1．OVERVIEW

1．1 What is Mathematics？

－Mathematics per se consists of discovering and proving theorems（정리）from definitions（정의）．
－Axiomatic approach a．k．a．deductive system
－Axiom（공리）：the starting point of mathematical studies with undefined terms
－Mathematical objects：numbers，structures，sets，manifolds，relations，etc．

1．2 Hierarchy of Mathematical Studies

［Algebra］［Analysis］［Topology］［Number Theory］［Discrete Math］［Probability \＆Statistics］ ［Set Theory］［Logic］［Mathematical Philosophy］

1．3 Set Theory（집합론，集合論）

－Why？To resolve many paradoxes，esp．Russell＇s paradox
－What？Foundation of mathematics；sets，relations，functions，etc．
－Subfields：Axioms，Category Theory，Set Theory，etc．

1．4 Logic（논리，論理）

－Why？To make firm foundation of mathematics
－What？Propositions，Formulas，Syntax，Semantics，etc．
－Subfields：Model Theory，Proof Theory，Propositional Logic， $1^{\text {st }} / 2^{\text {nd }} /$ High－Order Logic，Lambda Calculus，etc．

1．5 Algebra（대수학，代數學）

－Why？To find the solutions of polynomials（다항식）．
－What？Structures of Set associated with one or two operations；group，ring，field，vector spaces，modules，etc．
－Subfields：Group／Ring／Field Theory，Linear Algebra（선형대수학），Algebraic Geometry，etc．

1．6 Analysis（해석학，解晳學）

－Why？To make firm foundation of Calculus（미적분학）
－What？Microscopic viewpoint，special case of topology；limit，differentiation（미분），integration（적분），continuity of functions，epsilon－delta reasoning，etc．
－Subfields：Calculus，Real／Complex Analysis（실／복소해석학），Differential Equations（미분방정식），Differential Geometry（미분기하학），Functional Analysis，Harmonic Analysis，Measure Theory，etc．

1．7 Topology（위상수학，位相數學）

－Why？To study analysis with geometric concept；general viewpoint of Analysis
－What？Classification of n－dimensional manifolds；open／closed set，compact space，connected space，etc．
－Subfields：Algebraic Topology，Knot Theory（매듭이론），Low－Dimensional Topology，etc．

1．8 Number Theory（정수론，正數論）

－Why？What？To study the properties of numbers，esp．integers
－Subfields：Algebraic／Analytic／Transcendental Number Theory，Congruence，Elliptic Curves，Prime Numbers，etc．

1．9 Discrete Mathematics（이산수학，離散數學）

－Why？What？To study characteristics of discrete objects；＜－＞continuous math
－Subfields：Automata，Coding Theory，Combinatorics，Computer Science，Finite Groups，Graph Theory，Information Theory，Recurrence Relations，etc．

1．10 Probability and Statistics（확률과 통계，確率과 統計）
－Why？What？To study randomness in the real world
－Subfields：Stochastic Process，Queuing Theory，Bayesian Analysis，Error Analysis，Markov Processes，Moments， Multivariate Statistics，Random Numbers，Random Walks，Statistical Tests，etc．

1．11 References

－＂A First Course in Abstract Algebra＂（Fraleigh）
－＂Topology＂（Munkres）
－＂Real Analysis \＆Foundations＂（Krantz）
－＂Elementary Number Theory＂（Rosen）
－＂Discrete Mathematics＂（Johnsonbaugh）
－Lecture Notes of Comp 409 ＂Logic in Computer Science＂（Vardi）

2. SET THEORY

2.1 Preliminaries

Undefined Terms set and element (with some condition) cf. class (without condition)
Quantifiers \exists : there exists, ! \exists : not exist, \exists !: uniquely exist, and \forall : for all
Equality (1) element: $a=b$ iff a, b : symbols for the same object, (2) set: $A=B$ iff $a \in A \Leftrightarrow a \in B$
Set Relations $A \subseteq B$ (subset), $A \cap B$ (intersection), $A \cup B$ (union), and $A \times B$ (Cartesian product)
$\mathbf{N}=\{0,1,2,3 \ldots\}, \mathbf{Z}=\{\ldots,-2,-1,0,1,2 \ldots\}, \mathbf{Z}_{+}=$set of positive integers,
$\mathbf{Q}=\{\mathrm{a} / \mathrm{b} \mid \mathrm{a}, \mathrm{b} \in \mathbf{Z}\}, \mathbf{R}=$ set of real numbers, $\mathbf{C}=\{\mathrm{x}+\mathrm{y} i \mid \mathrm{x}, \mathrm{y} \in \mathbf{R}\}$
Notations Def $=$ Definition, Thm $=$ Theorem, Ex $=$ Example, Rmk $=$ Remark

2.2 Relations

Def A relation R of $\operatorname{set} \mathrm{A}$ and B is a subset of $\mathrm{A} \times \mathrm{B}$. That is, $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$.

2.2.1 Equivalent Relations

Let R be a relation on A , that is, $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$.
Def A relation R on a set A is reflexive if $\forall x \in A$, $x R x$.
Def A relation R on a set A is symmetric if $x R y$, then $y R x$.
Def A relation R on a set A is transitive if xRy and yRz , then xRz .
Def A relation R is an equivalent relation if it is reflexive, symmetric, and transitive
Thm By an equivalence relation, we can make equivalent classes, and partition.

2.2.2 Order Relations

Def A relation R is comparable if $\forall \mathrm{x}, \mathrm{y} \in \mathrm{A}$ such that $\mathrm{x} \neq \mathrm{y}$, either xRy or yRx .
Def A relation R is nonreflexive if $!\exists \mathrm{x}$ in A such that xRx .
Def A relation R is order relation if it is comparable, non-reflexive, and transitive.

Let A be a set of order relation and $\mathrm{A}^{\prime} \subseteq \mathrm{A}$.
Def (immediate) predecessor, (immediate) successor.

Def b : largest element(smallest) or maximum (minimum) of A^{\prime} if $\mathrm{b} \in \mathrm{A}^{\prime}$ and if $\mathrm{x} \leq(\geq) \mathrm{b}$ for $\forall \mathrm{x} \in \mathrm{A}^{\prime}$.
Def A^{\prime} is bounded above (below) if $\mathrm{b} \in \mathrm{A}$ such that $\mathrm{x} \leq(\geq) \mathrm{b}$ for $\forall \mathrm{x} \in \mathrm{A}$. Say b : upper (lower) bound
Def If the set of all upper (lower) bounds for A' has a smallest (largest) element, then this element is called least upper bound (greatest lower bound) or supremum (infimum).

Def A set satisfies least upper bound property if \forall nonempty bounded-above subset has a supremum.
Ex $[0,1] \times[0,1]$ and $[0,1) \times[0,1]:$ satisfy but $[0,1] \times[0,1)$ and $[0,1) \times[0,1):$ not satisfy

2.2.3 Examples

$\mathrm{P}=$ set of all people in the world and $\mathbf{R}=$ set of real numbers
$\mathrm{D}=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{P} \times \mathrm{P} \mid \mathrm{x}$ is descendent of y$\}$. (nonreflexive, transitive)
$B=\{(x, y) \in P \times P \mid x$ has an ancestor who is also an ancestor of $y\}$. (reflexive, symmetric)
$S=\{(x, y) \in P \times P \mid$ the parents of x are the parents of $y\}$. (reflexive, symmetric, transitive)
" $\mathrm{X}^{1}<\mathrm{Y}^{1 "}=\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid \mathrm{x}<\mathrm{y}\}$. (comparable, nonreflexive, transitive) \rightarrow order relation
" $\mathrm{X}^{2}<\mathrm{Y}^{2 "}$ " $=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid \mathrm{x}^{2}<\mathrm{y}^{2}\right\}$. (nonreflexive, transitive)
" $\mathrm{X}^{2}=\mathrm{Y}^{2 "}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbf{R} \times \mathbf{R} \mid \mathrm{x}^{2}=\mathrm{y}^{2}\right\}$. (transitive)

2.3 Functions

Def A relation $\mathrm{f} \subset \mathrm{A} \times \mathrm{B}$ is a function if, $\forall \mathrm{x} \in \mathrm{A}, \exists!\mathrm{y} \in \mathrm{B}$ such that $(\mathrm{x}, \mathrm{y}) \in \mathrm{f}$.
In other words, if $x=y$, then $f(x)=f(y)$. (Well-defined) Write $f: A \rightarrow B$.
Def Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, then say that A: domain, B: codomain, and $\mathrm{f}(\mathrm{A})$: range.

Def A function f is injective (one-to-one) if $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$, then $\mathrm{x}=\mathrm{y}$.
Def A function f is surjective (onto) if $\forall \mathrm{y} \in \mathrm{B}, \exists \mathrm{x} \in \mathrm{A}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.
Def A function f is bijective (one-to-one correspondence) if it is injective and surjective
Thm If \exists injective $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and \exists injective $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$, then \exists bijective $\mathrm{k}: \mathrm{A} \rightarrow \mathrm{B}$

Def Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow$ C. Composite of f and g is gof: $\mathrm{A} \rightarrow \mathrm{C}$ by $(\mathrm{gof})(\mathrm{a})=\mathrm{g}(\mathrm{f}(\mathrm{a}))$.
Rmk Composite of 2 injective (surjective) functions is injective (surjective).
Def Let $f: A \rightarrow B$ be bijective. Inverse function of f is a function defined by $f^{1}: B \rightarrow A$ by $f^{1}(b)=a$ such that $f(a)=b$.
Def A binary operation on a set A is a function $\mathrm{f}: \mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$

Ex Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A}_{0}, \mathrm{~A}_{1} \subseteq \mathrm{~A}, \mathrm{~B}_{0}, \mathrm{~B}_{1} \subseteq \mathrm{~B}$. Then the followings hold.
If $\mathrm{A}_{0} \subseteq \mathrm{~A}_{1}$, then $\mathrm{f}\left(\mathrm{A}_{0}\right) \subseteq \mathrm{f}\left(\mathrm{A}_{1}\right)$. If $\mathrm{B}_{0} \subseteq \mathrm{~B}_{1}$, then $\mathrm{f}^{1}\left(\mathrm{~B}_{0}\right) \subseteq \mathrm{f}^{1}\left(\mathrm{~B}_{1}\right)$.
$f\left(A_{0} \cup A_{1}\right)=f\left(A_{0}\right) \cup f\left(A_{1}\right)$ and $f^{1}\left(B_{0} \cup B_{1}\right)=f^{1}\left(B_{0}\right) \cup f^{1}\left(B_{1}\right)$.
$\mathrm{f}\left(\mathrm{A}_{0} \cap \mathrm{~A}_{1}\right) \subseteq \mathrm{f}\left(\mathrm{A}_{0}\right) \cap \mathrm{f}\left(\mathrm{A}_{1}\right)$ and $\mathrm{f}^{1}\left(\mathrm{~B}_{0} \cap \mathrm{~B}_{1}\right) \subseteq \mathrm{f}^{1}\left(\mathrm{~B}_{0}\right) \cap \mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right)$. "=" holds if f is injective.
$A_{0} \subseteq f^{1}\left(f\left(A_{0}\right)\right)$, and " $="$ holds if f is injective. $B_{0} \subseteq f\left(f^{1}\left(B_{0}\right)\right)$, and " $="$ holds if f is surjective.

2.4 Countable and Uncountable Sets

$\underline{\operatorname{Def}} \mathrm{A}$ set A is finite if \exists bijective function of A with some selection of positive integers.
That is, if it is empty or if \exists bijection $\mathrm{f}: \mathrm{A} \rightarrow\{1, \ldots, \mathrm{n}\}$ for some $\mathrm{n} \in \mathbf{Z}_{+}$.

Def A set is infinite if it is not finite.
$\underline{\text { Ex }} \mathbf{Z}_{+}$is infinite because \exists bijection such that $\mathrm{f}: \mathbf{Z}_{+} \rightarrow \mathbf{Z}_{+}-\{1\}$ by $\mathrm{f}(\mathrm{n})=\mathrm{n}+1$.

$\underline{\text { Ex }} \mathbf{Z}$ is countably infinite because \exists bijection such that $f(n)=2 n$ (if $n>0$) or $-2 n+1$ (if $n \leq 0$)
Ex $\mathbf{Z}_{+} \times \mathbf{Z}_{+}, \mathbf{Q}$, the set of all polynomials, and the set of algebraic numbers are countable.

Def A set is countable if it is either finite or countably infinite.
Thm A countable union of countable set is countable.
Thm A finite product of countable set is countable.
Def A set is uncountable if it is not countable.
Ex \mathbf{R} is uncountable by Cantor's diagonal method.
$\underline{\text { Ex }}\{0,1\}^{\omega}$ is uncountable, where $X^{\omega}=\left\{\mathrm{f}: \mathbf{Z}_{+} \rightarrow \mathrm{X} \mid\right.$ f: function $\}$.

Thm Let A be a set and $P(\mathrm{~A})$ be the power set of A . Then $|\mathrm{A}|<|P(\mathrm{~A})|$ (strictly larger).
Rmk Continuum Hypothesis (Cantor) "! $\exists \mathrm{A}$ such that $\left|\mathbf{Z}_{+}\right|<\mathrm{A}<|\mathbf{R}|$."

2.5 References

"Set Theory: An Intuitive Approach" (Y. Lin and S. Lin)
"Topology" (Munkres)
"Mystery of Aleph" (Aczel, 한역판: "무한의 신비")
"Gödel, Escher, Bach: an Eternal Golden Braid" (Hofstadter, 한역판: "괴델, 에셔, 바흐")

3. LOGIC

3.1 Definition of Logic

(1) The ability to determine correct answers through a standardized process
(2) The study of formal inference
(3) A sequence of verified statements
(4) Reasoning, as opposed to intuition
(5) The deduction of statements from a set of statements

3.2 Short History of Logic

(1) Philosophical Logic (500 B.C. to $19^{\text {th }}$ Century)

- Some problems due to the ambiguity of natural language
- Liar's paradox ("This sentence is a lie"), Sophist' paradox (a trial between student and school), Surprise Paradox
(2) Symbolic Logic (mid to late $19^{\text {th }}$ Century)
- George Boole tried to formulate logic in terms of a mathematical language
- Venn Diagram was developed as a means of reasoning about sets
(3) Mathematical Logic (late $19^{\text {th }}$ to mid $20^{\text {th }}$ Century)
- As mathematical proofs became more sophisticated, paradoxes began to show up
- Russell's paradox (" $\mathrm{T}=\{\mathrm{S} \mid \mathrm{S}$ not belongs to S$\}$, then $\mathrm{T} \in \mathrm{T}$?"), Cantor's Continuum Hypothesis
- Gödel's First and Second Incompleteness Theorems, Church and Turing's undecidable problems
(4) Logic in Computer Sciences (mid $20^{\text {th }}$ Century to current time)
- Computability Theory (1930s), Computational Complexity Theory (1970s)
- Boolean logic, Database design, Semantics in Programming Languages, Design Validation/Verification, AI, etc.

3.3 The Syntax of Propositional Logic

A language consists of two parts: syntax and semantics.
Metadef The syntax of a language is the way to make a concrete representation of the meaning
Metadef The semantics of a language is our understanding of words or how the words relate to real world objects.
Metadef A metalanguage is a language that talks about both the syntax and the semantics of a language.
Now, let's start studying about the syntax propositional logic with our metalanguage English.
Def A proposition is a sentence which is either true or false. Prop is the set of all propositions.
Def An expression is a string composed of propositions, connectives $(\neg, \wedge, \vee, \rightarrow)$, and parenthesis. Ex " $) \rightarrow \mathrm{p}$ ".
Def The set of formulas, Form, is defined as the smallest set of expressions such that: (here, $\circ: \wedge, \vee$ and, \rightarrow)
(1) Prop \subseteq Form, and (2) (closure property) If $\alpha, \beta \in$ Form, then $(\neg \alpha) \in$ Form and ($\alpha \circ \beta$) \in Form.

Def The primary connective and immediate sub-formula(s) of a given formula φ are defined as follows:
(1) If φ is atomic, then it has no primary connective and no immediate sub-formula(s).
(2) If φ is $(\neg \psi)$, then \neg is a primary connective and ψ is an immediate sub-formula.
(3) If φ is $(\theta \circ \psi)$, then \circ is a primary connective and, θ and ψ are immediate sub-formulas.

Thm (Unique Readability) A composite formula has a unique primary connective and unique immediate sub-formulas

3.4 The Semantics of Propositional Logic

Def A truth assignment, τ, is an element of $2^{\text {Prop }}$.
Rmk There are two ways to think of truth assignments:
(1) $2^{\text {Prop }}$ can be thought of as the power set of Prop, and a truth assignment X is an element of it, i.e., $\mathrm{X} \subseteq$ Prop.
(2) We can think of $2^{\text {Prop }}$ as set of all functions from Prop to $\{0,1\}$. A truth assignment is a function τ : $\operatorname{Prop} \rightarrow\{0,1\}$.

Let's consider now three different, but equivalent, perspectives of semantics.

3.4.1 Philosopher's view

For a philosopher, semantics is a binary relation \vDash between structures and formulas.
$\tau \neq \varphi$ means (1) τ satisfies φ or (2) τ is true of φ or (3) τ holds at φ or (4) τ is a model of φ.
Def $F \subseteq\left(2^{\text {Prop }} \times F\right.$ orm $)$ is a binary relation, where the left side has a truth assignment and the right side has a formula.
F is called the satisfaction relation, or the truth relation. We shall define it inductively:
(1) $\tau \neq p$ for some proposition p if $\tau(p)=1$
(2) $\tau \vDash \neg \varphi$ if it is not the case that $\tau \vDash \varphi$, that is, $\tau \vDash!\varphi$ (Note: this is so only in 2 -valued world)
(3) $\tau \vDash \theta \vee \psi$ if $\tau \neq \theta$ or $\tau \neq \psi$, (4) $\tau \vDash \theta \wedge \psi$ if $\tau \vDash \theta$ and $\tau \vDash \psi$, (5) $\tau \vDash \theta \rightarrow \psi$ if $\tau \vDash!\theta$ or $\tau \vDash \psi$.

Ex Let $\tau=\{p, q, r, t\}$, then $\tau \neq(p \rightarrow q) \wedge r$ and $\tau \vDash!p \wedge s$.

3.4.2 Electrical Engineer's view

To an electrical engineer, the truth assignment is simply a mapping of voltages on a wire: τ : $\operatorname{Prop} \rightarrow\{0,1\}$.
Operations are carried out by gates, which represent logical connectives.
Def $\neg:\{0,1\} \rightarrow\{0,1\}$ is a function defined by $\neg(0)=1$ and $\neg(1)=0$.
Def $\wedge:\{0,1\}^{2} \rightarrow\{0,1\}$ is a function defined by $\wedge(0,0)=\wedge(0,1)=\wedge(1,0)=0$ and $\wedge(1,1)=1$.
Def $\vee:\{0,1\}^{2} \rightarrow\{0,1\}$ is a function defined by $\vee(1,1)=\vee(1,0)=\vee(0,1)=1$ and $\vee(0,0)=0$.
Def $\rightarrow:\{0,1\}^{2} \rightarrow\{0,1\}$ is a function defined by $\rightarrow(1,1)=\rightarrow(0,0)=\rightarrow(0,1)=1$ and $\rightarrow(0,1)=0$.
Def Let $\mathrm{p} \in \operatorname{Prop}, \tau \in 2^{\text {Prop }}$. Then the semantics is defined according to the following rules:
(1) $\mathrm{p}(\tau)=\tau(\mathrm{p})$ (meaning of a wire), (2) $(\neg \varphi)(\tau)=\neg(\varphi(\tau)),(3)(\theta \circ \psi)(\tau)=o(\theta(\tau), \psi(\tau))$.

Thm Let $\varphi \in$ Form and $\tau \in 2^{\text {Prop }}$, then $\tau \neq \varphi$ if and only if $\varphi(\tau)=1$.

3.4.3 Software Engineer's view

A software engineer describes truth assignments in which a given formula is true.
Def This mapping from formula to sets of truth assignments is called models, where models: Form $\rightarrow 2^{2 P \text { Prop }}$.
Def Let φ be a formula, then $\operatorname{models}(\varphi)$ is defined as follows:
(1) $\varphi=\mathrm{p}: \operatorname{models}(\mathrm{p})=\{\tau \mid \tau(\mathrm{p})=1\}$, where $\mathrm{p} \in$ Prop.
(2) $\varphi=(\neg \theta):$ models $(\neg \theta)=2^{\text {Prop }}-$ models (θ).
(3) $\varphi=(\theta \wedge \psi): \operatorname{models}(\theta \wedge \psi)=\operatorname{models}(\theta) \cap \operatorname{models}(\psi)$.
(4) $\varphi=(\theta \vee \psi): \operatorname{models}(\theta \vee \psi)=\operatorname{models}(\theta) \cup \operatorname{models}(\psi)$.
(5) $\varphi=(\theta \rightarrow \psi): \operatorname{models}(\theta \rightarrow \psi)=\left(2^{\text {Prop }}-\operatorname{models}(\theta)\right) \cup \operatorname{models}(\psi)$.

Thm Let $\varphi \in$ Form and $\tau \in 2^{\text {Prop }}$, then $\varphi(\tau)=1$ if and only if $\tau \in \operatorname{models}(\varphi)$. That is, $\operatorname{models}(\varphi)=\{\tau \mid \varphi(\tau)=1\}$.

4. ALGEBRA

4.1 Preliminaries

Def A binary operation * on S is a function $*: \mathrm{S} \times \mathrm{S} \rightarrow \mathrm{S}$ defined by $(\mathrm{a}, \mathrm{b}) \mid \rightarrow \mathrm{a}$ * b .
Def $\mathrm{H} \subseteq \mathrm{S}$ and ${ }^{*}$ on S . Say that H is closed under $*$ if $\mathrm{h}, \mathrm{k} \in \mathrm{H} \rightarrow \mathrm{h}^{*} \mathrm{k} \in \mathrm{H}$.
Def $*$ on S is commutative, if $\mathrm{a} * \mathrm{~b}=\mathrm{b}^{*} \mathrm{a}$ for $\forall \mathrm{a}, \mathrm{b} \in \mathrm{S} ; *$ on S is associative, if $\left(\mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{c}=\mathrm{a}^{*}(\mathrm{~b} * \mathrm{c})$ for $\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}$.

Let $\left(\mathrm{S},{ }^{*}\right)$ and ($\mathrm{S},{ }^{* \prime}$) be binary algebraic structures.
Def An isomorphism of S into S^{\prime} is a bijective function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}^{\prime}$ such that $\mathrm{f}\left(\mathrm{x}^{*} \mathrm{y}\right)=\mathrm{f}(\mathrm{x}){ }^{*}{ }^{\prime} \mathrm{f}(\mathrm{y})$
Def S and S^{\prime} are isomorphic if \exists an isomorphism from S to S^{\prime}. Write $S \approx S^{\prime}$.
Rmk If two algebraic structures are isomorphic, then they share the same algebraic properties.
Rmk The isomorphism is an equivalent relation on the set of algebraic structures
Ex $(\mathbf{R},+)$ and $\left(\mathbf{R}+,{ }^{*}\right)$ are isomorphic.

4.2 Groups

Def A group is a set G with an operation * that satisfies the following conditions (cf. semigroup, monoid)
(1) $*$ is associative, (2) \exists identity e in G , and (3) $\forall \mathrm{g} \in \mathrm{G}, \exists \mathrm{g}$ '(inverse) $\in \mathrm{G}$ such that $\mathrm{g} * \mathrm{~g}$ ' $=\mathrm{e}$.

Def A group G is abelian if the operation is commutative.
Thm A group has a unique identity, and all inverses are unique.
$\underline{\text { Ex }} \mathbf{Z}_{\mathbf{p}}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$ are abelian groups with addition operations. $\{\mathrm{e}\}$: trivial group. But $<\mathrm{N},+>$ is not a group.
$\underline{E x} \mathrm{GL}_{2}=\{2$ by 2 matrices with non-zero determinant $\} . \mathrm{GL}_{2}$ is a non-abelian group.

Def Let $<\mathrm{G}, *>$ be a group. $\mathrm{H} \subset \mathrm{G}$ is a subgroup of G if H is a group under the same operation *.
Thm A subset H of G is a subgroup of G (write $\mathrm{H}<\mathrm{G}$) if and only if
(1) H is closed under the operation of G, (2) the identity e of G is in H, and (3) for $\forall a \in H, a^{-1} \in H$.
$\underline{E x} T=\{2$ by 2 matrices with determinant 1$\} \subset \mathrm{GL}_{2}$, and $\mathrm{T}<\mathrm{GL}_{2}$.

Def A group G is cyclic if $\exists \mathrm{a} \in \mathrm{G}$ such that $\forall \mathrm{g} \in \mathrm{G}, \mathrm{g}=\mathrm{a}^{\mathrm{n}}$ for some $\mathrm{n} \in \mathbf{Z}+$.
Thm Every cyclic group is abelian.
Ex $\mathbf{Z}_{\mathbf{p}}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}, \mathbf{C}$ are cyclic groups; but $\mathrm{V}\left(\approx \mathrm{Z}_{2} \times \mathrm{Z}_{2}\right)$ is not cyclic. Compare the structures of V and Z_{4}

4.3 Groups of Permutations

Def A permutation on a nonempty set S is a bijective function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$.
Thm A collection of all permutations on A is a group under permutation multiplication.
Def The group in the preceding theorem is called a symmetric group.
Ex S_{3} (symmetric group of 3 letters) and S_{4} (symmetric group of 4 letters) are symmetric groups.
The structure of group S_{3} is shown in the following table.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\mathbf{Z}_{4}| + | e | a | b | c |
| :---: | :---: | :---: | :---: | :---: |
| e | e | a | b | c |
| a | a | e | c | b |
| b | b | c | e | a |
| c | c | b | a | e |

	P0	P1	P2	M1	M2	M3
P0	P0	P1	P2	M1	M2	M3
P1	P1	P2	P0	M3	M1	M2
P2	P2	P0	P1	M2	M3	M1
M1	M1	M2	M3	P0	P1	P2
M2	M2	M3	M1	P2	P0	P1
M3	M3	M1	M2	P1	P2	P0

4.4 Homomorphism

Def A function $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ ' of groups is a homomorphism if $\mathrm{f}(\mathrm{a} * \mathrm{~b})=\mathrm{f}(\mathrm{a})^{*} \mathrm{f}(\mathrm{b})$ for $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$.
Ex Let $\mathrm{g}: \mathrm{G} \rightarrow \mathrm{G}$ ' be defined by $\mathrm{g}(\mathrm{a})=\mathrm{e}$ ' for $\forall \mathrm{a} \in \mathrm{G}$. Then g is a trivial homomorphism.
$\underline{\text { Ex }} \operatorname{Let}(\mathbf{F},+),(\mathbf{R},+)$ be groups and $\mathrm{c} \in \mathbf{R}$, where \mathbf{R} is the set of real numbers and $\mathbf{F}=\{\mathrm{f} \mid \mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}\}$.
Then $\mathrm{E}_{\mathrm{c}}: \mathbf{F} \rightarrow \mathbf{R}$, defined by $\mathrm{E}_{\mathrm{c}}(\mathrm{f})=\mathrm{f}(\mathrm{c})$ for $\mathrm{f} \in \mathbf{F}$, is the evaluation homomorphism.
Ex Let $\operatorname{GL}(\mathrm{n}, \mathbf{R})$ be the multiplicative group of all invertible $\mathrm{n} * \mathrm{n}$ matrices.
Then the determinant function det: $\mathrm{GL}(\mathrm{n}, \mathbf{R}) \rightarrow \mathbf{R}$ is a homomorphism because $\operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) \operatorname{det}(\mathrm{B})$.
Ex Let $\mathbf{C}_{[0,1]}$ be the additive group of continuous functions with domain $[0,1]$.
Then I: $\mathbf{C}_{[0,1]} \rightarrow \mathbf{R}$, defined by $\mathrm{I}(\mathrm{f})=\int_{0}{ }^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}$, is a homomorphism.
Ex Let \mathbf{D} be the additive group of all differentiable functions mapping \mathbf{R} into \mathbf{R}.
Then the derivative function der: $\mathbf{D} \rightarrow \mathbf{F}$, defined by $\operatorname{der}(\mathrm{f})=\mathrm{f}^{\prime}$, is a homomorphism because $(\mathrm{f}+\mathrm{g})^{\prime}=\mathrm{f}^{\prime}+\mathrm{g}^{\prime}$.
Thm Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ ' be a homomorphism of groups, then
(1) $\mathrm{f}(\mathrm{e})=\mathrm{e}^{\prime}$, (2) $\mathrm{f}\left(\mathrm{a}^{-1}\right)=\mathrm{f}(\mathrm{a})^{-1}$, (3) $\mathrm{H}<\mathrm{G} \rightarrow \mathrm{f}(\mathrm{H})<\mathrm{G}^{\prime}$, (4) $\mathrm{H}^{\prime}<\mathrm{G}^{\prime} \rightarrow \mathrm{f}^{1}\left(\mathrm{H}^{\prime}\right)<\mathrm{G}$.

4.5 Factor Groups

Def Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups. Then $f^{1}\left[\left\{e^{\prime}\right\}\right]=\left\{x \in G \mid f(x)=e^{\prime}\right\}$ is the kernel of f. Write $\operatorname{Ker}(f)$.
Def Let $H<G$. Then $a H=\{a h \mid h \in H\}$ is the left coset of H, and $H a=\{h a \mid h \in H\}$ is the right coset of H.
Def A subgroup H of G is normal if $\mathrm{aH}=\mathrm{Ha}$ for $\forall \mathrm{a} \in \mathrm{G}$. $\left(\leftrightarrow \mathrm{aHa}^{-1}=\mathrm{H} \leftrightarrow \mathrm{aha}^{-1} \mathrm{H}\right.$ for $\left.\mathrm{h} \in \mathrm{H}\right)$. Write $\mathrm{H} \triangleleft \mathrm{G}$.
Thm All subgroups of abelian groups are normal.

Thm The kernel of a homomorphism $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a normal subgroup of G .
Thm Let $\mathrm{H} \triangleleft \mathrm{G}$. Then the set of cosets forms a group G / H under the binary operation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$.
Def The group G/H is the factor group (or quotient group) of G modulo H.
Ex $\mathrm{r}: \mathbf{Z} \rightarrow \mathbf{Z}$, defined by $r(m)=$ the remainder of $m / 3$, is a homomorphism, and $\operatorname{Ker}(\mathrm{r})=3 \mathbf{Z}$, which is a normal subgroup.
The set of cosets of $3 \mathbf{Z}$ forms a group $\mathbf{Z} / 3 \mathbf{Z}$, i.e., $\{3 \mathbf{Z}, 1+3 \mathbf{Z}, 2+3 \mathbf{Z}\}$ with coset addition operations.
Ex The trivial subgroup $\{0\}$ of Z is normal, then $Z /\{0\} \approx Z$.
Ex Compute $\left(\mathrm{Z}_{4} \times \mathrm{Z}_{6}\right) /<(0,2)>.<(0,2)>=\{(0,0),(0,2),(0,4)\} .\left(\mathrm{Z}_{4} \times \mathrm{Z}_{6}\right) /<(0,2)>\approx \mathrm{Z}_{4} \times \mathrm{Z}_{2}$.

Def A group is simple if it has no proper nontrivial normal subgroups.
Ex S_{n} is simple for $\mathrm{n} \geq 5$. In 1980, Griess constructed a simple group of order more than $808 * 10^{17}$.
Def A maximal normal subgroup of a group G is a normal subgroup M s.t. $\mathrm{M}<\mathrm{N} \triangleleft \mathrm{G} \rightarrow \mathrm{N}=\mathrm{M}$ or $\mathrm{N}=\mathrm{G}$.

4.6 Advanced Group Theory

Thm Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ ' be a group homomorphism and $\mathrm{R}: \mathrm{G} \rightarrow \mathrm{G} / \operatorname{ker}(\mathrm{f})$ be the canonical homomorphism.
Then \exists ! isomorphism I: G/ker(f) $\rightarrow \mathrm{f}[\mathrm{G}]$ such that $\mathrm{f}=\mathrm{I} \circ \mathrm{R}$.
Thm If $\mathrm{H}<\mathrm{G}$ and $\mathrm{N} \triangleleft \mathrm{G}$, then $(\mathrm{HN}) / \mathrm{N} \approx \mathrm{H} /(\mathrm{H} \cap \mathrm{N})$.
Thm If $H, K \triangleleft G$ with $H<K$, then $G / H \approx(G / K) /(H / K)$.

Thm Let G be a group with $|\mathrm{G}|=\mathrm{p}^{\mathrm{n}} \mathrm{m}$ and p not divide m .
Then $\exists \mathrm{H}<\mathrm{G}$ such that $|\mathrm{H}|=\mathrm{p}^{\mathrm{k}}$ for $1 \leq \mathrm{k} \leq \mathrm{n}$, and $\mathrm{H}_{\mathrm{i}} \triangleleft \mathrm{H}_{\mathrm{j}}$ when $\left|\mathrm{H}^{\mathrm{i}}\right|=\mathrm{p}^{\mathrm{i}},\left|\mathrm{H}^{\mathrm{j}}\right|=\mathrm{p}^{\mathrm{j}}$, and $\mathrm{i} \leq \mathrm{j} \leq \mathrm{n}$.
Thm Let P_{1} and P_{2} be Sylow p-subgroups of a finite group G. Then $P_{1}=\mathrm{xP}_{2} \mathrm{x}^{-1}$ for some $\mathrm{x} \in \mathrm{G}$.
Thm Let G is a finite group with $\mathrm{p}||\mathrm{G}|$ and s be the number of Sylow p -subgroups. Then $\mathrm{s} \equiv 1(\bmod \mathrm{p})$ and s$||\mathrm{G}|$.

4.7 Rings

Def A ring $<\mathrm{R},+,{ }^{*}>$ is a set R with binary operations + and $*$, such that
(1) $<R,+>$: abelian group, (2) * is associative, (3) $a^{*}(b+c)=a * b+a^{*} c$ for $\forall a, b, c \in R$ (distributive law)

Ex $\{0\}$ is the zero ring because $0+0=0$ and $(0)(0)=0$.
$\underline{\mathrm{Ex}}<\mathbf{Z},+,{ }^{*}>$ is a ring. So are \mathbf{Q}, \mathbf{R}, and \mathbf{C}.
Ex $\mathrm{M}_{2}(\mathbf{Z})=\{2$ by 2 matrices with integer entries $\}$ is a ring with matrix addition and multiplication.
$\underline{\operatorname{Ex}} \mathrm{P}[\mathbf{Z}]=\left\{\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}^{1}+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \mid \mathrm{a}_{\mathrm{i}} \in \mathbf{Z}\right.$ and $\left.\mathrm{n} \in \mathbf{Z}+\right\}$ is a ring with polynomial addition and multiplication.
$\underline{E x} \mathrm{n} \mathbf{Z}=\{$ na $\mid \mathrm{a} \in \mathbf{Z}\}$ is a ring with + and .
$\underline{\operatorname{Thm}}$ Let R be a ring and $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Then $\mathrm{a}^{*}(-\mathrm{b})=(-\mathrm{a})^{*} \mathrm{~b}=-\left(\mathrm{a}^{*} \mathrm{~b}\right)$ and $(-\mathrm{a})^{*}(-\mathrm{b})=\mathrm{a}^{*} \mathrm{~b}$ for $\forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.
Def A subring of a ring is a subset of the ring that is ring under induced operations from the whole ring.
Def A function $f: R \rightarrow R$ ' of rings is a ring homomorphism if $f(a+b)=f(a)+f(b)$ and $f(a * b)=f(a) * f(b)$ for $\forall a, b \in R$.
Ex Let $\mathrm{g}: \mathbf{Z} \rightarrow \mathbf{Z}$ defined by $\mathrm{g}(\mathrm{a})=-\mathrm{a}$. g is a group homomorphism but not a ring homomorphism.
Ex Let $f_{1}: \mathbf{Z} \rightarrow \mathbf{Z}$ by $f_{1}(a)=a, f_{2}: \mathbf{Z} \rightarrow \mathbf{Z}$ by $f_{2}(a)=0$, and $f_{3}: \mathbf{Z} \rightarrow \mathbf{Z}$ by $f_{3}(a)=2 a$. Only f_{1} and f_{2} are ring homomorphisms.

4.8 Integral Domains and Fields

Def A ring in which the multiplication is commutative is a commutative ring.
Def Let R be a ring, then $\mathrm{i} \in \mathrm{R}$ is unity if $\mathrm{a}^{*} \mathrm{i}=\mathrm{i}^{*} \mathrm{a}=\mathrm{a}$, for $\mathrm{a} \in \mathrm{R}$, and $\mathrm{b} \in \mathrm{R}$ is a unit if $\mathrm{b}^{-1} \in \mathrm{R}$ such that $\mathrm{b}^{*} \mathrm{~b}^{-1}=\mathrm{i}$.
Ex Let $\left(\mathbf{Z},+,{ }^{*}\right)$ be a ring, then 1 is a unity, -1 is a unit $((-1)(-1)=1)$, and 2 is not a unit.

Def A ring R is a division ring if every nonzero element is a unit.
Def A ring is a field if it is a commutative division ring, and a noncommutative division ring is called a skew field.
Def A subfield of a field is a subset of the field that is field under induced operations from the whole field.
$\underline{E x} \mathbf{Z}$ is a ring with unity but not division ring. \mathbf{Q} and \mathbf{R} are division rings and commutative, so fields.
$\underline{E x} \mathbf{H}=\{\mathrm{a}+\mathrm{bi}+\mathrm{c} \mathbf{j}+\mathrm{d} \mathbf{k} \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbf{R}\}$ is a division ring but not commutative because $\mathbf{i} \mathbf{j}=\mathbf{k}$ and $\mathbf{j} \mathbf{i}=\mathbf{- k}$.

Def Let R be a ring. If $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ such that $\mathrm{a} \neq 0, \mathrm{~b} \neq 0$, and $\mathrm{a} * \mathrm{~b}=0$, then a , b are zero divisors.
Def A commutative ring with unity and without zero divisors is an integral domain.

Ex \mathbf{Z}_{5} is an integral domain, but \mathbf{Z}_{6} is not because $2 * 3=0$ in \mathbf{Z}_{6}.
Thm Every field is an integral domain.
Thm Every finite integral domain is a field.
Cor If p is a prime, then $\mathbf{Z}_{\mathbf{p}}$ is a field.

4.9 Vector Spaces

Def A vector space V over a field F consists of the following:

(1) F: a field of scalars;
(2) $(\mathrm{V},+)$: an abelian group where V is set of vectors and + is vector addition $+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{V}$
(3) Scalar multiplication *: $\mathrm{F} \times \mathrm{V} \rightarrow \mathrm{V}$ satisfying the following conditions; (a) $1^{*} \mathbf{v}=\mathbf{v}$ for $\forall \mathbf{v} \in \mathrm{V}$, (b) (ab)* $\mathbf{v}=$ $a\left(b^{*} v\right),(c) a^{*}(v+w)=a^{*} v+a^{*} w,(d)(a+b)^{*} v=a^{*} v+b^{*} v$, where $a, b \in F$ and $\mathbf{v} \in V$.
Ex $\mathbf{Q}(\sqrt{ } 2)=\{a+b \sqrt{ } 2 \mid a, b \in \mathbf{Q}\}$ is a vector space over \mathbf{Q} with a basis $\{1, \sqrt{ } 2\}$.
$\underline{\text { Ex }}$ For any field $F, F[x]$ is a vector space over F, where $F[x]=\left\{a_{0}+a_{1} x^{1}+\ldots+a_{n} x^{n} \mid a_{i} \in F\right.$ and $\left.n \in \mathbf{Z}+\right\}$.

4.10 References

"A First Course in Abstract Algebra" (John B. Fraleigh)
"Algebra" (Thomas W. Hungerford)
"Linear Algebra" (Hoffman and Kunze)
"Linear Algebra and its Applications" (Gilbert Strang)

5. ANALYSIS

5.1 Sequences

Def A sequence of real (or complex) numbers is a function f : $\mathbf{N} \rightarrow \mathbf{R}$ (or \mathbf{C}). Write $\left\{\mathrm{f}_{\mathrm{n}}\right\}^{\infty}{ }_{\mathrm{n}=1}$.
Def $\left\{a_{n}\right\}$ converges to α if $\forall \varepsilon>0, \exists N \in \mathbf{N}$ such that $\left|a_{n}-\alpha\right|<\varepsilon$ if $n \geq N$. Write $a_{n} \rightarrow \alpha$ or $\lim _{n \rightarrow \infty} a_{n}=\alpha$.
Def $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ diverges to $+\infty$ (or $-\infty$) if $\forall \mathrm{M} \in \mathbf{R}, \exists \mathrm{N} \in \mathbf{N}$ such that $\mathrm{a}_{\mathrm{n}}>\mathrm{M}$ (or $\mathrm{a}_{\mathrm{n}}<\mathrm{M}$) if $\mathrm{n} \geq \mathrm{N}$. Write $\mathrm{a}_{\mathrm{n}} \rightarrow+\infty($ or $-\infty)$.
Def $\left\{a_{n}\right\}$ is bounded if $\exists \mathrm{M}>0$ such that $\mathrm{a}_{\mathrm{n}}<\mathrm{M}$ for $\forall \mathrm{n} \in \mathbf{N}$.
Def $\left\{a_{n}\right\}$ is monotone if $\mathrm{a}_{\mathrm{n}} \leq \mathrm{a}_{\mathrm{n}+1}$ for $\forall \mathrm{n} \in \mathbf{N}$ (increasing) or $\mathrm{a}_{\mathrm{n}} \geq \mathrm{a}_{\mathrm{n}+1}$ for $\forall \mathrm{n} \in \mathbf{N}$ (decreasing).
Thm If $\mathrm{a}_{\mathrm{n}} \rightarrow \alpha$ and $\mathrm{b}_{\mathrm{n}} \rightarrow \beta$, then
(1) α is unique, (2) $\left\{a_{n}\right\}$ is bounded, (3) $\mathrm{ca}_{n} \rightarrow \mathrm{c} \alpha$, (4) $\left(\mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}\right) \rightarrow \alpha+\beta$, (5) $\left(\mathrm{a}_{\mathrm{n}} \cdot \mathrm{b}_{\mathrm{n}}\right) \rightarrow \alpha \cdot \beta$, (6) $\left(\mathrm{a}_{n} / \mathrm{b}_{\mathrm{n}}\right) \rightarrow \alpha / \beta$.

Ex $\lim _{\mathrm{n} \rightarrow \infty}(1+1 / \mathrm{n})^{\mathrm{n}}=\sum^{\infty}{ }_{\mathrm{n}=0} 1 /(\mathrm{n}!)=e$ and $\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} 1 /(2 \mathrm{n}+1)=\pi / 3$.

5.2 Basic Topology

$\underline{\operatorname{Def}}(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \in \mathbf{R} \mid \mathrm{a}<\mathrm{x}<\mathrm{b}\},(\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathbf{R} \mid \mathrm{a}<\mathrm{x} \leq \mathrm{b}\},[\mathrm{a}, \mathrm{b}]=\{\mathrm{x} \in \mathbf{R} \mid \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
Def A set $S \subseteq \mathbf{R}$ is open if $\forall x \in S, \exists \varepsilon>0$ such that $x \in(x-\varepsilon, x+\varepsilon) \subseteq S$.
Def A set $\mathrm{V} \subseteq \mathbf{R}$ is closed if V^{c} is open.
Thm Let $\left\{\mathrm{U}_{\mathrm{a}} \mid \mathrm{a} \in \mathrm{A}\right\},\left\{\mathrm{U}_{\mathrm{i}} \mid 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be collections of open sets, then $\mathrm{U}_{\mathrm{a} \in \mathrm{A}} \mathrm{U}_{\mathrm{a}}$ and $\cap{ }_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{U}_{\mathrm{i}}$ are also open sets.
Ex Let $U_{n}=(-1 / n, 1 / n+1)$, then $\cap_{n=1}^{\infty} U_{n}=[0,1]$, which is closed.
$\underline{\text { Ex }}$ Let $\mathbf{Q}=\left\{q_{1}, q_{2} \ldots\right\}$ and $U_{n}=\left(q_{n}-\varepsilon / 2^{n}, q_{n}+\varepsilon / 2^{n}\right)$, then $U=U^{\infty}{ }_{n=1} U_{n}$ is open. $\mathbf{Q} \subseteq U$ but the length of U is just 2ε !

Def A point x is an accumulation point of S if $\forall \varepsilon>0,(\mathrm{x}-\varepsilon, \mathrm{x}+\varepsilon)$ contains infinitely many elements of S .

Def A point x is a boundary point of S if $\forall \varepsilon>0,(x-\varepsilon, x+\varepsilon) \cap S \neq\{ \}$ and $(x-\varepsilon, x+\varepsilon) \cap S^{c} \neq\{ \}$.
Def A point x is an interior point of S if $\exists \varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq S$.

Thm A set $S \subseteq \mathbf{R}$ is compact if and only if S is closed and bounded.
Def $\left\{O_{a}\right\}_{a \in A}$ is an open covering of S if O_{a} is open and $S \subseteq U_{a \in A} O_{a}$.
Thm S is compact if and only if every open covering has a finite subcovering.
$\underline{\text { Ex }} \mathrm{O}_{\mathrm{n}}=(1 / n, 1+1 / n), S=(0,1] ; S$ is bounded, not closed; $\left\{\mathrm{O}_{\mathrm{n}}\right\}$ is an open covering, but doesn't have finite subcovering. Ex $O_{n}=(n-2, n), S=[1, \infty) ; S$ is closed, not bounded; $\left\{O_{n}\right\}$ is an open covering, but doesn't have finite subcovering.

Def S is disconnected if \exists disjoint nonempty U, V such that $S=(U \cap S) \cup(V \cap S) . S$ is connected if it is not disconnected. Ex The Cantor Set $C=\cap^{\infty}{ }_{n=1} C_{n}$; C is compact, has zero length, is uncountable, and $\{x+y \mid x, y \in C\}=[0,2]$.

5.3 Limits and Continuity of Functions

Def Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$, then $\lim _{\mathrm{x} \rightarrow \mathrm{c}} \mathrm{f}(\mathrm{x})=\mathrm{L}$ if $\forall \varepsilon>0, \exists \delta>0$ such that if $|\mathrm{x}-\mathrm{c}|<\delta$, then $|\mathrm{f}(\mathrm{x})-\mathrm{L}|<\varepsilon$.
Thm Let $\lim _{x_{\rightarrow}} \mathrm{f}(\mathrm{x})=\mathrm{L}$ and $\lim _{\mathrm{x} \rightarrow \mathrm{c}} \mathrm{g}(\mathrm{x})=\mathrm{M}$, then
(1) L is unique, (2) $\lim _{\mathrm{x} \rightarrow \mathrm{c}}(\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}))=\mathrm{L}+\mathrm{M}$, (3) $\lim _{\mathrm{x} \rightarrow \mathrm{c}}(\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}))=\mathrm{L} \cdot \mathrm{M}$, (4) $\lim _{\mathrm{x} \rightarrow \mathrm{c}}(\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}))=\mathrm{L} / \mathrm{M}$ if $\mathrm{M} \neq 0$.

Def A function f is continuous at p if $\lim _{x_{\rightarrow} \rightarrow p} f(x)=f(p)$.
Thm If f and g are continuous at p, then $f+g, f-g, \alpha f, f / g, f g$ are also continuous at p.
Thm A function $f: E \rightarrow \mathbf{R}$ is continuous if and only if $f^{1}(O)=E \cap O^{\prime}$ for all open sets O, where O^{\prime} is also open.
Thm If f is a continuous function and K is a compact set, then $f(K)$ is compact.
Thm If f is a continuous function and L is a connected set, then $f(L)$ is connected.

5.4 Differentiation of Functions

Let f, g be real functions. In other words, $\mathrm{f}: \mathrm{S} \rightarrow \mathbf{R}$ and $\mathrm{g}: \mathrm{S} \rightarrow \mathbf{R}$.
Def f is differentiable at p if \exists the derivative of f at $\mathrm{p} ; \mathrm{f}^{\prime}(\mathrm{p}):=\lim _{\mathrm{h}_{\rightarrow} 0}\{(\mathrm{f}(\mathrm{p}+\mathrm{h})-\mathrm{f}(\mathrm{p})) / \mathrm{h}\}$.
Def f is differentiable if it is differentiable at each a in its domain.
Def $C^{11}(\mathrm{I})$ is the collection of real functions whose n-th derivatives exist and are continuous on I .
Thm If f is differentiable at p , then f is continuous at p .
Ex $h(x)=|x|$ is continuous at 0 but not differentiable there.

Thm Let f and g are differentiable at p , then
(1) $(\mathrm{f}+\mathrm{g})^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{g}^{\prime}(\mathrm{x}),(2)(\mathrm{f} \cdot \mathrm{g})^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})+\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}^{\prime}(\mathrm{x}),(3)(\mathrm{f} / \mathrm{g})^{\prime}(\mathrm{x})=\left\{\mathrm{g}(\mathrm{x}) \cdot \mathrm{f}^{\prime}(\mathrm{x})-\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}^{\prime}(\mathrm{x})\right\} / \mathrm{g}^{2}(\mathrm{x})$.

Thm If f is differentiable at p and g is differentiable at $f(p)$, then $g \circ f$ is differentiable at p with $(g \circ f)^{\prime}(p)=g^{\prime}(f(p)) \cdot f^{\prime}(p)$.

If $\lim _{x \rightarrow p} f(x)=\lim _{x_{\rightarrow p}} \mathrm{~g}(\mathrm{x})=0$ and $\exists \lim _{\mathrm{x} \rightarrow \mathrm{p}}\left(\mathrm{f}^{\prime}(\mathrm{x}) / \mathrm{g}^{\prime}(\mathrm{x})\right)=\mathrm{L}$, then $\lim _{\mathrm{x} \rightarrow \mathrm{p}}(\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x}))=\mathrm{L}$
Thm Let f be an invertible function on an interval (a, b) with nonzero derivative at a point $x \in(a, b)$, and $X=f(x)$.
Then $\left(\mathrm{f}^{-1}\right)^{\prime}(\mathrm{X})$ exists and equals $1 / \mathrm{f}^{\prime}(\mathrm{x})$.
Thm (Mean Value) Let f be a continuous function on the closed interval $[\mathrm{a}, \mathrm{b}]$ that is differentiable on (a, b).
Then \exists a point $\xi \in(a, b)$ such that $f^{\prime}(\xi)=(f(b)-f(a)) /(b-a)$.

5.5 Integral of Functions

Let f be a function on a closed interval $[\mathrm{a}, \mathrm{b}]$ in \mathbf{R}. In other words, $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}$.
Def A finite, ordered set of points $P=\left\{\mathrm{x}_{0}, \mathrm{x}_{1} \ldots, \mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right\}$ such that $\mathrm{a}=\mathrm{x}_{0} \leq \mathrm{x}_{1} \leq \ldots \leq \mathrm{x}_{\mathrm{k}-1} \leq \mathrm{x}_{\mathrm{k}}=\mathrm{b}$ is a partition of [a, b$]$. Def Let P is a partition of $[\mathrm{a}, \mathrm{b}] . I_{j}$ denotes the interval $\left[\mathrm{x}_{\mathrm{j}-1}, \mathrm{x}_{\mathrm{j}}\right], \Delta j$ denotes the length of I_{j}, and the mesh $m(P)$ is max $\Delta \mathrm{j}$. Def Let $P=\left\{\mathrm{x}_{0}, \mathrm{x}_{1} \ldots, \mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right\}$ is a partition of $[\mathrm{a}, \mathrm{b}]$ and s_{j} is an element of I_{j} for each j .

Then the corresponding Riemann sum is $R(\mathrm{f}, P)=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{f}\left(\mathrm{s}_{\mathrm{j}}\right) \Delta \mathrm{j}$.
Def We say that the Riemann sums off tend to a limit L as $m(P)$ tends to zero if
$\forall \varepsilon>0, \exists \delta>0$ such that if P is any partition of $[\mathrm{a}, \mathrm{b}]$ with $m(P)<\delta$ then $|R(\mathrm{f}, P)-\mathrm{L}|<\varepsilon$ for every choice of $\mathrm{s}_{\mathrm{j}} \in \mathrm{I}_{\mathrm{j}}$. Def A function f is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$ if the Riemann sums of $R(\mathrm{f}, P)$ tend to a limit as $m(P)$ tends to zero.

The value of the limit, when it exists, is Riemann integral of f over $[\mathrm{a}, \mathrm{b}]$ and is denoted by $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) d \mathrm{x}$.

Thm Let f be a continuous function on a nonempty closed interval $[\mathrm{a}, \mathrm{b}]$, then f is Riemann integrable on $[\mathrm{a}, \mathrm{b}]$. Thm Let $[\mathrm{a}, \mathrm{b}]$ be a nonempty interval, f and g be Riemann integrable functions on the interval, and $\alpha \in \mathbf{R}$.

Then $\mathrm{f}+\mathrm{g}$, and α f are integrable; (1) $\int_{\mathrm{a}}^{\mathrm{b}}\{\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})\} d \mathrm{x}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) d \mathrm{x}+\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{g}(\mathrm{x}) d \mathrm{x} .,(2) \int_{\mathrm{a}}^{\mathrm{b}} \alpha \cdot \mathrm{f}(\mathrm{x}) d \mathrm{x}=\alpha \cdot \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) d \mathrm{x}$. Thm If f and g are Riemann integrable on $[a, b]$, then so is the function $f \cdot g$.

Thm If f is Riemann integrable on $[a, b]$ and φ is a continuous function on a compact interval containing the range of f. Then $\varphi^{\circ} \mathrm{f}$ is Riemann integrable.

Thm (Fundamental Theorem of Calculus) Let $[\mathrm{a}, \mathrm{b}]$ be a closed, bounded interval and $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbf{R}$.
(1) If f is continuous on $[a, b]$ and $F(x)=\int_{a} x f(t) d t$, then $F \in C^{1}[a, b]$ and $F^{\prime}(x)=f(x)$.
(2) If f is differentiable on $[a, b]$ and f^{\prime} is integrable on $[a, b]$, then $\int_{a}{ }^{x} f^{\prime}(t) d t=f(x)-f(a)$ for each $x \in[a, b]$.

5.6 References

"Real Analysis \& Foundations" (Krantz)
"An Introduction to Analysis" (Wade)

6. TOPOLOGY

6.1 Topological Spaces

Def A topology on a set X is a collection \boldsymbol{T} of subsets of X having the following properties:
(1) $\varnothing, \mathrm{X} \in \boldsymbol{T}$, (2) $\forall\left\{\mathrm{U}_{\mathrm{a}} \mid \mathrm{a} \in \mathrm{A}\right\} \subseteq T, \mathrm{U}_{\mathrm{a} \in \mathrm{A}} \mathrm{U}_{\mathrm{a}} \in \boldsymbol{T}$, and (3) $\forall\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}}\right\} \subseteq \boldsymbol{T}, \cap_{\mathrm{n}}^{\mathrm{i}=1} \mathrm{U}_{\mathrm{i}} \in \boldsymbol{T}$.
$\underline{E x}$ Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Then $\boldsymbol{T}_{I}=\{\mathrm{X}, \emptyset\}, \boldsymbol{T}_{2}=\{\mathrm{X}, \emptyset,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$, and $\boldsymbol{T}_{3}=2^{\mathrm{X}}$ are topologies on X .

Def If X is any set, the collection of all subsets is the discrete topology on X , and $\{\varnothing, \mathrm{X}\}$ is the indiscrete topology on X . Ex Let $\mathrm{X} \neq \varnothing$ and $\boldsymbol{T}_{f}=\{\mathrm{U} \subseteq \mathrm{X} \mid \mathrm{X}-\mathrm{U}$ is finite, or U is X$\} . \boldsymbol{T}_{f}$ is called finite complement topology on X .
Def Let \boldsymbol{T}_{1} and \boldsymbol{T}_{2} be topologies on X, with $\boldsymbol{T}_{\boldsymbol{1}} \subset \boldsymbol{T}_{2}$. Then \boldsymbol{T}_{2} is finer than \boldsymbol{T}_{1}.

6.2 Basis for a Topology

Def If X is a set, a basis for a topology on X is a collection \boldsymbol{B} of subsets of X such that
(1) $\forall \mathrm{x} \in \mathrm{X}, \exists \mathrm{B} \in \boldsymbol{B}$ such that $\mathrm{x} \in \mathrm{B}$, and (2) If $\mathrm{x} \in \mathrm{B}_{1} \cap \mathrm{~B}_{2}$, then $\exists \mathrm{B}_{3} \in \boldsymbol{B}$ such that $\mathrm{x} \in \mathrm{B}_{3} \subseteq \mathrm{~B}_{1} \cap \mathrm{~B}_{2}$.

Thm If \boldsymbol{B} is a basis, the topology \boldsymbol{T} on X generated by \boldsymbol{B} is described as follows;
A subset U of X is open in X if $\forall x \in U, \exists B \in \boldsymbol{B}$ such that $\mathrm{x} \in \mathrm{B} \subseteq \mathrm{U}$.

Def Let $\boldsymbol{B}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \leq \mathrm{b}\}$. The topology generated by \boldsymbol{B} is called the standard topology (\mathbf{R}) on \mathbf{R}.
$\underline{\operatorname{Def}}$ Let $\boldsymbol{B} \prime=\{[\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \leq \mathrm{b}\}$. The topology generated by \boldsymbol{B}^{\prime} is called the lower limit topology $\left(\mathbf{R}_{l}\right)$ on \mathbf{R}.
$\underline{\text { Def }}$ Let $\mathrm{K}=\{1 / \mathrm{n} \mid \mathrm{n} \in \mathbf{Z}+\}, \boldsymbol{B}>=\boldsymbol{B} \cup\{(\mathrm{a}, \mathrm{b})-\mathrm{K}\}$. The topology generated by \boldsymbol{B} " is called the K-topology $\left(\mathbf{R}_{k}\right)$ on \mathbf{R}.
Def Let $\boldsymbol{B} \gg=\{[\mathrm{a}, \mathrm{b}] \mid \mathrm{a} \leq \mathrm{b}\}$. The topology generated by $\boldsymbol{B} \ggg$ is called the discrete topology on \mathbf{R}.
Thm The K-topology and the lower limit topology are finer than the standard topology.

6.3 Order Topology, Product Topology, and Subspace Topology

Let X be a set with a simple order relation with more than two elements
Def Let \boldsymbol{B} be the collection of all sets of the following types: (here, a_{0}, b_{0} are the smallest and largest in X , if any)
(1) All open intervals (a, b) in $X,(2)$ All intervals of form $\left[a_{0}, b\right)$ of X, and (3) All intervals of form ($\left.a, b_{0}\right]$ of X.

Then the collection \boldsymbol{B} is a basis for a topology on X , which is called the order topology on X .
Ex The standard topology on \mathbf{R} is just the order topology derived from the usual order on \mathbf{R}.

Let X and Y be topological spaces.
Def The product topology on $\mathrm{X} \times \mathrm{Y}$ is the topology $\boldsymbol{T}_{\mathbf{X} \times \mathbf{Y}}$ defined by $\{\mathrm{U} \times \mathrm{V} \mid \mathrm{U}$ is open in X, V is open in Y$\}$.
Ex The product of the standard topology on \mathbf{R} is a topology on $\mathbf{R} \times \mathbf{R}=\mathbf{R}^{2}$.

Let X be a topological space with topology \boldsymbol{T}.
Def If $\mathrm{Y} \subseteq \mathrm{X}$, the collection $\boldsymbol{T}_{\boldsymbol{Y}}=\{\mathrm{Y} \cap \mathrm{U} \mid \mathrm{U} \in \boldsymbol{T}\}$ is a topology on Y , called the subspace topology.
$\underline{\operatorname{Ex}} \operatorname{Let}(\mathbf{R}, \boldsymbol{T})$ be the standard topology and $\mathrm{Y}=[0,1) \cup\{2\}$. Then $\boldsymbol{T}_{\boldsymbol{Y}}=\{\mathrm{Y} \cap \mathrm{U} \mid \mathrm{U} \in \boldsymbol{T}\}$ is a subspace topology on Y .

6.4 The Metric Topology

Def A metric on a set X is a function $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbf{R}$ satisfying the followings: for $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(1) $d(x, y) \geq 0$ (" $=$ " holds if and only if $x=y$), (2) $d(x, y)=d(y, x)$, and (3) $d(x, y)+d(y, z) \geq d(x, z)$.

Ex Let X be a set and $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbf{R}$ defined by $\mathrm{d}(\mathrm{x}, \mathrm{y})=0($ if $\mathrm{x}=\mathrm{y})$, or $1($ if $\mathrm{x} \neq \mathrm{y})$. d is called the discrete metric on X .
Ex Let $\mathrm{X}=\mathbf{R}$ and $\mathrm{d}: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined by $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}| . \mathrm{d}$ is called the Euclidean metric on \mathbf{R}.
$\underline{\operatorname{Def}} \operatorname{Let}(X, d)$ be a set X with a metric d. The ε-ball centered at x is $B_{d}(x, \varepsilon)=\{y \mid d(x, y)<\varepsilon\}$, where $\varepsilon>0$.
Thm $\left\{\mathrm{B}_{\mathrm{d}}(\mathrm{x}, \varepsilon) \mid \mathrm{x} \in \mathrm{X}\right.$ and $\left.\varepsilon>0\right\}$ forms a basis of a topological space on X .
Def A topology (X, \boldsymbol{T}) is metrizable if \exists a metric on X such that the topology generated by the metric equals to \boldsymbol{T}.
Ex A discrete topology (X, D) is metrizable because the discrete metric induces the discrete topology on X.
Ex The standard topology \mathbf{R} is metrizable because the Euclidean metric induces the standard topology on \mathbf{R}.

Let $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathbf{R}^{\mathrm{n}}$,
Def The Euclidean metric d on \mathbf{R}^{n} is defined by $\mathrm{d}(\mathrm{x}, \mathrm{y})=\left[\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)^{2}+\ldots+\left(\mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right)^{2}\right]^{1 / 2}$.
Def The square metric ρ on \mathbf{R}^{n} is defined by $\rho(\mathrm{x}, \mathrm{y})=\max \left\{\left|\mathrm{x}_{1}-\mathrm{y}_{1}\right| \ldots,\left|\mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\right|\right\}$.
Thm The topologies on \mathbf{R}^{n} induced by the d and ρ are the same as the product topology on \mathbf{R}^{n}.

6.5 Continuous Functions and Homeomorphisms

Def (In Analysis) A function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ is continuous if $\forall \mathrm{x}, \mathrm{y} \in \mathbf{R}, \forall \varepsilon>0, \exists \delta>0$ such that if $|\mathrm{x}-\mathrm{y}|<\delta$, then $|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|<\varepsilon$.
Def (In Topology) A function f: $(\mathrm{X}, \boldsymbol{T}) \rightarrow(\mathrm{Y}, \boldsymbol{U})$ is continuous if \forall open set $\mathrm{A} \in \boldsymbol{U}, \mathrm{f}^{1}(\mathrm{~A})$ is open in X, i.e., $\mathrm{f}^{1}(\mathrm{~A}) \in \boldsymbol{T}$.
Rmk The continuity defined by " $\varepsilon-\delta$ " method is equivalent to the topological definition.
Ex A function $f: \mathbf{R} \rightarrow \mathbf{R}_{l}$ defined by $f(x)=x$ is not continuous because $f^{1}[a, b)=[a, b)$ is not open in R.
Ex A function $f: \mathbf{R}_{l} \rightarrow \mathbf{R}$ defined by $f(x)=x$ is continuous because $f^{1}(a, b)=(a, b)=U^{\infty}{ }_{n=k}[a+1 / n, b)$.

Def A function $f:(X, \boldsymbol{T}) \rightarrow(\mathrm{Y}, \boldsymbol{U})$ is a homeomorphism if (1)f is bijective, (2)f is continuous, and (3) f^{1} is continuous.
Def Two topologies \boldsymbol{T} and \boldsymbol{T}^{\prime} are homeomorphic if \exists a homeomorphism from \boldsymbol{T} to $\boldsymbol{T}^{\boldsymbol{\prime}}$ 。
Ex A function $\mathrm{f}:(-1,1) \rightarrow \mathbf{R}$ defined by $\mathrm{f}(\mathrm{x})=\tan (\pi \cdot \mathrm{x} / 2)$ and $\mathrm{f}=2 / \pi \cdot \tan ^{-1}(\mathrm{x})$ is a homeomorphism.
Ex A function $\mathrm{f}:[0,1) \rightarrow \mathrm{S} \subseteq \mathbf{R}^{2}$ defined by $\mathrm{f}(\mathrm{t})=(\cos (2 \pi \cdot \mathrm{t}), \sin (2 \pi \cdot \mathrm{t}))$ is not a homeomorphism, where $\mathrm{S}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^{2}+\mathrm{y}^{2}=1\right\}$.

6.6 Connectedness

Let X be a topological space.
Def A separation of X is a pair $\{U, V\}$ of disjoint nonempty open subsets of X such that $U \cup V=X$.
Def X is connected if there is no separation for X .
$\underline{E x} A=\{p, q\}$ with discrete topology is not connected, but A with indiscrete topology is connected.
$\underline{\text { Ex }} \mathbf{R}_{l}$ is disconnected because $\left.\mathrm{R}=(-\infty, \mathrm{a}) \cup[\mathrm{a}, \infty)=\left\{\cup_{\mathrm{n} \in \mathbf{Z}_{+}(-\mathrm{n}}, \mathrm{a}\right)\right\} \cup\left\{\cup_{\mathrm{m} \in \mathbf{Z}_{+}}[\mathrm{a}, \mathrm{m})\right\}$.

Thm If $\left\{A_{a} \mid a \in J\right\}$ is a collection of connected subsets of X with $\cap_{a \in J} A_{a} \neq \emptyset$, then $\cup_{a \in J} A_{a}$ is also connected.
Thm If $\mathrm{f}: X \rightarrow Y$ is a continuous function and X is connected, then $f(X)$ is a connected subspace of Y.
Thm If X and Y are connected, then $X \times Y$ is also connected.

6.7 Compactness

Let X be a topological space.
Def A collection $\boldsymbol{A}=\left\{A_{a} \subseteq X \mid a \in J\right\}$ is an open covering of X if $\cup_{a \in J} A_{a}=X$ and each A_{a} is open in X.
Def X is compact if \forall open covering of X, \exists a finite subcollection $\left\{\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{n}}\right\} \subseteq \mathrm{A}$ such that $\cup^{\mathrm{n}} \mathrm{n}_{\mathrm{i}=1} \mathrm{~A}_{\mathrm{i}}=\mathrm{X}$.
Def (In Analysis) A set $S \subseteq \mathbf{R}$ is compact if every sequence in S has a subsequence that converges to an element of S
Ex Let $\mathrm{X}=\mathbf{R}$ with finite complement topology, then X is compact.
$\underline{\text { Ex }}$ Let $\mathrm{X}=\mathbf{R}$ with standard topology and $\mathrm{Y}=\{0\} \cup\{1 / \mathrm{n} \mid \mathrm{n} \in \mathbf{Z}+\}$, then Y is compact.
Thm If X is compact and Y is a closed subspace of X , then Y is compact.
Thm If X is compact and $f: X \rightarrow Y$ is a continuous function, then $f(X)$ is compact in Y.
Thm If X and Y are compact, then $\mathrm{X} \times \mathrm{Y}$ is also compact.

6.8 References

"Topology" (James R. Munkres),
"General Topology" (Seymour Lipschutz).

