of the total traffic demand to be operated by the selfish overlay

routing. We set the load scale factor to be 0.3, 0.5, and 0.7. This means that the maximum

link utilization is 30%, 50%, and 70%, respectively, when all the demands use the default

underlay routing without overlay’s action.

The experiment results are shown in Figure 2.6. Regardless of the load scale factor,

we can observe that the COPE makes better interaction with selfish overlay. In all cases,

MPLS traffic engineering suffers from substantially large oscillation throughout the inter-

action, where COPE achieves almost stable performance with its maximum link utilization.

Similarly, the dynamics of overlay latency is quite stable with the interaction of COPE.

Moreover, the average latency sometimes gets improved by using COPE.

For the next experiment, we want to explore the impact of the overlay fraction to

the vertical interaction. Now, we fix the load scale factor and change the fraction of overlay

traffic (10%, 30%, 50%) in the experiment. We set the load scale factor to be0.9 in Figure

2.7 and1.0 in Figure 2.8.

Again, we can observe that COPE makes better interaction with selfish overlay

routing than MPLS does. As we increase the fraction of overlay traffic, the oscillation of

maximum link utilization gets larger, which follows our intuition. However, the perfor-

mance of overlay latency seems to be independent of how much portion overlay routing

operates.
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Figure 2.6: MPLS and COPE with selfish overlay. 14-node topology with a 4-node overlay
network, overlay fraction = 10%, load scale factor = 0.3, 0.5, 0.7.
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With the extensive simulation, we find COPE as a strong traffic engineering tech-

nique which achieves stable performance even the selfish overlay routing governs a signifi-

cant portion of the total traffic demand.

2.7.3 TE-Aware Overlay and Selfish Overlay with MPLS

Now, we evaluate the TE-aware overlay routing by comparing it to the selfish overlay rout-

ing. For the underlay routing, we again use MPLS and COPE. We first start the evaluation

by comparing two overlay routings on top of MPLS traffic engineering.

In Figure 2.9, we set 10% of the traffic to be operated by overlay routing and in-

crease the load scale factor (0.3, 0.5, 0.7). Considering the overlay latency, TE-aware over-

lay routing achieves more stable performance. Moreover, in the case where the load scale

factor is 0.5 and 0.7, the average latency experienced by TE-aware overlay is lower than

selfish overlay. We can see that overlay routing can achieve better and stable routing by

understanding the objective of underlay routing.

Considering the traffic engineering side, selfish overlay routing makes significant

burden to the underlay routing because it generates substantially large amount of additional

traffic. Thus, we can observe sudden increase of the maximum link utilization in all cases.

However, TE-aware overlay limits its selfishness and tries to avoid a specific link to be

over-loaded by its own traffic. Thus, the fluctuation of maximum link utilization is smaller

when the overlay is TE-aware.

Next, we fix the load scale factor to be 0.9 and 1.0, and change the overlay fraction:

10%, 30%, and 50%. Figure 2.10 and 2.11 describe the results. The experiments are

conducted where the network is substantially congested (load scale factor: 90%∼ 120%).

Still, the proposed method makes better interaction than selfish overlay does.

With the extensive experiment results, we come up with the conclusion that TE-

aware overlay routing generally makes stable interaction with MPLS traffic engineering.

Selfish overlay routing experiences less predictable latency and it makes significantly large
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Figure 2.7: MPLS and COPE with selfish overlay. 14-node topology with a 4-node overlay
network, overlay fraction = 10%, 30%, 50%, load scale factor = 0.9.
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Figure 2.8: MPLS and COPE with selfish overlay. 14-node topology with a 4-node overlay
network, overlay fraction = 10%, 30%, 50%, load scale factor = 1.0.
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Figure 2.9: TE-aware overlay and selfish overlay on MPLS. 14-node topology with a 4-node
overlay network, overlay fraction = 10%, load scale factor = 0.3, 0.5, 0.7.
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maximum link utilization of the network. However, we can achieve either convergence

or regular pattern with the overlay latency when TE-awareness is used in overlay routing.

Moreover, the network overhead to the traffic engineering is reduced by using the proposed

overlay routing. Thus, TE-awareness obtains win-win game for each player in the presence

of MPLS traffic engineering.

2.7.4 TE-Aware Overlay and Selfish Overlay with COPE

For the last experiment, we examine the interaction between TE-aware overlay and selfish

overlay on top of the COPE traffic engineering. In the previous experiments comparing

COPE and MPLS, we have observed that COPE achieves better interaction with selfish

overlay routing. Now, the question is how much gain we can get by using TE-aware overlay

with COPE.

Figure 2.12 describes the experiment results, where 10% of the traffic is routed by

overlay routing. We again use three load scale factors (0.3, 0.5, 0.7). Different from the

experiments with MPLS, the achievement we get from TE-awareness is limited. When the

load scale factor is 0.3 and 0.5, the TE-aware overlay routing converges fast with good

latency, but TE-aware overlay routing shows a small oscillation in the last case. However,

comparing to the oscillation in MPLS experiments, we can see the performance variation is

negligible. Similar patterns can be observed with the maximum link utilization.

In Figure 2.13 and 2.14, we fix the load scale factors to be 0.9 and 1.0, and change

the fraction of overlay traffic (10%, 30%, 50%). General observation is that as the link gets

more utilized, the performance gain from TE-awareness is substantially large.

Considering the overlay side, in all experiments, the latency experienced by TE-

aware overlay is better than that of selfish overlay. The maximum link latency experienced

by selfish overlay is sometimes twice larger than average latency. In some scenario, the self-

ish overlay latency keeps increasing as the interaction with underlay proceeds. TE-aware

overlay shows similar pattern but makes convergence at considerably lower latency. Look-
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Figure 2.10: TE-aware overlay and selfish overlay on MPLS. 14-node topology with a 4-
node overlay network, overlay fraction = 10%, 30%, 50%, load scale factor = 0.9.
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Figure 2.11: TE-aware overlay and selfish overlay on MPLS. 14-node topology with a 4-
node overlay network, overlay fraction = 10%, 30%, 50%, load scale factor = 1.0.
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Figure 2.12: TE-aware overlay and selfish overlay on COPE. 14-node topology with a 4-
node overlay network, overlay fraction = 10%, load scale factor = 0.3, 0.5, 0.7.
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ing at the traffic engineering side, TE-awareness obtains either similar or better performance

than selfishness.

Summarizing the interaction experiments with COPE, we can achieve considerably

good interaction for both selfish overlay and TE-aware overlay. But, TE-aware overlay

performs slightly better than selfish overlay routing.

2.8 Conclusion and Future Work

In this chapter, we study the interaction between overlay routing and traffic engineering.

Overlay routing optimizes its logical routing with the given underlay routing, and this log-

ical routing changes the physical demands observed by the underlay routing. Traffic en-

gineering adapts its routing to cope with the new traffic matrix, which, in turn, changes

the latency observed by overlay routing. We form this interaction as a non-cooperative

two-player game, and observe that vertical interaction makes substantial oscillation, which

degrades the performance for each player.

We implement and evaluate MPLS, oblivious routing, and COPE for the underlay

routing. MPLS is an adaptive extreme in the sense that it tries to optimize the underlay rout-

ing with the current traffic matrix, and oblivious routing is the opposite extreme because it

achieves some performance guarantee for all possible traffic matrices. We find COPE as

an excellent combination of these two extreme methods. COPE achieves close-to-optimal

performance for normal traffic demand, and, at the same time, it guarantees tolerable per-

formance for extremely unpredictable traffic patterns. Our simulation shows that COPE

performs well in the interaction with various overlay routing.

In addition, we proposeTE-awarenessto improve the current selfish overlay rout-

ing. The basic idea is to take traffic engineering’s objective into account in overlay routing.

If overlay is experiencing low latency, it tries to minimize the overlay traffic in the hope

that this process will lighten the burden to traffic engineering. Otherwise, overlay tries to

achieve better latency by changing the logical routing. Still, we make sure that overlay
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Figure 2.13: TE-aware overlay and selfish overlay on COPE. 14-node topology with a 4-
node overlay network, overlay fraction = 10%, 30%, 50%, load scale factor = 0.9.
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Figure 2.14: TE-aware overlay and selfish overlay on COPE. 14-node topology with a 4-
node overlay network, overlay fraction = 10%, 30%, 50%, load scale factor = 1.0.
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traffics do not overload a specific link so that overlay’s behavior does not adversely affect

the performance of traffic engineering.

With extensive simulation, we have shown that TE-awareness improves the vertical

interaction. First, average latency experienced by TE-aware overlay is lower than that of

selfish overlay. Moreover, the oscillation of latency gets improved significantly. In the

underlay viewpoint, TE-awareness prevents the overlay to overload specific links. Thus,

we can achieve win-win game with the proposed method.

In this chapter, we model the vertical interaction within a single domain. Then a

future direction will be to explore the interaction in the inter-domain level. In this scenario,

overlay networks spread across several autonomous systems and cooperate each other. Then

the actions overlay take will affect multiple domains.
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Chapter 3

Understanding the Interactions

among Multiple Overlays

3.1 Introduction

Overlay-based approach has been successful because it can compensate the inefficiency of

the current Internet without requiring modification in the IP infrastructure. Those overlay

networks and peer-to-peer systems include Gnutella [4] (an overlay for file-sharing), Re-

silient Overlay Network [8] (which provides better connectivity than BGP does), and End

System Multicast (which attempts to provide efficient multicast using end-hosts).

As overlay techniques get more popular, multiple overlay networks may simulta-

neously exist on a single physical network. Typically, overlay routing involves the mea-

surement of all available overlay paths. However, if multiple overlays do not explicitly

share their decisions on paths, the path information is likely to be inaccurate at the instant

when the selection of the best route is made because of the actions by other overlays. Thus,

the decisions made by one overlay network can directly affect the performance of other

overlays. We term this ashorizontal interactionof overlay routing.

There have been several research works on the dynamics of multiple overlays. Qiu
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et al. [32] first address interactions between multiple coexisting overlays, where the authors

investigate the performance of selfish routing after the system reaches the Nash equilibrium

point. Seshadri and Katz [35] investigate the performance of greedy route selection in a

variety of scenarios. Their finding is that greedy overlay routing can perform poorly if the

overlay flows comprise a significant fraction of link capacities. Jiang et al. [22] model

the interaction of overlays as a non-cooperative strategic game and prove the existence of

a Nash equilibrium in the game. It is shown that the outcome of the game may not be

Pareto-optimal in some scenarios. Keralapura et al. [23] describe how multiple similar or

dissimilar overlay networks could experience race conditions, resulting oscillations in route

selection and network load.

In this chapter, we first start with thepurehorizontal interaction, where two over-

lays change their logical routing on top of afixedunderlay routing. In this scenario, we

assume that individual overlays do not recognize the existence of the other parties. We find

that, when the links are under-utilized with small traffic demands, the interaction performs

efficiently without significant oscillation issues. However, as the total traffic is increased

and network gets congested, the interaction makes oscillation for both overlays. Next, we

seek to understand the interaction of multiple overlays on top of dynamic underlay routing.

Three players are involved in this game: two overlay optimizers and an underlay TE op-

timizer. The simulation shows that the severe oscillation degrades the performance of all

players. However, we find that TE-awareness and demand-obliviousness can improve the

interaction.

The chapter is organized as follows. We first formally define the horizontal interac-

tion as a non-cooperative game in Section 3.2. Then we show the preliminary simulation

results in Section 3.3 and conclude the chapter in Section 3.4.
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3.2 Horizontal Interaction Game

This section formulates the horizontal interaction as a non-cooperative game among overlay

networks. The underlying mathematical model is essentially identical to that of vertical

interaction. Refer to Table 2.1 for the details. The only difference is that we need indexed

notations for each overlay network, rather than having a single group of notations.

3.2.1 Pure Horizontal Interaction

Now, we assume two overlays exist on top of a shared underlay topology, and that overlays

do not have information about each other. In thepurehorizontal interaction, the underlay

routing is fixed and only overlays change their logical routing. Each overlay makessimul-

taneousmove based on the given network condition, assuming that all the other factors

related to network are static. Note that, in the vertical interaction game, overlay routing and

traffic engineering makesequentialmoves based on the other party’s action.

Given the physical network topology, underlay routing, and experienced latency for

each link, optimal logical routing of overlay 1,{hs′t′
p |∀s′, t′ ∈ V ′, ∀p ∈ P (s′t′)}, can be

obtained by solving the following non-linear optimization problem:

min
∑

l

t(l)overlay1

cap(l)− t(l)

subject to hs′t′
p is a logical routing

∀ link l : t(l) =
∑
s,t

fst(l)(dunder′
st + doverlay1

st )

∀ link l : t(l)overlay1 =
∑
s,t

doverlay1
st fst(l)

∀s, t ∈ V : doverlay1
st =

∑

s′,t′,p

δs′t′
p h(s′t′)

p

∀s, t ∈ V : dunder′
st = dunder

st + doverlay2
st

The first constraint ensures that the routing satisfies the flow conservation law. The last
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constraint is needed because overlay 1 cannot differentiate the traffic of overlay 2 from

the original underlay traffic. Specifically,dunder
st indicates the original underlay traffic, and

dunder
st anddoverlay2

st add up to makedunder′
st , the cross traffic observed by overlay 1. Then,

the non-linear objective function is again linearized with the same arguments in Chapter 2.

For overlay 2, we can easily have similar optimization program.

3.2.2 Combining Horizontal and Vertical Interaction

We now add the vertical interaction process to the pure horizontal interaction game. That

is, traffic engineering adaptively changes the physical routing based on the current traffic

matrix. MPLS [33] and COPE [39] are used for the traffic engineering algorithm. When the

traffic engineering modifies the underlay routing, the latency observed by the overlays are

also changed. Then overlays simultaneously optimize their routing, which, in turn, change

the traffic matrix observed by network operating side.

3.3 Simulation

This section describes the simulation results of horizontal interactions among overlays.

3.3.1 Implementation

Similar to the vertical interaction experiments, we implement various optimization prob-

lems in GAMS [3] programs, then we develop Perl scripts to make the interaction between

GAMS programs. Condor [2] system is used to execute the intensive jobs.

3.3.2 Data Set Description

In the simulation, we assume that two overlay networks coexist on top of the shared un-

derlay network. The logical topology for each overlay is given in Figure 3.1. Two overlay

nodes are intentionally set to be included in both overlays, and they share a link between
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Node 3

Node 6

Node 7

Node 11

Node 3
Node 4

Node 5

Node 9
Node 11

Figure 3.1: Two overlay networks that are used for the horizontal interaction experiments.
Both overlays do not know the presence of each other in this simulation.

node 3 and 11. The first overlay has four nodes and the second has five. For the physical

network topology, we again use the 14-node Tier-1 POP topology described in [28]. For the

traffic matrix, synthetic data based on gravity model [28] is generated. In order to ensure

the fair condition for each overlay network, two overlays are set to have similar total traffic

demands.

3.3.3 Horizontal Interaction on Static Underlay Routing

First, we start with pure horizontal interaction where only overlay networks change their

routing with static underlay routing. We set both overlays to use selfish optimizers.

In Figure 3.2, we use MPLS traffic engineering to calculate the underlay routing.

In the simulation, the overlay demands totally account for 20% of the total traffic demands,

and three experiments are done with different load scale factors (0.4, 0.7, 1.0). When the

network is under-utilized, the interaction converges really fast without oscillation issues.

However, in the case the maximum link utilization is over 100%, the horizontal interaction

results some oscillation. Similar results are observed in Figure 3.3, where the underlay

routing is given by COPE.

For the next experiment, we evaluate the TE-aware overlay routing in the pure hor-

izontal interaction. The preliminary results indicate that TE-awareness makes little impact
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Figure 3.2: Horizontal interaction of two selfish overlays on static MPLS. Total overlay
fraction = 20%, load scale factor = 0.4,0.7,1.0.
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Figure 3.3: Horizontal interaction of two selfish overlays on static COPE. Total overlay
fraction = 20%, load scale factor = 0.4,0.7,1.0.
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on the game. When TE-aware overlays are used on top of the static underlay routing, the

qualitative results are similar to that of the experiments with selfish overlays. Thus, we do

not include those results.

In the pure interaction game, our general finding is that horizontal interaction itself

does not make severe oscillation problem, comparing to the vertical interaction. To sup-

port our argument, we will further explore the interaction in other scenarios with different

topologies.

3.3.4 Horizontal Interaction on Adaptive Underlay Routing

Now, we combine horizontal interaction and vertical interaction. In this scenario, traffic

engineering adaptively change its routing to cope with the new traffic matrix, then two

overlays make simultaneous moves to adapt their logical routing to the new physical rout-

ing.

In Figure 3.4, we fix the underlay routing to use MPLS traffic engineering and

compare the performance of TE-aware overlays against that of selfish overlays. We use

two different settings where the load scale factors are 0.5 and 0.7, and 20% of the total

traffic is set to be governed by overlay routing in each case. Consistent observation in all

results is that selfish overlays make bigger, sudden spikes throughout the interaction and

that TE-aware overlays achieve more stable latency performance with faster convergence.

Moreover, selfish overlays significantly increase the total traffic amount and the maximum

link utilization sometimes increases by a factor of two, which makes negative impact to the

network operating side.

Figure 3.5 describes the experiment results where the underlay routing is deter-

mined by COPE optimizer. All the experiment parameters are identical to that of the previ-

ous experiment in Figure 3.4 (load scale factor = 0.5, 0.7 with 20% overlay traffic demand).

Consistent with the results in vertical interaction experiments, COPE generally achieves

much better interaction with both selfish and TE-aware overlays. Given that the interaction
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Figure 3.4: TE-aware overlays vs selfish overlays on adaptive MPLS. Total overlay fraction
= 20%, load scale factor = 0.5, 0.7.
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Figure 3.5: TE-aware overlays vs selfish overlays on adaptive COPE. Total overlay fraction
= 20%, load scale factor = 0.5, 0.7.
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is already improved, TE-awareness does not significantly change the quality of interaction.

So far, we assume that both overlays are either selfish or TE-aware. We have also

simulated the case where one of overlays is selfish and the other is TE-aware. Our prelim-

inary results indicate that the improvement achieved by TE-awareness in the case is quite

limited. A potential explanation is that selfish overlay overloads some specific links and

these congested links severely degrade the performance of both overlay networks. We ar-

gue that each overlay network has an incentive to be TE-aware because selfishness will hurt

its own performance, as well as others. We will further explore the incentives of overlays

to be TE-aware with extensive experiments.

3.4 Conclusion and Future Work

This chapter gives initial results on the horizontal interaction of overlay routing. As overlay

network gets more popularity, multiple overlay networks may coexist on top of a shared

underlay routing without knowing the presence of each other. Each overlay network pe-

riodically probes the available overlay paths and changes its logical routing to reduce the

total latency. However, if multiple overlays share some logical links without exchanging

explicit routing information of each other, currently observed link latency may be changed

by other overlays’ action. Thus, the action of each overlay affects other overlays. We form

this interaction as a non-cooperative game among multiple overlays.

The simulation results show that, if the underlay routing is static, horizontal inter-

action itself does not make severe oscillation problems. Even in the case where the network

is sufficiently congested, the oscillation does not last for a long period.

We then include the vertical interaction process into the horizontal interaction. Mul-

tiple overlays optimize their routing on top of an adaptive underlay routing. COPE makes

better interaction with any combinations of overlay routing optimizers than MPLS does,

which is consistent with the results in Chapter 2. In addition, TE-awareness improves the

interaction process when all overlay networks choose to be TE-aware. However, when one
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of the overlays decides to be selfish, the overall performance gain with TE-awareness seems

to be limited, and the selfish overlay itself also suffers from the poor interaction in this case.

We argue that every overlay network has an incentive to be TE-aware because it can achieve

better interaction by limiting its selfishness.

This chapter focuses on a single-AS scenario, and a natural future direction is to

extend the framework to inter-domain level. We can obtain more realistic experiments if

overlay nodes are located in multiple domains. Another direction is to incorporate network

anomalies in the scenario where some links fail in the middle of interaction process. It will

be interesting to observe how the network performs in the transient phase and how fast the

interaction converges to the stable state.
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Chapter 4

Designing an Incentive-based

Framework for Overlay Routing

4.1 Introduction

Overlay networks have been successful for many applications such as content distribu-

tion networks, peer-to-peer file sharing, ad-hoc networks, distributed look-up services,

application-layer multicast overlays, virtual private networks, and so on. Especially, it has

been shown by [8, 34] that overlay routing can significantly improve the sub-optimality of

the Internet routing. Most overlay systems assume that individual nodes will cooperate with

each other to achieve the goal of the whole system.

However, as the overlay network becomes more popular, we argue that the system

will get decentralized and it will consist of independent overlay nodes. The node will

choose the action with its own decision. We assume that an overlay node will selectively

forward traffic from other nodes to maximize its benefit and to minimize the cost. The

benefit a node can achieve is better routes with lower latency and lower loss rate. In the

meantime, the node will consume some resource when forwarding transit traffic on behalf of

other nodes. The cost includes packet processing time, memory consumption, and network
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bandwidth.

We analyze the behavior of the overlay nodes by formalizing the transit traffic for-

warding as a non-cooperative game [17]. Since the nodes in overlay routing are network

routers, we assume that the identities of the nodes are well-known to each other and that

every pairs of nodes will repeat the game. Our analysis shows that players are not likely to

cooperate if there is no regulation mechanism.

In this chapter, we introduce incentive-based frameworks [17], which are designed

to stimulate the players to cooperate in overlay routing. We analyze three trigger strategies

for the repeated game: grim-trigger, tit-for-tat, and punish-and-reward. We give sufficient

conditions, in which the independent nodes follow the rule of the systems. In addition, we

generalize the punish-and-reward system to induce more cooperation of the players.

Among the possible strategies, we evaluate the generalized punish-and-reward sys-

tem with simulation. The system stimulates significant amount of cooperations with lim-

ited number of punishments. The performance gets closer to the social optimum as we

have more cooperation. In addition, the framework shows good tolerance against impatient

players.

To the best of our knowledge, there is no general framework to stimulate cooper-

ations in overlay routing networks. Considering an increasing role of overlay networks,

proposed mechanism will merit general purpose systems of overlay networks.

The chapter is organized as follows. First, we assume our model and define the

problem in Section 4.2. Then we use game-theoretic approach to analyze the behavior of

the overlay nodes in Section 4.3. Section 4.4 proposes our framework to make incentives

to cooperate in the overlay routing, and Section 4.5 evaluates the proposed method using

simulation. We discuss related research works in Section 4.6, and conclude the chapter with

future direction in Section 4.7.
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4.2 Our Incentive Model

In this section, we introduce requirements and assumptions which the model is based on.

Then the transit traffic forwarding problem in overlay routing is formalized in a game-

theoretic framework.

4.2.1 Requirements and Assumptions

Our incentive model is based on the assumptions and requirements as follows:

1. Quantifying benefits and costs: Overlay nodes can get better routing paths with

the help of other nodes. The benefit we can achieve includes lower latency and lower loss

rate. We may precompute these benefit values using network coordinate systems [16]. We

assume that all the players know the benefit for each opponent. In the meantime, overlay

nodes spend some resource to forward traffic from their opponents. The cost includes CPU

time, memory consumption, and network bandwidth. Based on the current demand, each

overlay node calculates the cost that will occur to the opponent and announces this infor-

mation to the opponent. Since we are dealing with different kinds of metric, we need to

convert them into dimensionless parameters.

2. Strategic and rational overlay nodes: The participants are strategic in the sense

that they can choose their own actions whatever they want, and that these actions lead to

different outcomes. A node can take action to forward or to drop the traffic from a given

opponent node. In addition, overlay nodes are rational to maximize their own utility values.

3. Overlay nodes are trustworthy: We assume that each overlay node will truthfully

report the cost that will occur to forward the transit traffic and the benefit the node can get

from the opponent. It will be an interesting problem to think about the incentive of players

to truthfully report them. However, it is not a focus of this chapter. Another assumption

is that if an overlay node agrees to relay other’s traffic, it will actually put its best effort

to deliver the traffic to the destination. Since overlay nodes in our context are routers, we

exclude the case where some players are malicious.
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Figure 4.1: Traffic relaying game in overlay routing is equivalent to Prisoner’s Dilemma

4. Identities of nodes: The overlay nodes are routers and the identities are well

known to each other. Consequently, the relationship among participants is continuing.

However, in P2P system, the up-time of the clients is relatively short, which makes it dif-

ficult to regulate anonymous free riders. In this sense, P2P system can be modeled as a

one-shot game, but repeated game framework should be applied to the overlay routing.

4.2.2 Problem Definition

In this chapter, we want to answer the following questions.What will be the overall perfor-

mance if overlay nodes are independent?If the overlay nodes can be controlled by a central

entity, we may achieve the social optimal performance. However, as the overlay nodes seek

individual optimality, it is likely that the overall performance degrades (price of anarchy).

In Section 4.3, we will analyze the transit traffic forwarding as a non-cooperative game.

Given the overlay network experiences performance degrading by the selfishness, then the

next question is:how can we design a mechanism to encourage overlay nodes to cooperate

each other and to get closer to socially optimal performance?In Section 4.4, we propose

our framework to solve this problem.

4.3 Traffic Relaying Game

In this section, we want to anticipate what will happen if the overlay nodes are independent

players. Since the individual action of each player will lead to the final outcome, we use
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N total number of overlay nodes
i, j individual overlay node
uij utility value nodei achieves fromj’s contribution
cij cost of nodei to relayj’s traffic
bij benefit nodei gets fromj’s help
δ discount factor

Table 4.1: Notations for internal interaction

game theory to analyze the overlay routing.

Since there is no standard consensus on the overlay network construction process,

we describe the procedure we will use in this chapter. (1) When a router joins the overlay,

it receives the protocol of the overlay network. (2) With the current traffic demand, each

node calculates the benefit it can achieve from other nodes. (3) Each node sends traffic

relaying requests to the opponents with the cost information including network bandwidth

and traffic amount. (4) Based on the benefit and cost values, each pairs of nodes play traffic

forwarding game.

Figure 4.1 shows the transit traffic forwarding game in the overlay routing. We

assume that both players simultaneously select their actions: to relay the opponent’s traffic

or not. If both players forward the traffic on behalf of each other, both get the benefit from

each other and consume their resource for each other. If only one of the players relays the

traffic, the cooperative player pays the cost without benefit and the other player receives the

benefit without any cost.

Here we introduce some notations for our convenience (Table 4.1). We assume that

there areN players andN(N−1)
2 separate games among them. In the game between playeri

and playerj, we denote the partial utility function of playeri to beuij = −cij + bij , where

cij is the cost playeri should pay to relay playerj’s traffic andbij is the benefit playeri can

get from playerj’s help. Then total utility function of playeri is
∑

i 6=j uij . We may useb

andc without the subscripts if there is no confusion.

Let’s consider the best action each player can take in this game. Basically, this game
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is equivalent to Prinsoner’s Dilemma [17]. Assuming player 2 relays the traffic, player 1

gets better payoff by not relaying the traffic (b12 > b12 − c12). With the assumption that

player 2 does not help out, player 1 is still better off to refuse the duty (0 > −c12). Similarly,

player 2 will not cooperate with the same argument. Thus,(NotRelay, NotRelay) is a

Nash equilibrium[17, 29] of this game. The players are said to be at Nash equilibrium if

no player can improve its utility by unilaterally changing his strategy.

With this argument, we can see that overlay nodes are unlikely to cooperate without

some external control. Thus, we need some mechanism to give incentives to players to

cooperate. Intuitive approach could be to record the history of other players’ actions and

maintain the reputation value of the opponent player.

We model the traffic forwarding in overlay routing as a repeated game because the

overlay nodes are network routers and the interaction between nodes will be repeated. Since

we do not expect the end of the interaction, we treat it as an infinitely-repeated game. This

feature is different from the case of P2P file-sharing system, where anonymous players have

incentives to get the download and to leave the system without any contribution.

In the repeated game, overlay nodes play the game in Figure 4.1 over and over. The

utility value is simply the total sum of the utility the player gets in a one-shot game. Since

the game is played infinitely, we have to differentiate between the utility achieved in the

current time and the one in the future games.Discount factor(0 ≤ δ ≤ 1) is the weight we

put on the future utility. Ifδ = 0, the player only considers the current payoff and ignores

the future impact. Ifδ gets closer to 1, the player puts almost equal importance on the future

payoff as the present value.

4.4 Incentive-Based Frameworks

In this section, we introduce possible frameworks adopted from game theory [17]. They

are designed to encourage cooperation in overlay routing. We itemize the requirements of

the framework we want to achieve. Then we describe some candidate systems and evaluate
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Figure 4.2: Grim-Trigger State Diagram

them using mathematical arguments.

The followings are some requirements that the system should meet. (1) The system

stimulates the independent players to cooperate each other. (2) The system is robust with

the “impatient” players (i.e. lowerδ value). (3) The outcome of the system is close to the

social optimal performance. We have three possible systems for our goal, and details will

be cover in the following sections.

• Grim-Trigger: If both players cooperate in the past, they repeat the cooperation.

However, if there is a player who defected, there will be no cooperation thereafter.

• Tit-for-Tat: In this system, each player repeats whatever the opponent played in the

previous game. This follows the human analogy “an eye for an eye, a tooth for a

tooth”.

• Punish-and-Reward: We consider the notion of “forgiveness” in this system, whereas

grim-trigger only includes punishing mechanism. A player in a bad reputation can

restore its state by receiving the punishment.

4.4.1 Grim-Trigger System

In grim-trigger system, everyone enjoys the cooperation until there is one player who de-

fects at some point. Figure 4.2 shows the state diagram of the system. The quoted actions

are what our rule requires the players to obey. Both players start with the good state as long
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as both of them relay the opponent’s traffic. But if one of them refused to relay at some

point, both of them go to bad state and stay there forever.

The grim-trigger is strong and extreme because there is no forgiveness. If one of

the players refuses to cooperate, both players will not cooperate forever. Therefore, players

will be really cautious to refuse the cooperation.

Since the overlay nodes are independent, they can choose whether to go along with

the system or not, based on the expected payoffs. The following proposition gives a condi-

tion where players will follow the rule.

Proposition 1 Grim-Trigger System induces the cooperation of the players as a subgame

perfect Nash equilibrium ifδ ≥ c/b.

Proof: It is shown in [17] that it is enough to consider one time unilateral deviation

to show it as a Nash equilibrium. For each state, we consider the utility payoff each player

can have by obeying or deviating, assuming that both players will obey the rule thereafter.

Suppose players are in the good state. Then the rule is to play(R, R). If player 1

obeys the system(R,R), both players will stay in the good state. If player 1 deviates from

the rule(N,R), there will be no cooperation forever.

u1(obey|GG) =
∞∑

i=0

(b− c)δi =
b− c

1− δ

u1(deviate|GG) = b +
∞∑

i=1

0δi = b

Player 1 will obey the rule ifδ ≥ c/b in the good state. We can have a dual argument for

player 2.

Suppose players are in the bad state. Then the rule is to play(N,N). Regardless
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Figure 4.3: Tit-for-Tat State Diagram

of player 1’s actions, they will stay there forever.

u1(obey|BB) =
∞∑

i=0

0δi = 0

u1(deviate|BB) = −c +
∞∑

i=0

0δi = −c

Players are always better off to follow the system in the bad state.

Since both players start in the good state, grim-trigger system will make the coop-

eration if δ ≥ c/b. ¤

Given the discount factorδ is fixed, the ratio of costc and benefitb directly make

impact on the system performance. Ifc = 0, thenc/b = 0 and every player will cooperate

to relay the traffic from the opponent. Otherwise, ifb = 0, thenc/b = ∞ and there is noδ

satisfying the equation, and all players do not have incentive to cooperate in this case. This

is consistent with our intuition.

4.4.2 Tit-for-Tat System

Tit-for-tat system follows the human analogy “an eye for an eye, a tooth for a tooth”. Every

player will repeat whatever the opponent played in the previous round, as described in
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Figure 4.3. If both of them cooperate, they will enjoy the cooperation forever. However, if

one of them deviates from the responsibility, the opponent will deviate in the next round. In

this system, punishment will result another punishment, which makes an infinite chain of

“revenges”.

Because of this chain, it is likely that the system becomes unstable. As proved in

the following proposition, only a limited player will follow the rule, which shows that the

system is not tolerant. An advantage is that it does not require explicit state maintenance

because players repeat whatever they got.

Proposition 2 Tit-for-Tat System induces the cooperation of the players as a subgame per-

fect Nash equilibrium ifδ = c/b.

Proof: Suppose both players are in the good state. Then the rule is to play(R, R)

in the next game. If player 1 obeys the system, both players will stay in the good state. If

player 1 deviates from the rule(N,R), there will be infinite chain of revenge.

u1(obey|GG) =
∞∑

i=0

(b− c)δi =
b− c

1− δ

u1(deviate|GG) =
∞∑

i=0

(b− cδ)δ2i =
b− cδ

1− δ2

Player 1 will obey the rule ifδ ≥ c/b in the (Good,Good) state. The same argument

applies to player 2.

Suppose player 1 is in the good state but player 2 is the bad state. Then the rule

is to play(N,R) in the next round. Player 1 will stay in the revenge chain if he obeys the

rule. If he deviates and forgives the opponent player, then they will enjoy the cooperation
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thereafter.

u1(obey|GB) =
∞∑

i=0

(b− cδ)δ2i =
b− cδ

1− δ2

u1(deviate|GB) =
∞∑

i=0

(b− c)δi =
b− c

1− δ

Player 1 will obey the rule ifδ ≤ c/b in the(Good,Bad) state.

Now, let’s look at the player 2’s perspective. If player 2 obeys the rule, then they

stay in the revenge chain. Otherwise, both players go to bad state in the next round.

u2(obey|GB) =
∞∑

i=0

(−c + bδ)δ2i =
−c + bδ

1− δ2

u2(deviate|GB) =
∞∑

i=0

0δi = 0

Player 2 will follow the rule ifδ ≥ c/b in the(Good,Bad) state. We can have the similar

argument for(Bad, Good) state.

Lastly, considering the(Bad, Bad) state, the rule is to play(N,N). Both play-

ers do not have incentives to deviate from the system because they will stay in that state

regardless of the cooperation.

Since both players start with the(Good,Good) state, they will cooperate ifδ ≥ c/b.

However, if we consider all the states together, players will follow the rule ifδ = c/b. ¤

4.4.3 Punish-and-Reward System

In punish-and-reward system, we include the notion of “forgiveness” into the grim-trigger

system. Figure 4.4 illustrates the state diagram of the system. Both players start with

the good state like in the previous systems. They enjoy the cooperation until one of them

defects. The player who does not relay the opponent’s traffic goes to a bad state. It can only

restore its good reputation by receiving a punishment. Here, the punishment is to relay the
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Figure 4.4: Punish-and-Reward State Diagram

opponent’s traffic.

Since we have forgiveness here, the system is more flexible. In grim-trigger system,

if there is a single mistake, then cooperation is impossible thereafter. However, this system

allows the player to make up the mistakes.

In the following proposition, we analytically derive the condition that the players

will follow the system.

Proposition 3 Punish-and-Reward System induces the cooperation of players as a sub-

game perfect Nash equilibrium ifδ ≥ c/b.

Proof: Suppose both players are in the good state. Then the rule is to play(R, R)

in the next game. If player 1 obeys the system, both players will stay in the good state. If

player 1 deviates from the rule and plays(N,R), then it will go to the(Bad, Good) state.

It should receive the punishment to get back to the(Good,Good) state again.

u1(obey|GG) =
∞∑

i=0

(b− c)δi =
b− c

1− δ

u1(deviate|GG) = b + δ(−c) + δ2 b− c

1− δ

Player 1 will obey the rule ifδ ≥ c/b in the (Good,Good) state. The same argument

58



applies to player 2.

Suppose player 1 is in the good state but player 2 is the bad state. Then player 1

is supposed to playN and gets the reward. Player 1 will receive the reward from player 2

regardless of its action, and the players will go to(Good,Good) state.

u1(obey|GB) = b + δ
b− c

1− δ

u1(deviate|GB) = (b− c) + δ
b− c

1− δ

Player 1 is always better off to follow the rule.

Now, let’s look at the player 2’s perspective. Player 2 is supposed to get the pun-

ishment and playR. If player 2 obey the rule and receives the punishment(N,R), then it

recovers its reputation. Otherwise, it deviates from the rule(N, N), it stays in the bad state

and defers the punishment to later game.

u2(obey|GB) = (−c) +
∞∑

i=1

(b− c)δi = −c + δ
b− c

1− δ

u2(deviate|GB) = 0 + δ(−c) + δ2 b− c

1− δ

Player 2 will follow the rule ifδ ≥ c/b in the(Good,Bad) state. We can have the similar

argument for(Bad, Good) state.

Lastly, considering the(Bad, Bad) state, the rule is to play(N,N). Both play-

ers do not have incentives to deviate from the system because they will stay in that state

regardless of the cooperation.

The system will successfully make the cooperation ifδ ≥ c/b. ¤

From three propositions above, we can see that the conditions to make players co-

operate are similar for all three candidates. However, punish-and-reward system is the most

promising one because it is tolerant against some possible mistakes. In addition, it will

guarantee the convergence of the overall overlay network.
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4.4.4 Generalized Punish-and-Reward System

We can generalize the idea of punish-and-reward system. Instead of making an one-time

punishment, we can think ofM consecutive punishments as a make-up for the defecting.

Intuitively speaking, we may enforce more players to cooperate as we increase the number

of punishments. If the player refuses a punishment during the period, then the punishment

procedure restarts from the beginning.

The following proposition shows that the system becomes more tolerant against

impatient players as we increase the number of punishments.

Proposition 4 Generalized Punish-and-Reward System induces the cooperation of players

as a subgame perfect Nash equilibrium if
∑M

i=K δi ≥ c/b for 1 ≤ K ≤ M .

Proof: Suppose both players are in the good state. Then the rule is to play(R, R)

in the next game. If player 1 obeys the system, both players will stay in the good state. If

player 1 deviates from the rule(N,R), then it will go to the(Bad, Good) state. It should

receive theN punishments to get back to the(Good, Good) state again.

u1(obey|GG) =
b− c

1− δ

u1(deviate|GG) = b +
M∑

i=1

(−c)δi + δM+1 b− c

1− δ

Player 1 will obey the rule if
∑M

i=1 δi ≥ c/b in the(Good,Good) state. The same argument

applies to player 2.

Suppose player 1 is in the good state but player 2 is the bad state. LetK be the

number of punishments left for player 2. Then player 1 is supposed to playN and gets the
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reward. Player 1 will receive the reward from player 2 regardless of its action.

u1(obey|GBK) =
K−1∑

i=0

bδi + δK b− c

1− δ

u1(deviate|GBK) = (b− c) +
K−1∑

i=1

bδi + δK b− c

1− δ

Player 1 is always better off to follow the rule.

Now, let’s look at the player 2’s perspective. Player 2 is supposed to get theK more

punishments and playR. If player 2 obey the rule and receives the punishment(N, R), then

it recovers its reputation. Otherwise, it deviates from the rule(N, N), it stays in the bad

state and start the punishment process from the beginning.

u2(obey|GBK) =
K−1∑

i=0

(−c)δi + δK b− c

1− δ

u2(deviate|GBK) = 0 +
N∑

i=1

(−c)δi + δN+1 b− c

1− δ

Player 2 will follow the rule if
∑M

i=K δi ≥ c/b in the (Good,BadK) state. We can have

the similar argument for(BadK , Good) state.

Lastly, considering the(Bad, Bad) state, the rule is to play(N,N). Both play-

ers do not have incentive to deviate from the system because they will stay in that state

regardless of the cooperation.

The system will successfully make the cooperation if
∑M

i=1 δi ≥ c/b. ¤

4.5 Simulation

In this section, we conduct simulation to evaluate one of our proposed methods, punish-and-

reward system. First, we want to check if the system actually encourages much cooperation.

Also, it is important to check theprice of anarchy, a metric to measure how much the system
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is close to the social optimum.

4.5.1 Parameters

We have three main parameters to set in the simulation:

1. Benefit and cost values: Given a fixed network topology and traffic demand,

we may calculate the benefit value using network coordinate systems. However, we have

not implemented this feature. For this simulation, we teak the maximum value of benefit

and costs, and use uniform distribution to allocate these values for each pair of the overlay

nodes.

2. Number of punishments: We change the number of punishments to see the impact

on the cooperation ratio.

3. Discount factor: In order to test the tolerance of the system, we gradually de-

crease the discount factor.

4.5.2 Evaluation Metrics

We want to evaluate the system in terms of two factors: cooperation ratio and overall per-

formance.

1. Degree of Cooperation (DoC): This metric simply counts the number of cooper-

ations after the system converges. Clearly, we want to make this metric as high as possible.

DoC =
Number of Cooperations

Number of Possible Pairs of Players

2. Price of Anarchy (PoA): We want to quantify the performance degrading by the

absence of central control, which is calledprice of anarchy.

PoA =
Optimal Performance
Actual Performance

If the performance is close to optimal, it gets close to 1. The value gets closer to∞ if the
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Figure 4.5: As we put more punishments, more players tend to cooperate. The degree of
cooperation converges at some level.
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Figure 4.6: More punishment improves the overall system optimality. Especially, the sec-
ond punishment significantly improves the performance.

actual performance gets worse.

Another possible metric is fairness. We want the regulation of our system affects

the players as equally as possible. In other words, we want the ratio between actual benefit

and actual cost to be as uniform as possible for each overlay node. We will include this

metric in the future work.
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Figure 4.7: Price of anarchy and degree of cooperation have strong correlation. More
cooperation induces better performance.

4.5.3 Simulation Result

The first question we want to answer is:Does the system make incentives to cooperate?In

Figure 4.5, we plot the degree of cooperation as a function of the number of punishments.

Following our intuition, more players tend to cooperate as we increase the period of punish-

ments. Interesting thing is that the degree of cooperation converges with a limited number

of punishments. It seems that we do not need to that many punishments to stimulate most

players. Regardless of the discount factor values, the degree of cooperation converges when

we have more than four punishments.

As the next experiment, we test the price of anarchy as we increase the number of

punishments. As shown in Figure 4.6, the price of anarchy converges, which is similar to

the case of the degree of cooperation.

After the two experiments, we come up with a question:Is cooperation always good

for the social performance?In Figure 4.7, we try to find the correlation between the price of

anarchy and the degree of cooperation. The simulation shows that there is strong correlation

between those factors. Therefore, we can say that encouraging more cooperation will also

improve the social performance.

Lastly, we want to check the tolerance of the system as we decrease the discount
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Figure 4.8: The system shows tolerance to “moderate” players.

factor (Figure 4.8). The system shows tolerance for moderate players (δ ≥ 0.4). How-

ever, as players become extremely impatient (δ ≤ 0.3), we could not get good degree of

cooperation.

4.6 Related Work

Incentive issues have been extensively researched in networked systems. Especially, incen-

tives in P2P files sharing systems are distinguishing [10, 12, 20, 26, 30]. Most studies on

P2P file sharing system focus on the achievement of optimality by preventing free-riders,

who do not contribute to the system. In [12, 26], non-cooperative game is used to explain

self-interested users in P2P networks.

There are mainly two methods to incentivize the cooperation: monetary payments

and differential services. Afergan and Wroclawski [7] introduces explicit incentives by

monetary system into routing. However, the monetary system seems highly impractical in

network society [31]. Thus, [20, 26] proposes differential service model for P2P systems.

In their model, service level users can achieve is proportional to the contribution.

Recently, there have been some works on economic issues on overlay routing.

Chun et al. [15] characterize selfishly constructed overlay routing networks and prove
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that selfishly characterized overlay networks can present desirable properties with a non-

cooperative game model. In [13], a cost-based model is adopted to assess the network

resources in overlay networks and the benefits of participating in the overlay networks are

explained as a cost reduction. In [40], market-driven approach to regulate selfish nodes is

proposed for bandwidth allocation problem in overlay networks.

In most of the previous works, the interaction of networked systems is modeled

as an one-shot game. However, repeatability should be considered in overlay routing be-

cause overlay network consists of well-identified routers, and the interaction among them

is continuous. Afergan and Sami [6] study multicast application overlay networks in a

repeated-game framework. In their paper, users have both the motivation and the means to

alter their position in the overlay tree. Our work is different from it in the sense that the

users’ action space is to selectively relay transit traffic, instead of moving their position in

overlay network.

4.7 Conclusion and Future Work

In this chapter, we analyze the overlay routing in the assumption that the overlay nodes

only cooperate each other if there is an incentive to do so. We model the individual overlay

nodes as strategic and rational players to maximize their own utility. The game-theoretic

analysis shows that we need some mechanism to encourage the cooperation. We propose

three trigger-based frameworks to solve this problem with analytic proof for their feasibility.

With simulation, we show the feasibility of the generalized punish-and-reward system.

In the process of approaching the problem, we introduce some bold assumptions

to be released. First, we assume that the overlay node can forward as much traffic as it

wants. However, in reality, every router has some limitation in network bandwidth and
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computation power. Therefore, we need to add a constraint to the problem.

max
∑

i 6=j

ui,j

subject to
∑

i 6=j

ci,j ≤ Θ

whereΘ is the maximum cost an overlay node can afford.

Another assumption is about the benefit. We have not modeled how these values

are set up. Since the network changes dynamically, the benefit values will be changed by

the new traffic flow. Actually, the value may change by the overlay traffic by itself because

an attractive overlay node may cause congestion to the neighbor links.

Basically, this chapter focuses on themicro-levelinteraction inside of a single over-

lay, whereas the previous two chapters study themacro-levelinteractions. Then an inter-

esting topic is to generalize the incentive-based idea to the macro-level overlay relations. It

would be interesting to analyze the impact of internal interaction to the external interaction

and the opposite direction as well.
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Chapter 5

Conclusion

This thesis studies three interactions related to overlay routing. Overlay routing allows

end hosts to make routing decisions at the application level. By its underlying definition,

overlay determines the logical routing to optimize its own performance, and this selfishness

affects the performance of the related components.

First, we improve thevertical interactionbetween overlay routing and traffic engi-

neering by modifying the objectives of both parties. Overlay changes the physical traffic

demands by the logical routing. The dynamically changing traffic demands affect the per-

formance of underlay routing. Specifically, network operators use traffic engineering tech-

niques to adapt IP layer routing to cope with the new traffic matrix. We proposeTE-aware

overlay routing, which takes traffic engineering’s objective into account. Then we also sug-

gest COPE as a strong traffic engineering technique, which makes a good interaction with

the unpredictable overlay traffic demands. We show the feasibility of the proposed methods

with extensive simulation results.

Secondly, we show the initial results on thehorizontal interactionamong multiple

overlays coexisting on top of a shared underlay networks. The decision of an overlay de-

pends on the probing information for every logical path. If overlays share some links but do

not exchange the routing information of each other, currently observed link performance is
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likely be changed by actions of other overlays. When the underlay routing is static, thepure

horizontal interactions do not make oscillation issues. However, when traffic engineering

dynamically changes its underlay routing, the simulations show that MPLS has poor inter-

action with multiple overlays. We again show that TE-awareness and demand-obliviousness

improve the interaction.

Lastly, we propose an incentive-based framework forinternal interactioninside an

overlay. We model the individual overlay nodes as strategic decision makers to maximize

their payoffs. Each overlay node selectively forward transit traffic from other overlay nodes

to maximize the benefits from overlay routing and to minimize the cost to relay transit

traffic. We formulate the internal interaction as a non-cooperative game between overlay

nodes. We apply repeated game theory to capture the repeated feature of overlay routing.

With the analytic arguments, we show the condition in which the proposed method works

efficiently. Then we describe the simulation results to support our argument.

Throughout the thesis, we analyze the interactions of overlay routing with game

theory framework. Many networks and distributed systems involve with strategic interac-

tion between multiple independent components, who seek individual gain from the system.

Then we can use game-based approach to analyze the selfish behavior of the individuals

and design incentive-based frameworks to achieve overall system optimality.
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