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1. OVERVIEW 
 

1.1 What is Mathematics? 

- Mathematics per se consists of discovering and proving theorems (정리) from definitions (정의). 

- Axiomatic approach a.k.a. deductive system 

- Axiom (공리): the starting point of mathematical studies with undefined terms 

- Mathematical objects: numbers, structures, sets, manifolds, relations, etc. 

 

1.2 Hierarchy of Mathematical Studies 

[Algebra] [Analysis] [Topology] [Number Theory] [Discrete Math] [Probability & Statistics] 

   [Set Theory] [Logic] [Mathematical Philosophy] 

 

1.3 Set Theory (집합론, 集合論) 

- Why? To resolve many paradoxes, esp. Russell’s paradox 

- What? Foundation of mathematics; sets, relations, functions, etc. 

- Subfields: Axioms, Category Theory, Set Theory, etc. 

 

1.4 Logic (논리, 論理) 

- Why? To make firm foundation of mathematics 

- What? Propositions, Formulas, Syntax, Semantics, etc. 

- Subfields: Model Theory, Proof Theory, Propositional Logic, 1st/ 2nd/ High-Order Logic, Lambda Calculus, etc. 

 

1.5 Algebra (대수학, 代數學) 

- Why? To find the solutions of polynomials (다항식). 

- What? Structures of Set associated with one or two operations; group, ring, field, vector spaces, modules, etc. 

- Subfields: Group/Ring/Field Theory, Linear Algebra(선형대수학), Algebraic Geometry, etc. 

 

1.6 Analysis (해석학, 解晳學) 

- Why? To make firm foundation of Calculus (미적분학) 

- What? Microscopic viewpoint, special case of topology; limit, differentiation(미분), integration(적분), continuity 

of functions, epsilon-delta reasoning, etc. 

- Subfields: Calculus, Real/Complex Analysis(실/복소해석학), Differential Equations(미분방정식), Differential 

Geometry(미분기하학), Functional Analysis, Harmonic Analysis, Measure Theory, etc. 

 

1.7 Topology (위상수학, 位相數學) 

- Why? To study analysis with geometric concept; general viewpoint of Analysis 

- What? Classification of n-dimensional manifolds; open/closed set, compact space, connected space, etc. 

- Subfields: Algebraic Topology, Knot Theory (매듭이론), Low-Dimensional Topology, etc. 
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1.8 Number Theory (정수론, 正數論) 

- Why? What? To study the properties of numbers, esp. integers 

- Subfields: Algebraic/Analytic/Transcendental Number Theory, Congruence, Elliptic Curves, Prime Numbers, etc. 

 

1.9 Discrete Mathematics (이산수학, 離散數學) 

- Why? What? To study characteristics of discrete objects; <-> continuous math 

- Subfields: Automata, Coding Theory, Combinatorics, Computer Science, Finite Groups, Graph Theory, Information 

Theory, Recurrence Relations, etc. 

 

1.10  Probability and Statistics (확률과 통계, 確率과 統計) 

- Why? What? To study randomness in the real world 

- Subfields: Stochastic Process, Queuing Theory, Bayesian Analysis, Error Analysis, Markov Processes, Moments, 

Multivariate Statistics, Random Numbers, Random Walks, Statistical Tests, etc. 

 

1.11  References 

- “A First Course in Abstract Algebra” (Fraleigh) 

- “Topology” (Munkres) 

- “Real Analysis & Foundations” (Krantz) 

- “Elementary Number Theory” (Rosen) 

- “Discrete Mathematics” (Johnsonbaugh) 

- Lecture Notes of Comp 409 “Logic in Computer Science” (Vardi) 
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2. SET THEORY 
 

2.1 Preliminaries 

Undefined Terms set and element (with some condition) cf. class (without condition) 

Quantifiers∃: there exists, !∃: not exist, ∃!: uniquely exist, and ∀: for all 

Equality (1) element: a = b iff a, b: symbols for the same object, (2) set: A = B iff a ∈ A ⇔ a ∈ B 

Set Relations A ⊆ B (subset), A ∩ B (intersection), A∪B (union), and A×B (Cartesian product) 

N = {0, 1, 2, 3 …}, Z = {…, -2, -1, 0, 1, 2 …}, Z+ = set of positive integers, 

Q = {a/b | a, b ∈ Z}, R = set of real numbers, C = {x + y i | x, y ∈ R} 

Notations Def = Definition, Thm = Theorem, Ex = Example, Rmk = Remark 

 

2.2 Relations 

Def A relation R of set A and B is a subset of A×B. That is, R ⊆ A×B. 

 

2.2.1 Equivalent Relations 

Let R be a relation on A, that is, R ⊆ A×A. 

Def A relation R on a set A is reflexive if ∀x∈A, xRx. 

Def A relation R on a set A is symmetric if xRy, then yRx. 

Def A relation R on a set A is transitive if xRy and yRz, then xRz. 

Def A relation R is an equivalent relation if it is reflexive, symmetric, and transitive 

Thm By an equivalence relation, we can make equivalent classes, and partition. 

 

2.2.2 Order Relations 

Def A relation R is comparable if ∀x, y ∈ A such that x≠y, either xRy or yRx. 

Def A relation R is nonreflexive if !∃x in A such that xRx. 

Def A relation R is order relation if it is comparable, non-reflexive, and transitive. 

 

Let A be a set of order relation and A’ ⊆ A. 

Def (immediate) predecessor, (immediate) successor. 

Ex Compare Z+×[0, 1) and [0, 1)×Z+ with dictionary order relations 

 

Def b: largest element(smallest) or maximum(minimum) of A’ if b∈A’ and if x ≤(≥) b for ∀x∈A’. 

Def A’ is bounded above (below) if b∈A such that x ≤(≥) b for ∀x∈A’. Say b: upper (lower) bound 

Def If the set of all upper (lower) bounds for A’ has a smallest (largest) element,  

   then this element is called least upper bound (greatest lower bound) or supremum (infimum). 

Def A set satisfies least upper bound property if ∀nonempty bounded-above subset has a supremum. 

Ex [0, 1]×[0, 1] and [0, 1)×[0, 1] : satisfy but [0, 1]×[0, 1) and [0, 1)×[0, 1) : not satisfy 
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2.2.3 Examples 

P = set of all people in the world and R = set of real numbers 

D = {(x,y) ∈ P×P | x is descendent of y}. (nonreflexive, transitive) 

B = {(x,y) ∈ P×P | x has an ancestor who is also an ancestor of y}. (reflexive, symmetric) 

S = {(x,y) ∈ P×P | the parents of x are the parents of y}. (reflexive, symmetric, transitive) 

“X1<Y1” = {(x,y) ∈ R×R | x < y}. (comparable, nonreflexive, transitive)  order relation 

“X2<Y2” = {(x,y) ∈ R×R | x2<y2}. (nonreflexive, transitive) 

“X2=Y2” = {(x,y) ∈ R×R | x2=y2}. (transitive) 

 

2.3 Functions 

Def A relation f ⊂A×B is a function if, ∀x∈A, ∃! y∈B such that (x, y)∈ f.  

 In other words, if x = y, then f(x) = f(y). (Well-defined) Write f: A B. 

Def Let f: A  B, then say that A: domain, B: codomain, and f(A): range. 

 

Def A function f is injective (one-to-one) if f(x) = f(y), then x = y. 

Def A function f is surjective (onto) if ∀y∈B, ∃x∈A such that f(x) = y. 

Def A function f is bijective (one-to-one correspondence) if it is injective and surjective 

Thm If ∃injective f: A B and ∃injective g: B A, then ∃bijective k: A B 

 

Def Let f: A B and g: B C. Composite of f and g is gof: A C by (gof)(a) = g(f(a)). 

Rmk Composite of 2 injective (surjective) functions is injective (surjective). 

Def Let f: A B be bijective. Inverse function of f is a function defined by f-1: B A by f-1(b) = a such that f(a) = b. 

Def A binary operation on a set A is a function f: A×A A 

 

Ex Let f: A B and A0, A1 ⊆ A, B0, B1 ⊆ B. Then the followings hold. 

If A0⊆ A1, then f (A0) ⊆ f(A1). If B0⊆ B1, then f-1(B0) ⊆ f-1 (B1). 

f (A0 ∪ A1) = f(A0) ∪ f( A1) and f-1(B0 ∪ B1) = f-1(B0) ∪ f-1( B1). 

f (A0 ∩ A1) ⊆ f(A0) ∩ f( A1) and f-1(B0 ∩ B1) ⊆ f-1(B0) ∩ f-1( B1). “=” holds if f is injective. 

A0 ⊆ f-1(f(A0) ), and “=” holds if f is injective. B0 ⊆ f (f-1(B0)), and “=” holds if f is surjective. 

 

2.4 Countable and Uncountable Sets 

Def A set A is finite if ∃ bijective function of A with some selection of positive integers. 

 That is, if it is empty or if ∃bijection f: A {1, ..., n} for some n ∈ Z+. 

Thm If A is finite, then !∃bijection of A with a proper subset of itself. 

Def A set is infinite if it is not finite. 

Ex Z+ is infinite because ∃bijection such that f: Z+  Z+-{1} by f(n) = n+1. 

Def A set A is countably infinite if ∃bijection f: A  Z+. 

Ex Z is countably infinite because ∃bijection such that f(n) = 2n (if n>0) or -2n+1 (if n≤0) 

Ex Z+×Z+, Q, the set of all polynomials, and the set of algebraic numbers are countable. 
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Def A set is countable if it is either finite or countably infinite. 

Thm A countable union of countable set is countable. 

Thm A finite product of countable set is countable. 

Def A set is uncountable if it is not countable. 

Ex R is uncountable by Cantor’s diagonal method. 

Ex {0, 1}ω is uncountable, where X ω = { f: Z+  X | f: function}. 

 

Thm Let A be a set and P(A) be the power set of A. Then | A | < | P(A) | (strictly larger). 

Rmk Continuum Hypothesis (Cantor) “!∃A such that | Z+ | < A < | R |.” 

 

2.5 References 

“Set Theory: An Intuitive Approach” (Y. Lin and S. Lin) 

“Topology” (Munkres) 

“Mystery of Aleph” (Aczel, 한역판: “무한의 신비”) 

“Gödel, Escher, Bach: an Eternal Golden Braid” (Hofstadter, 한역판: “괴델, 에셔, 바흐”) 
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3. LOGIC 
 

3.1 Definition of Logic 

(1) The ability to determine correct answers through a standardized process 

(2) The study of formal inference 

(3) A sequence of verified statements 

(4) Reasoning, as opposed to intuition 

(5) The deduction of statements from a set of statements 

 

3.2 Short History of Logic 

(1) Philosophical Logic (500 B.C. to 19th Century) 

- Some problems due to the ambiguity of natural language 

- Liar’s paradox (“This sentence is a lie”), Sophist’ paradox (a trial between student and school), Surprise Paradox 

(2) Symbolic Logic (mid to late 19th Century) 

- George Boole tried to formulate logic in terms of a mathematical language 

- Venn Diagram was developed as a means of reasoning about sets 

(3) Mathematical Logic (late 19th to mid 20th Century) 

- As mathematical proofs became more sophisticated, paradoxes began to show up 

- Russell’s paradox (“T = {S| S not belongs to S}, then T∈T?”), Cantor’s Continuum Hypothesis 

- Gödel’s First and Second Incompleteness Theorems, Church and Turing’s undecidable problems 

(4) Logic in Computer Sciences (mid 20th Century to current time) 

- Computability Theory (1930s), Computational Complexity Theory (1970s) 

- Boolean logic, Database design, Semantics in Programming Languages, Design Validation/Verification, AI, etc. 

 

3.3 The Syntax of Propositional Logic 

A language consists of two parts: syntax and semantics. 

Metadef The syntax of a language is the way to make a concrete representation of the meaning 

Metadef The semantics of a language is our understanding of words or how the words relate to real world objects. 

Metadef A metalanguage is a language that talks about both the syntax and the semantics of a language. 

Now, let’s start studying about the syntax propositional logic with our metalanguage English. 

Def A proposition is a sentence which is either true or false. Prop is the set of all propositions. 

Def An expression is a string composed of propositions, connectives (￢, ∧, ∨, →), and parenthesis. Ex “ )→p ”. 

Def The set of formulas, Form, is defined as the smallest set of expressions such that: (here, ◦:∧, ∨ and, →) 

(1) Prop ⊆ Form, and (2) (closure property) If α, β ∈ Form, then (￢α) ∈ Form and (α◦β) ∈ Form. 

Def The primary connective and immediate sub-formula(s) of a given formula φ are defined as follows: 

(1) If φ is atomic, then it has no primary connective and no immediate sub-formula(s). 

(2) If φ is (￢ψ), then ￢ is a primary connective and ψ is an immediate sub-formula. 

(3) If φ is (θ◦ψ), then ◦ is a primary connective and, θ and ψ are immediate sub-formulas. 

Thm (Unique Readability) A composite formula has a unique primary connective and unique immediate sub-formulas 



LEE, GENE MOO  

 - 7 - 

3.4 The Semantics of Propositional Logic 

Def A truth assignment, τ, is an element of 2Prop. 

Rmk There are two ways to think of truth assignments: 

(1) 2Prop can be thought of as the power set of Prop, and a truth assignment X is an element of it, i.e., X ⊆ Prop. 

(2) We can think of 2Prop as set of all functions from Prop to {0, 1}. A truth assignment is a function τ: Prop {0, 1}. 

 

Let’s consider now three different, but equivalent, perspectives of semantics. 

3.4.1 Philosopher’s view 

For a philosopher, semantics is a binary relation ╞ between structures and formulas. 

τ ╞ φ means (1) τ satisfies φ or (2) τ is true of φ or (3) τ holds at φ or (4) τ is a model of φ. 

Def ╞ ⊆ (2Prop ×Form) is a binary relation, where the left side has a truth assignment and the right side has a formula.  

   ╞ is called the satisfaction relation, or the truth relation. We shall define it inductively: 

(1) τ ╞ p for some proposition p if τ(p) = 1 

(2) τ ╞ ￢ φ if it is not the case that τ ╞ φ, that is, τ ╞! φ (Note: this is so only in 2-valued world) 

(3) τ ╞ θ∨ψ if τ ╞ θ or τ ╞ ψ, (4) τ ╞ θ∧ψ if τ ╞ θ and τ ╞ ψ, (5) τ ╞ θ→ψ if τ ╞! θ or τ ╞ ψ. 

Ex Let τ = {p, q, r, t}, then τ ╞ (p→q)∧r and τ ╞! p∧s. 

 

3.4.2 Electrical Engineer’s view 

To an electrical engineer, the truth assignment is simply a mapping of voltages on a wire: τ: Prop {0, 1}. 

Operations are carried out by gates, which represent logical connectives. 

Def ￢:{0, 1} {0, 1} is a function defined by ￢(0) = 1 and ￢(1) = 0. 

Def ∧: {0, 1}2 {0, 1} is a function defined by ∧(0, 0) = ∧(0, 1) = ∧(1, 0) = 0 and ∧(1, 1) = 1. 

Def ∨: {0, 1}2 {0, 1} is a function defined by ∨(1, 1) = ∨(1, 0) = ∨(0, 1) = 1 and ∨(0, 0) = 0. 

Def →: {0, 1}2 {0, 1} is a function defined by →(1, 1) = →(0, 0) = →(0, 1) = 1 and →(0, 1) = 0. 

Def Let p ∈Prop, τ ∈2Prop. Then the semantics is defined according to the following rules: 

(1) p(τ) = τ (p) (meaning of a wire), (2) (￢φ)(τ) = ￢(φ(τ)), (3) (θ◦ψ)(τ) = ◦(θ(τ), ψ(τ)). 

Thm Let φ ∈Form and τ ∈2Prop, then τ ╞ φ if and only if φ(τ) = 1. 

 

3.4.3 Software Engineer’s view 

A software engineer describes truth assignments in which a given formula is true. 

Def This mapping from formula to sets of truth assignments is called models, where models: Form 22Prop. 

Def Let φ be a formula, then models(φ) is defined as follows: 

(1) φ = p: models(p) = {τ | τ (p) = 1}, where p ∈Prop. 

(2) φ = (￢θ): models(￢θ) = 2Prop – models(θ). 

(3) φ = (θ∧ψ): models(θ∧ψ) = models(θ) ∩ models(ψ). 

(4) φ = (θ∨ψ): models(θ∨ψ) = models(θ) ∪ models(ψ). 

(5) φ = (θ→ψ): models(θ→ψ) = (2Prop – models(θ)) ∪ models(ψ). 

Thm Let φ ∈Form and τ ∈2Prop, then φ(τ) = 1 if and only if τ ∈models(φ). That is, models(φ) = {τ | φ(τ) = 1}. 
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4. ALGEBRA 
 

4.1 Preliminaries 

Def A binary operation * on S is a function *: S × S  S defined by (a, b) |  a*b. 

Def H ⊆ S and * on S. Say that H is closed under * if h, k ∈ H  h*k ∈ H. 

Def * on S is commutative, if a*b = b*a for ∀a, b ∈ S; * on S is associative, if (a*b)*c = a*(b*c) for ∀a, b, c ∈ S. 

 

Let (S, *) and (S’, *’) be binary algebraic structures. 

Def An isomorphism of S into S’ is a bijective function f: S S’ such that f(x*y) = f(x) *’ f(y) 

Def S and S’ are isomorphic if ∃an isomorphism from S to S’. Write S ≈ S’. 

Rmk If two algebraic structures are isomorphic, then they share the same algebraic properties. 

Rmk The isomorphism is an equivalent relation on the set of algebraic structures 

Ex (R, +) and (R+, *) are isomorphic. 

 

4.2 Groups 

Def A group is a set G with an operation * that satisfies the following conditions (cf. semigroup, monoid) 

(1) * is associative, (2) ∃ identity e in G, and (3) ∀g ∈G, ∃g’(inverse)∈G such that g*g’ = e. 

Def An element e ∈S is an identity for * if s*e = e*s = s for ∀s ∈S. 

Def A group G is abelian if the operation is commutative. 

Thm A group has a unique identity, and all inverses are unique. 

Ex Zp, Z, Q, R, C are abelian groups with addition operations. {e}: trivial group. But <N, +> is not a group. 

Ex GL2 = {2 by 2 matrices with non-zero determinant}. GL2 is a non-abelian group. 

 

Def Let <G, *> be a group. H ⊂G is a subgroup of G if H is a group under the same operation *. 

Thm A subset H of G is a subgroup of G (write H < G) if and only if 

(1) H is closed under the operation of G, (2) the identity e of G is in H, and (3) for ∀a ∈H, a-1 ∈H. 

Ex T = {2 by 2 matrices with determinant 1} ⊂ GL2, and T < GL2. 

 

Def A group G is cyclic if ∃a ∈G such that ∀g ∈G, g = an for some n ∈Z+. 

Thm Every cyclic group is abelian. 

Ex Zp, Z, Q, R, C are cyclic groups; but V (≈Z2×Z2) is not cyclic. Compare the structures of V and Z4 

 

4.3 Groups of Permutations 

Def A permutation on a nonempty set S is a bijective function f: S S. 

Thm A collection of all permutations on A is a group under permutation multiplication.  

Def The group in the preceding theorem is called a symmetric group. 

Ex S3 (symmetric group of 3 letters) and S4 (symmetric group of 4 letters) are symmetric groups. 

  The structure of group S3 is shown in the following table. 
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+ 0 1 2 3 Z4 + e a b c V  P0 P1 P2 M1 M2 M3 S3

0 0 1 2 3  e e a b c  P0 P0 P1 P2 M1 M2 M3  

1 1 2 3 0  a a e c b  P1 P1 P2 P0 M3 M1 M2  

2 2 3 0 1  b b c e a  P2 P2 P0 P1 M2 M3 M1  

3 3 0 1 2  c c b a e  M1 M1 M2 M3 P0 P1 P2  

            M2 M2 M3 M1 P2 P0 P1  

            M3 M3 M1 M2 P1 P2 P0  

 

4.4 Homomorphism 

Def A function f: G G’ of groups is a homomorphism if f(a*b) = f(a)*’f(b) for ∀a, b ∈G. 

Ex Let g: G G’ be defined by g(a) = e’ for ∀a ∈G. Then g is a trivial homomorphism. 

Ex Let (F, +), (R, +) be groups and c ∈R, where R is the set of real numbers and F = {f | f: R R}. 

   Then Ec: F R, defined by Ec (f) = f(c) for f ∈F, is the evaluation homomorphism. 

Ex Let GL(n, R) be the multiplicative group of all invertible n*n matrices. 

   Then the determinant function det: GL(n, R) R is a homomorphism because det(AB) = det(A)det(B). 

Ex Let C[0, 1] be the additive group of continuous functions with domain [0, 1]. 

   Then I: C[0, 1] R, defined by I(f) = ∫0
1f(x)dx, is a homomorphism. 

Ex Let D be the additive group of all differentiable functions mapping R into R. 

   Then the derivative function der: D F, defined by der(f) = f’, is a homomorphism because (f + g)’ = f’ + g’. 

Thm Let f: G G’ be a homomorphism of groups, then 

(1) f(e) = e’, (2) f(a-1) = f(a)-1, (3) H<G  f(H)<G’, (4) H’<G’  f-1(H’)<G. 

 

4.5 Factor Groups 

Def Let f: G G’ be a homomorphism of groups. Then f-1[{e’}] = {x ∈G | f(x) = e’} is the kernel of f. Write Ker(f). 

Def Let H<G. Then aH = {ah | h ∈H} is the left coset of H, and Ha = {ha | h ∈H} is the right coset of H. 

Def A subgroup H of G is normal if aH = Ha for ∀a ∈G. (↔ aHa-1 = H ↔ aha-1 H for h ∈H). Write H◁G. 

Thm All subgroups of abelian groups are normal. 

 

Thm The kernel of a homomorphism f: G G’ is a normal subgroup of G. 

Thm Let H◁G. Then the set of cosets forms a group G/H under the binary operation (aH)(bH) = (ab)H. 

Def The group G/H is the factor group (or quotient group) of G modulo H. 

Ex r: Z Z, defined by r(m) = the remainder of m/3, is a homomorphism, and Ker(r) = 3Z, which is a normal subgroup. 

   The set of cosets of 3Z forms a group Z/3Z, i.e., {3Z, 1+3Z, 2+3Z} with coset addition operations. 

Ex The trivial subgroup {0} of Z is normal, then Z/{0}≈ Z. 

Ex Compute (Z4 × Z6) / <(0, 2)>. <(0, 2)> = {(0,0), (0,2), (0,4)}. (Z4 × Z6) / <(0, 2)> ≈ Z4 × Z2. 

 

Def A group is simple if it has no proper nontrivial normal subgroups. 

Ex Sn is simple for n ≥ 5. In 1980, Griess constructed a simple group of order more than 808 * 1017. 

Def A maximal normal subgroup of a group G is a normal subgroup M s.t. M<N◁G  N=M or N=G. 
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4.6 Advanced Group Theory 

Thm Let f:G G’ be a group homomorphism and R:G G/ker(f) be the canonical homomorphism. 

    Then ∃! isomorphism I: G/ker(f)  f[G] such that f = I ◦ R. 

Thm If H<G and N◁G, then (HN) / N ≈ H / (H∩N). 

Thm If H, K ◁ G with H<K, then G / H ≈ (G/K) / (H/K). 

Thm Let G be a group with |G| = pnm and p not divide m.  

    Then ∃H<G such that |H| = pk for 1≤k≤n, and Hi ◁ Hj when |Hi|=pi, |Hj|=pj, and i ≤ j ≤ n. 

Thm Let P1 and P2 be Sylow p-subgroups of a finite group G. Then P1 = xP2x-1 for some x ∈G. 

Thm Let G is a finite group with p | |G| and s be the number of Sylow p-subgroups. Then s ≡ 1(mod p) and s | |G|. 

 

4.7 Rings 

Def A ring <R, +, *> is a set R with binary operations + and *, such that 

(1) <R, +> : abelian group, (2) * is associative, (3) a*(b + c) = a*b + a*c for ∀a, b, c ∈R (distributive law) 

Ex {0} is the zero ring because 0 + 0 = 0 and (0)(0) = 0. 

Ex <Z, +, *> is a ring. So are Q, R, and C. 

Ex M2(Z) = {2 by 2 matrices with integer entries} is a ring with matrix addition and multiplication. 

Ex P[Z] = {a0 + a1x1 + … + anxn | ai ∈Z and n ∈Z+} is a ring with polynomial addition and multiplication. 

Ex nZ = {na | a ∈Z} is a ring with + and *. 

 

Thm Let R be a ring and a, b ∈R. Then a*(-b) = (-a)*b = -(a*b) and (-a)*(-b) = a*b for ∀a, b ∈R. 

Def A subring of a ring is a subset of the ring that is ring under induced operations from the whole ring. 

Def A function f: R R’ of rings is a ring homomorphism if f(a + b) = f(a) + f(b) and f(a*b) = f(a)*f(b) for ∀a, b ∈R. 

Ex Let g: Z Z defined by g(a) = -a. g is a group homomorphism but not a ring homomorphism. 

Ex Let f1: Z Z by f1(a)=a, f2: Z Z by f2(a)=0, and f3: Z Z by f3(a)=2a. Only f1 and f2 are ring homomorphisms. 

 

4.8 Integral Domains and Fields 

Def A ring in which the multiplication is commutative is a commutative ring. 

Def Let R be a ring, then i ∈R is unity if a*i = i*a = a, for a ∈R, and b ∈R is a unit if b-1 ∈R such that b*b-1 = i. 

Ex Let (Z, +, *) be a ring, then 1 is a unity, -1 is a unit ((-1)(-1) = 1), and 2 is not a unit. 

 

Def A ring with a multiplicative identity (unity) is a ring with unity. 

Def A ring R is a division ring if every nonzero element is a unit. 

Def A ring is a field if it is a commutative division ring, and a noncommutative division ring is called a skew field. 

Def A subfield of a field is a subset of the field that is field under induced operations from the whole field. 

Ex Z is a ring with unity but not division ring. Q and R are division rings and commutative, so fields. 

Ex H = {a + bi + cj + dk | a, b, c, d ∈R} is a division ring but not commutative because ij = k and ji = -k. 

 

Def Let R be a ring. If a, b ∈R such that a≠0, b≠0, and a*b=0, then a, b are zero divisors. 

Def A commutative ring with unity and without zero divisors is an integral domain. 

G f[G]

G / Ker(f) 

R
I 

f
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Ex Z5 is an integral domain, but Z6 is not because 2*3=0 in Z6. 

Thm Every field is an integral domain. 

Thm Every finite integral domain is a field. 

Cor If p is a prime, then Zp is a field. 

 

4.9 Vector Spaces 

Def A vector space V over a field F consists of the following: 

(1) F: a field of scalars; 

(2) (V, +): an abelian group where V is set of vectors and + is vector addition +: V×V V 

(3) Scalar multiplication *: F×V V satisfying the following conditions; (a) 1*v = v for ∀v ∈V, (b) (ab)*v = 

a(b*v), (c) a*(v + w) = a*v + a*w, (d) (a + b)*v = a*v + b*v, where a, b ∈F and v ∈V. 

Ex Q(√2) = {a + b√2 | a, b ∈Q} is a vector space over Q with a basis {1, √2}. 

Ex For any field F, F[x] is a vector space over F, where F[x] = {a0 + a1x1 + … + anxn | ai ∈F and n ∈Z+}. 

 

4.10  References 

“A First Course in Abstract Algebra” (John B. Fraleigh) 

“Algebra” (Thomas W. Hungerford) 

“Linear Algebra” (Hoffman and Kunze) 

“Linear Algebra and its Applications” (Gilbert Strang) 
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5. ANALYSIS 
 

5.1 Sequences 

Def A sequence of real (or complex) numbers is a function f: N R (or C). Write {fn}
∞

n=1. 

Def {an} converges to α if ∀ε >0, ∃N∈N such that |an – α| < ε if n ≥ N. Write an α or limn ∞ an = α. 

Def {an} diverges to +∞ (or -∞) if ∀M ∈R, ∃N∈N such that an > M (or an < M) if n ≥ N. Write an +∞(or -∞). 

Def {an} is bounded if ∃M > 0 such that an < M for ∀n ∈N. 

Def {an} is monotone if an ≤ an+1 for ∀n ∈N (increasing) or an ≥ an+1 for ∀n ∈N (decreasing). 

Thm If an  α and bn  β, then  

(1) α is unique, (2) {an} is bounded, (3) can c α, (4) (an + bn)  α + β, (5) (an·bn)  α·β, (6) (an/bn)  α / β. 

Ex limn ∞ (1+1/n) n = ∑∞
n=0 1/(n!) = e and ∑∞

n=0 (-1)n 1/(2n+1) = π/3. 

 

5.2 Basic Topology 

Def (a, b) = {x ∈R | a < x < b}, (a, b] = {x ∈R | a < x ≤ b}, [a, b] = {x ∈R | a ≤ x ≤ b} 

Def A set S ⊆ R is open if ∀x ∈S, ∃ε>0 such that x ∈ (x-ε, x+ε) ⊆ S. 

Def A set V ⊆ R is closed if Vc is open. 

Thm Let {Ua | a ∈A}, {Ui | 1 ≤ i ≤ n} be collections of open sets, then ∪a A∈
 Ua and ∩ ni=1 Ui are also open sets. 

Ex Let Un = (-1/n, 1/n + 1), then ∩∞
n=1 Un = [0, 1], which is closed. 

Ex Let Q = {q1, q2 …} and Un = (qn - ε/2n, qn + ε/2n), then U = ∪∞
n=1 Un is open. Q ⊆ U but the length of U is just 2ε! 

 

Def A point x is an accumulation point of S if ∀ε>0, (x-ε, x+ε) contains infinitely many elements of S. 

Def A point x is an isolated point of S if x ∈S and ∃ε>0 such that (x-ε, x+ε) ∩ S = {x}. 

Def A point x is a boundary point of S if ∀ε>0, (x-ε, x+ε) ∩ S ≠ {} and (x-ε, x+ε) ∩ Sc ≠ {}. 

Def A point x is an interior point of S if ∃ε>0 such that (x-ε, x+ε) ⊆ S. 

 

Def A set S ⊆ R is compact if every sequence in S has a subsequence that converges to an element of S. 

Thm A set S ⊆ R is compact if and only if S is closed and bounded. 

Def {Oa}a A∈  is an open covering of S if Oa is open and S ⊆∪a A ∈ Oa. 

Thm S is compact if and only if every open covering has a finite subcovering. 

Ex On = (1/n, 1+1/n), S = (0, 1]; S is bounded, not closed; {On} is an open covering, but doesn’t have finite subcovering. 

Ex On = (n-2, n), S = [1, ∞); S is closed, not bounded; {On} is an open covering, but doesn’t have finite subcovering. 

 

Def S is disconnected if ∃disjoint nonempty U, V such that S = (U∩S)∪(V∩S). S is connected if it is not disconnected. 

Ex The Cantor Set C = ∩∞
n=1 Cn; C is compact, has zero length, is uncountable, and {x + y | x, y ∈C} = [0, 2]. 

 

5.3 Limits and Continuity of Functions 

Def Let f: [a, b] R, then limx c f(x) = L if ∀ε>0, ∃δ>0 such that if |x – c| < δ , then |f(x) – L| < ε. 

Thm Let limx c f(x) = L and limx c g(x) = M, then 

(1) L is unique, (2) limx c (f(x) + g(x)) = L+M, (3) limx c (f(x)·g(x)) = L·M, (4) limx c (f(x)/g(x)) = L/M if M ≠0. 
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Def A function f is continuous at p if limx p f(x) = f(p). 

Thm If f and g are continuous at p, then f+g, f-g, αf, f/g, fg are also continuous at p. 

Thm A function f: E R is continuous if and only if f-1(O) = E ∩ O’ for all open sets O, where O’ is also open. 

Thm If f is a continuous function and K is a compact set, then f(K) is compact. 

Thm If f is a continuous function and L is a connected set, then f(L) is connected. 

 

5.4 Differentiation of Functions 

Let f , g be real functions. In other words, f: S R and g: S R. 

Def f is differentiable at p if ∃the derivative of f at p; f’(p) := lim h 0{(f(p + h)-f(p)) / h}. 

Def f is differentiable if it is differentiable at each a in its domain. 

Def Cn (I) is the collection of real functions whose n-th derivatives exist and are continuous on I. 

Thm If f is differentiable at p, then f is continuous at p. 

Ex h(x) = |x| is continuous at 0 but not differentiable there. 

 

Thm Let f and g are differentiable at p, then 

(1) (f + g)’(x) = f’(x) + g’(x), (2) (f·g)’(x) = f’(x)·g(x) + f(x)·g’(x), (3) (f/g)’(x) = {g(x)·f’(x) – f(x)·g’(x)} / g2(x). 

Thm If f is differentiable at p and g is differentiable at f(p), then g◦f is differentiable at p with (g◦f)’(p) = g’(f(p))·f’(p). 

Thm (L’Hopital) Let f and g are differentiable on an open interval I, p ∈I, f(x) 0 for x ∈ I –{p}. 

    If lim x pf(x) = lim x pg(x) = 0 and ∃lim x p(f’(x) / g’(x)) = L, then lim x p(f(x) / g(x)) = L 

Thm Let f be an invertible function on an interval (a, b) with nonzero derivative at a point x ∈ (a, b), and X = f(x). 

    Then (f -1)’(X) exists and equals 1/f’(x). 

Thm (Mean Value) Let f be a continuous function on the closed interval [a, b] that is differentiable on (a, b). 

    Then ∃a point ξ ∈(a, b) such that f’(ξ) = (f(b) – f(a)) / (b – a). 

 

5.5 Integral of Functions 

Let f be a function on a closed interval [a, b] in R. In other words, f: [a, b] R. 

Def A finite, ordered set of points P = {x0, x1… , xk-1, xk} such that a=x0 ≤ x1≤… ≤ xk-1 ≤ xk = b is a partition of [a, b]. 

Def Let P is a partition of [a, b]. Ij denotes the interval [xj-1, xj], ∆j denotes the length of Ij, and the mesh m(P) is max ∆j . 

Def Let P = {x0, x1… , xk-1, xk} is a partition of [a, b] and sj is an element of Ij for each j. 

    Then the corresponding Riemann sum is R(f, P) = ∑k
i=1 f(sj) ∆j. 

Def We say that the Riemann sums of f tend to a limit L as m(P) tends to zero if 

    ∀ε>0, ∃δ>0 such that if P is any partition of [a, b] with m(P) < δ then |R(f, P) – L| < ε for every choice of sj ∈Ij. 

Def A function f is Riemann integrable on [a, b] if the Riemann sums of R(f, P) tend to a limit as m(P) tends to zero. 

    The value of the limit, when it exists, is Riemann integral of f over [a, b] and is denoted by ∫ab f(x)dx. 

 

Thm Let f be a continuous function on a nonempty closed interval [a, b], then f is Riemann integrable on [a, b]. 

Thm Let [a, b] be a nonempty interval, f and g be Riemann integrable functions on the interval, and α ∈R. 

    Then f + g, and α f are integrable; (1) ∫ab {f(x) + g(x)}dx = ∫ab f(x)dx + ∫ab g(x)dx., (2) ∫ab α·f(x)dx = α·∫ab f(x)dx. 

Thm If f and g are Riemann integrable on [a, b], then so is the function f·g. 
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Thm If f is Riemann integrable on [a, b] and φ is a continuous function on a compact interval containing the range of f. 

    Then φ◦f is Riemann integrable. 

Thm (Fundamental Theorem of Calculus) Let [a, b] be a closed, bounded interval and f: [a, b] R. 

(1) If f is continuous on [a, b] and F(x) = ∫ax f(t)dt, then F ∈C1[a, b] and F’(x) = f(x). 

(2) If f is differentiable on [a, b] and f’ is integrable on [a, b], then ∫ax f’(t)dt = f(x) – f(a) for each x ∈ [a, b]. 

 

5.6 References 

“Real Analysis & Foundations” (Krantz) 

“An Introduction to Analysis” (Wade) 
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6. TOPOLOGY 
 

6.1 Topological Spaces 

Def A topology on a set X is a collection T of subsets of X having the following properties: 

(1) Ø, X ∈ T, (2) ∀{Ua | a ∈A}⊆T, ∪a ∈A Ua ∈T, and (3) ∀{U1, U2 , …, Un}⊆T, ∩n
i=1 Ui ∈T. 

Ex Let X = {a, b, c}. Then T1 = {X, Ø}, T2 = {X, Ø, {a}, {b}, {a, b}, {c}, {a, c}}, and T3 = 2X are topologies on X. 

 

Def If X is any set, the collection of all subsets is the discrete topology on X, and {Ø, X} is the indiscrete topology on X. 

Ex Let X ≠ Ø and Tf = {U⊆X | X –U is finite, or U is X}. Tf is called finite complement topology on X. 

Def Let T1 and T2 be topologies on X, with T1⊂ T2. Then T2 is finer than T1. 

 

6.2 Basis for a Topology 

Def If X is a set, a basis for a topology on X is a collection B of subsets of X such that 

(1) ∀x∈X, ∃B∈B such that x∈B, and (2) If x ∈ B1 ∩ B2, then ∃B3∈B such that x ∈B3⊆ B1 ∩ B2. 

Thm If B is a basis, the topology T on X generated by B is described as follows; 

    A subset U of X is open in X if ∀x∈U, ∃B∈B such that x∈B⊆U. 

 

Def Let B = {(a, b) | a ≤ b}. The topology generated by B is called the standard topology (R) on R. 

Def Let B’= {[a, b) | a ≤ b}. The topology generated by B’ is called the lower limit topology (Rl) on R. 

Def Let K = {1/n | n ∈Z+}, B’’= B ∪ {(a, b) – K}. The topology generated by B’’ is called the K-topology (Rk) on R. 

Def Let B’’’= {[a, b] | a ≤ b}. The topology generated by B’’’ is called the discrete topology on R. 

Thm The K-topology and the lower limit topology are finer than the standard topology. 

 

6.3 Order Topology, Product Topology, and Subspace Topology 

Let X be a set with a simple order relation with more than two elements 

Def Let B be the collection of all sets of the following types: (here, a0, b0 are the smallest and largest in X, if any) 

(1) All open intervals (a, b) in X, (2) All intervals of form [a0, b) of X, and (3) All intervals of form (a, b0] of X. 

Then the collection B is a basis for a topology on X, which is called the order topology on X. 

Ex The standard topology on R is just the order topology derived from the usual order on R. 

 

Let X and Y be topological spaces. 

Def The product topology on X×Y is the topology TX×Y defined by {U×V | U is open in X, V is open in Y}. 

Ex The product of the standard topology on R is a topology on R×R = R2. 

 

Let X be a topological space with topology T. 

Def If Y ⊆ X, the collection TY = {Y ∩ U | U ∈T} is a topology on Y, called the subspace topology. 

Ex Let (R, T) be the standard topology and Y = [0, 1) ∪ {2}. Then TY = {Y ∩ U | U ∈T} is a subspace topology on Y. 
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6.4 The Metric Topology 

Def A metric on a set X is a function d: X×X R satisfying the followings: for ∀x, y, z ∈X 

(1) d(x, y) ≥ 0 (“=” holds if and only if x = y), (2) d(x, y) = d(y, x), and (3) d(x, y) + d(y, z) ≥ d(x, z). 

Ex Let X be a set and d: X×X R defined by d(x, y) = 0 (if x = y), or 1 (if x ≠ y). d is called the discrete metric on X. 

Ex Let X = R and d: R×R R defined by d(x, y) = | x – y |. d is called the Euclidean metric on R. 

Def Let (X, d) be a set X with a metric d. The ε-ball centered at x is Bd(x, ε) = {y | d(x, y) < ε}, where ε > 0. 

Thm {Bd(x, ε) | x ∈X and ε >0} forms a basis of a topological space on X. 

Def A topology (X, T) is metrizable if ∃a metric on X such that the topology generated by the metric equals to T. 

Ex A discrete topology (X, D) is metrizable because the discrete metric induces the discrete topology on X. 

Ex The standard topology R is metrizable because the Euclidean metric induces the standard topology on R. 

 

Let x = (x1, x2…, xn) ∈Rn,  

Def The Euclidean metric d on Rn is defined by d(x, y) = [(x1- y1)2 +…+ (xn- yn)2]1/2. 

Def The square metric ρ on Rn is defined by ρ(x, y) = max {|x1- y1| …, |xn- yn|}. 

Thm The topologies on Rn induced by the d and ρ are the same as the product topology on Rn. 

 

6.5 Continuous Functions and Homeomorphisms 

Def (In Analysis) A function f: R R is continuous if ∀x, y∈R, ∀ε>0, ∃δ>0 such that if |x–y| < δ, then |f(x)–f(y)| < ε. 

Def (In Topology) A function f: (X, T) (Y, U) is continuous if ∀open set A ∈U, f-1(A) is open in X, i.e., f-1(A) ∈T. 

Rmk The continuity defined by “ε–δ” method is equivalent to the topological definition. 

Ex A function f: R Rl defined by f(x) = x is not continuous because f-1[a, b) = [a, b) is not open in R. 

Ex A function f: Rl R defined by f(x) = x is continuous because f-1(a, b) = (a, b) = ∪∞
n=k [a+1/n, b). 

 

Def A function f: (X, T) (Y, U) is a homeomorphism if (1) f is bijective, (2) f is continuous, and (3) f-1 is continuous. 

Def Two topologies T and T’ are homeomorphic if ∃a homeomorphism from T to T’. 

Ex A function f: (-1, 1) R defined by f(x) = tan(π·x/2) and f = 2/π · tan-1(x) is a homeomorphism. 

Ex A function f: [0,1) S⊆R2 defined by f(t)=(cos(2π·t), sin(2π·t)) is not a homeomorphism, where S={(x, y) |x2+y2=1}. 

 

6.6 Connectedness 

Let X be a topological space. 

Def A separation of X is a pair {U, V} of disjoint nonempty open subsets of X such that U ∪ V= X. 

Def X is connected if there is no separation for X. 

Ex A = {p, q} with discrete topology is not connected, but A with indiscrete topology is connected. 

Ex Rl is disconnected because R = (-∞, a) ∪ [a, ∞) = {∪n∈Z+(-n, a)} ∪ {∪m∈Z+[a, m)}. 

 

Thm If {Aa | a∈J} is a collection of connected subsets of X with ∩a∈J Aa ≠Ø, then ∪a∈J Aa is also connected. 

Thm If f: X Y is a continuous function and X is connected, then f(X) is a connected subspace of Y. 

Thm If X and Y are connected, then X×Y is also connected. 
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6.7 Compactness 

Let X be a topological space. 

Def A collection A = {Aa ⊆X | a∈J} is an open covering of X if ∪a ∈J Aa = X and each Aa is open in X. 

Def X is compact if ∀open covering of X, ∃a finite subcollection {A1… An} ⊆A such that ∪n
i=1 Ai = X. 

Def (In Analysis) A set S ⊆ R is compact if every sequence in S has a subsequence that converges to an element of S 

Ex Let X = R with finite complement topology, then X is compact. 

Ex Let X = R with standard topology and Y = {0} ∪ {1/n | n ∈Z+}, then Y is compact. 

Thm If X is compact and Y is a closed subspace of X, then Y is compact. 

Thm If X is compact and f: X Y is a continuous function, then f(X) is compact in Y. 

Thm If X and Y are compact, then X×Y is also compact. 

 

6.8 References 

“Topology” (James R. Munkres), 

“General Topology” (Seymour Lipschutz). 
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