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Abstract 
This paper presents an innovative connection from the language and automata theory into 
topology. Automata called “Gene automata” are proposed by relaxing the constraints of finite 
set of states and alphabets in regular language into arbitrary set of states and alphabets. 
Languages called “Gene languages” are proposed as languages accepted by the Gene 
automata. Semi-topology is a new concept proposed by relaxing a constraint of the definition 
of topological space. We prove that the set of Gene languages is a semi-topological space on 
set of strings. 
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1. Introduction 
 
   Theory of automata and language is essential in the theory of computation and 
modeling of computer systems. Meanwhile, topology theory is useful for studying 
geometric properties. The connection between these two theories is useful since theories, 
lemma, and tools of a theory can be applicable for another, or vice versa. 
   Semi-topology is a new concept proposed by relaxing a constraint of the definition 
of topological space. In order to be a semi-topology, a set of languages should be closed 
under countably infinite union. Regular language is closed under finite union and 
intersection [Sip96], but not closed under countably infinite union. Thus, a new 
language is proposed by relaxing the constraints of finite set of states and alphabets in 
regular language. Languages called “Gene languages” are proposed as languages 
accepted by the Gene automata. We prove that the set of Gene languages is a semi-
topological space on set of strings. 

The paper is organized as follows: basic knowledge of semi-topology and new 
concepts in the automata and language theory are reviewed in Section 2. The connection 
of the two theories is explored in Section 3. Related works and future research 
challenges are presented in Section 4 and 5. 
 
2. Background 
Semi-topology, Gene automata and Gene languages are defined in this section. 
2.1. Semi-Topology 
The definition of topological space is presented in [Mun99]. A new concept called semi-
topology is proposed by releasing a condition in the definition of topology. 
 
Definition 1 
A semi-topology or semi-topological space on a set X is a collection T of subsets of X 
having the following properties 
1. An empty set, {}, and X are in T. 
2. Union of the elements of countable subcollection of T is in T. 
3. Intersection of the elements of any finite subcollection of T is in T. 
   The second property makes a semi-topology to be closed under countably infinite 
union operation, and the third is for the finite intersection closure. The elements of a 
semi-topology are called open sets. For example, let ℜ be the set of real numbers and T 
be the set of all open intervals. Then T is a semi-topology on ℜ, which is also called the 
standard topology. 
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2.2. Gene Automata and Gene Language 
The formal definition of Gene automata and Gene language is given in this subsection. 
The following concepts are adapted from finite automata and regular language [Sip96]. 
Definition 2 
A Gene automaton M is a 5-tuple (Q, ∑, δ, q0, F), where 
1. Q is a set of states, 
2. ∑ is a set of alphabets, 
3. δ: Q × ∑  Q is a transition function, 
4. q0 ∈ Q is the initial state, and 
5. F ⊆ Q is a set of final or accept states 
The “finiteness” constraint in the definition of traditional finite automata is relaxed in 
this definition, and the number of states in the Gene automaton may be infinite. 
Definition 3 
A language L ⊆ ∑* is called a Gene language if a Gene automaton accepts it. 
Let the class of Gene languages be GL. 
   The concept of accepting a language is the same as the traditional definition in the 
theory of computation [Sip96]. That is, a Gene automaton recognizes a Gene language. 
In Section 3, the connection between Gene languages and semi-topological space is 
discussed. 
 
3. Integration of Semi-Topology, Automata, and Language Theory 
All the Gene automata are constructed over the same set of alphabets ∑ for convenience. 
The definitions of set operations, such as intersection, union, and complement, are given 
in [Mun99]. 
   We will prove that set of Gene languages, GL, is a semi-topology on ∑* by showing 
that GL satisfies three conditions given in Definition 1. First, Lemma 1 and Theorem 1 
are to show that GL meets the first condition, that is, closure under countable set union. 
 
Lemma 1 
GL is closed under a union operation. 
Proof) Let L1 and L2 be Gene languages. It is needed to prove that L1 U L2 is also a 
Gene language. Let M1 = (Q1, ∑, δ1, q1, F1) and M2 = (Q2, ∑, δ2, q2, F2) be the Gene 
automata that accept L1 and L2, respectively. Then a Gene automaton M = (Q, ∑, δ, q0, 
F) may be constructed where  

(1) Q = Q1 × Q2 (Cartesian product),  
(2) q0 = (q1, q2),  
(3) F = (F1×Q2) U (Q1×F2), and 
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(4) δ : Q × ∑  Q defined by δ(qa, qb) = (δ1(qa), δ2(qb)). 
By its definition, M accepts L1 U L2, so L1 U L2 is also a Gene language. 
Hence, GL is closed under the union operation. � 
 

Theorem 1 
GL is closed under countable union operation. 
Proof) If the number of union operations is finite, induction is used for this proof. Let n 
be the number of union operation. First, for the base case (n = 2), it is trivial that GL is 
closed under one-time union by Lemma 1. 
   Next, for the inductive case, suppose that this theorem holds for the case n = k. Then 
if there are k Gene languages {L1, L2… Lk}, then U k

 i=1
 Li is also a Gene language by 

the hypothesis. By definition of a Gene language, there exists a Gene automaton M that 
accepts U k

 i=1
 Li. 

   Let L’ be another Gene language. By Lemma 3, (U k
 i=1

 Li) U L’ is also a Gene 
language, which shows that this theorem holds for the case n = k+1. Hence, GL is 
closed under finite union operation. 
   For the countably infinite case, let L = {L1, L2, L3 …} be a collection of Gene 
languages. Then M = {M1, M2, M3 …} be the collection of Gene automata that accepts 
languages in L. That is, Mi accepts Li, where Mi = (Qi, ∑, δi, qi, Fi). Now, a new Gene 
automaton M = (Q, ∑, δ, q0, F) can be constructed in the same way of Lemma 1, where 

(1) Q = П∞
i=1 Qi, 

(2) q0 = (q1, q2, …), 
(3) F = U∞

i=1 (Пi-1
j=1 × Qi × П∞

k=i+1), and 
(4) δ : Q × ∑  Q defined by δ(q1, q2, …) = (δ1(q1), δ2(q2), …). 

Then by its definition, the Gene automaton M accepts U∞
i=1

 Li, and U∞
i=1

 Li is also a 
Gene language. In other words, GL is closed under countably infinite union operation. 
Therefore, GL is closed under countable union operation. � 
 

Secondly, Lemma 2, 3, and Theorem 2 show that GL is closed under set intersection. 
Lemma 2 
If L is a Gene language, then the complement set, L’, is also a Gene language. 
Proof) Let L be a Gene language, and M = (Q, ∑, δ, q0, F) be the Gene automaton that 
accepts L. Now M’ that will accept L’ can be made, i.e., M’ does not accept strings or 
elements in L but accepts strings that are not contained in L. 
   Now M’ = (Q, ∑, δ, q0, F’) is a Gene automaton where the set of states, set of 
alphabets, transition function and the initial state are the same as those in M and let F’ = 
Q – F. 
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Then clearly, M’ accepts L’, and L’ is also a Gene language. Hence, GL is closed 
under complement operation. � 

 
Lemma 3 
GL is closed under intersection operation. 
Proof) Let L1 and L2 be Gene languages. It is needed to prove that L1 ∩ L2 is also a 
Gene language. 

Notice that by De Morgan’s law, L1 ∩ L2 = ¬ (¬L1 U ¬L2), where ¬ represents a 
complement operation. ¬L1 and ¬L2 are Gene languages by Lemma 2. Thus, ¬L1 U 

¬L2 is a Gene language by Lemma 1. 
Lastly, ¬ (¬L1 U ¬L2) is also a Gene language by Lemma 2, and it is concluded that 

GL is closed under intersection operation. � 
 

Theorem 2 
GL is closed under finite intersection operation. 
Proof) Induction is used for this proof. Let n be the number of intersection operation. 
First, for the base case (n = 2), it is trivial that GL is closed under one-time intersection 
by Lemma 3. 
   Next, for the inductive case, suppose that this theorem holds for the case n = k. Then 
if there are k Gene languages {L1, L2… Lk}, then ∩ k

 i=1
 Li is also a Gene language by 

the hypothesis. By definition of a Gene language, there exists a Gene automaton M that 
accepts ∩ k

 i=1
 Li. 

   Let L be another Gene language. By Lemma 3, (∩ k
 i=1

 Li) ∩ L is also a Gene 
language, which shows that this theorem holds for the case n = k+1. Hence, GL is 
closed under finite intersection operation. � 
 
Theorem 3 
GL is a semi-topological space on ∑*. 
Proof) Recall that to be a semi-topology, a subset of power set should include an empty 
set {} and the universal set ∑*. Define M0 = (Q, ∑, δ, q0, {}). Then the Gene automaton 
M0 accepts no inputs, which means that L(M0) = {}.  

Define M∀ = (Q, ∑, δ, q0, Q). Then this Gene automaton M∀ always accepts all the 
inputs, in which case L(M∀) = ∑*. Therefore, {}, ∑* ∈ GL, and GL satisfies the first 
condition to be a semi-topology. 

By Theorem 1, GL is closed under countable union operation. By Theorem 2, GL is 
closed under finite intersection operation. Therefore, GL is a semi-topology on ∑*. � 
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4. Related Work 
The related work takes advantage of topology to make the hierarchies of temporal 

properties. Manna and Pnueli [MP90] proved that, in the topological view, the hierarchy 
of temporal properties coincides with the two lower levels of the Borel hierarchy, 
starting with the closed sets and open sets. 
   Baier and Kwiatkowska [BK00] showed that the usual topology on strings, 
Mazurkiewicz traces and pomsets arises as special cases. They have been able to obtain 
extensional, topological and temporal characterizations of classes of temporal properties 
including safety and liveness. Extensional characterization often admits a topological 
characterization with respect to the natural topologies of the domain of computations. 
   Alpern and Scheider [AS85] worked with the Cantor topology in the domain of 
infinite sequences of states. Meanwhile, Chang, Manna and Pnueli [CMP92] worked 
with the same domain but focused on the syntactic classes of properties expressed in 
Linear-time Temporal Logic (LTL). When considering a partial order semantic domain 
of computations together with a partial order temporal logic, the picture complicates 
further, as the natural topologies of such domains (the relativised Scott topology) are 
coarser than their metric topologies. 
 
5. Future Work 
This paper presents the connection between Gene languages and semi-topological space. 
It is a good contribution to make this new connection because there are many powerful 
tools in topology theory to help studying language theory, and vice versa. However, 
there are two questions to be solved. First, how can we use Gene languages in the 
theory of computation? The concept of the Gene language is just introduced, and we 
should find the location of Gene language in the whole hierarchy of languages. Second, 
how can we take advantage of the theory of topology to language and automata theory? 
A semi-topology T is a topology if union of the elements of any subcollection of T is in 
T. This paper only considered countable subcollections. We plan to study the closure 
property of Gene languages in the uncountable cases. 
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