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Abstract

Tradable performance standard (TPS) is an important policy instrument for mitigating
carbon dioxide (CO2) emissions in developing countries, who play an essential role in
achieving drastic global carbon emissions reduction. However, whether a TPS system
effectively reduces firm-level emissions in a developing country context remains un-
known. This paper answers this question based on a policy experiment in China. Since
2013, China has introduced carbon emissions trading systems based on TPS in eight
regions (ETS pilots). This study provides a timely ex-post evaluation of these ETS
pilots’ effects on sulfur dioxide (SO2) emissions from coal-fired thermal power genera-
tion facilities using staggered and dynamic difference-in-differences models. This study
uses a novel data from NASA’s Aura satellite to measure SO2 emissions at the facility
level. Contrary to the common belief, results show that although SO2 emissions of
all facilities declined steadily from 2010 to 2019, SO2 emissions of facilities covered by
the ETS pilots (ETS facilities) increased by about 5-7% relative to those of non-ETS
facilities. Moreover, the relative increase in SO2 emissions of ETS facilities grew over
time. A model is developed to show that the implicit output subsidy from the TPS
design could increase the output of cleaner facilities, leading to more SO2 emissions.
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1 Introduction

Sustaining economic growth, reducing poverty, and achieving ambitious climate change mit-

igation goals is arguably the main challenge of this century. At the center of this challenge

lies the energy sectors of fast-growing developing economies like China, which has historically

relied on burning coal to meet the ever-increasing energy demand of a rapidly expanding

economy and a more affluent population. To achieve environmental goals in the power gener-

ation sector, China has traditionally relied on command-and-control style policies. However,

in 2011 China announced the plan to experiment with regional pilot programs of carbon

emission trading systems (ETS pilots) to reduce its carbon emissions.

The ETS pilots in China have generated broad interest from policymakers and scholars

from across the world. This interest is not only motivated by the combined scale of the ETS

pilots as the world’s second-largest carbon market at the time of their launch (following

the EU ETS), but also by their unusual rate-based design based on Tradable Performance

Standards (TPS). Because TPS systems reduce carbon emission intensity rather than total

carbon emission, they are less restrictive on output growth and could be more suitable for

developing countries, where economic growth is usually given high policy priorities. The

ETS pilots in China could thus generate valuable insights regarding the effectiveness of a

TPS system in the developing country context.

Despite the prominence of China’s ETS pilots in policy and academic discussions, ques-

tions remain about their actual performance, especially when they operate alongside other

command-and-control environmental regulations. An undesirable feature of a TPS system is

that it can amount to implicit output subsidies for a portion of the covered emitters (Fischer,

2001; Goulder et al., 2022), thus reducing its efficiency compared to a more traditional Cap

and Trade (C&T) system. This feature raises an important empirical question of whether

the ETS pilots in China have effectively reduced emissions from large emitters in the short-

and mid-run. This paper answers this question by providing a timely ex post evaluation of

the causal effects of the ETS pilots on SO2 emissions from coal-fired power plants during the

2010-2019 period.

The analysis adopts staggered and dynamic difference-in-differences (DID) frameworks:

comparing changes in SO2 emissions from coal-fired power plants covered by the ETS pilots

(treated facilities) versus power plants not covered by the ETS pilots (untreated facilities)

before and after the launch of the ETS pilots. To disentangle the causal effect of the ETS pi-

lots from confounding factors of co-existing environmental regulations, identification exploits
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the variations in the temporal and spatial coverage of the ETS pilots compared to those of

two major sets of air pollution and power sector regulations. To overcome the problem of

limited data availability and concerns over data quality in the Chinese context, I estimate

monthly and quarterly SO2 emissions at the power plant level using a novel NASA satellite

data product.

Contrary to the belief that ETS pilots could reduce emissions of co-pollutants (Li et al.,

2018; Zhang and Zhang, 2020; Cai et al., 2016), the baseline results show that although

SO2 emissions have declined for all coal-fired power generation facilities in the sample, SO2

emissions of the treated facilities have increased by about 5% vis-á-vis untreated facilities

since the ETS pilots began. Moreover, after conditioning on the stringency of two sets of

overlapping air pollution and power sector regulations, the relative increase in SO2 emissions

by the treated facilities climbs to 5.9% and 6.7%, respectively.

Results of the event study models show no significant divergence in the pre-trends of

SO2 emissions between the treated and untreated facilities, lending credence to the baseline

results. Furthermore, the event study models reveal that the relative increase in SO2 emis-

sions from the treated facilities becomes statistically significant one year after the launch of

the ETS pilots and grows over the post-treatment period. These results stand a battery of

robustness checks, including controlling for potential spillover effects to power plants in the

neighboring provinces within the same regional power grid, using different functional form

assumptions and data frequencies, and using alternative sample selection criteria for large

and isolated coal-fired power plants. The results also pass placebo tests.

This paper contributes to three strands of literature. A large empirical literature exam-

ines the effectiveness of market instruments in regulating pollution, such as the lead trading

program (Kerr and Newell, 2003; Nichols, 1997; Hahn and Hester, 1989), the SO2 allowance

trading program (Chan et al., 2018; Schmalensee and Stavins, 2013; Busse and Keohane,

2007; Carlson et al., 2000; Ellerman et al., 2000; Joskow, Schmalensee, and Bailey, 1998),

the NOx Budget Program (Curtis, 2018; Deschenes, Greenstone, and Shapiro, 2017; Fowlie,

2010; Linn, 2010, 2008), and the RECLAIM program (Fowlie, Holland, and Mansur, 2012;

Fowlie and Perloff, 2013). In contrast, fewer empirical studies have examined the effective-

ness of market instruments adopted by developing countries, which generally have lower

institutional and technological capability and fewer financial and human resources. This

study adds to this strand of literature, by providing rigorous evaluation of the causal effects

of an important market mechanism in a developing country context.
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Second, this study contributes to the burgeoning literature on the effects of carbon trad-

ing schemes. Due to the prominence of the EU ETS, numerous empirical studies have shed

light on its effects on innovation (Calel, 2020; Calel and Dechezleprêtre, 2016), firms’ car-

bon emissions, employment, and productivity (Calel, 2020; Dechezleprêtre, Nachtigall, and

Venmans, 2018; Marin, Marino, and Pellegrin, 2018; Martin, De Preux, and Wagner, 2014;

Jaraite-Kažukauske and Di Maria, 2016), and the power generation sector (Zaklan, 2021;

Fabra and Reguant, 2014). In comparison, rigorous ex post evaluation of the performance of

the ETS pilots in China has only a few entries (Cui et al., 2021; Cao et al., 2021) and needs

further development.1 By leveraging recent advancements in remote-sensing technologies

and utilizing publicly available satellite data, this paper provides much-need evidence of the

short- to mid-run ex post effects of the ETS pilots on emissions of a co-pollutant, SO2. By

focusing on the thermal power generation sector, the only sector covered by the national

ETS that launched in July 2021, the study provides valuable policy-relevant insights for the

regulators of the national ETS.

Last but not least, this study also adds to the literature on tradable performance stan-

dards (TPS) systems. Previous studies on TPS systems have examined their performance

in the context of the U.S. transportation sector (Yeh et al., 2021; Ito and Sallee, 2018; Klier

and Linn, 2016; Jacobsen, 2013; Anderson et al., 2011; Anderson and Sallee, 2011) and the

U.S. electricity sector (Chen, Tanaka, and Siddiqui, 2018; Zhang, Chen, and Tanaka, 2018;

Fischer, Mao, and Shawhan, 2018; Burtraw et al., 2014; Linn, Mastrangelo, and Burtraw,

2014). This study contributes to this literature by documenting the effects of TPS systems

in the power generation sector of a large and fast-growing developing economy.

2 Policy Background

To achieve the ambitious greenhouse gasses (GHG) emission reduction goals pledged in the

2015 United Nations Climate Change Conference in Paris (COP21)2, China implemented

1Numerous studies focus on the market design issues of China’s ETS pilots and National ETS. (Karplus,
2021; Stavins and Stowe, 2020; Goulder et al., 2017; Karplus and Zhang, 2017; Duan, 2017, 2015; Pang and
Duan, 2016). Due to data availability and data quality issues, previous ex post evaluations of China’s ETS
pilots examined their effects on firms’ innovation and low-carbon investments (Tian, 2020; Zhu et al., 2019;
Cui, Zhang, and Zheng, 2018; Mo et al., 2016), co-pollutants (Kou et al., 2021; Huang et al., 2021; Yan et al.,
2020), and health co-benefits (Chang et al., 2020; Li et al., 2018; Cai et al., 2016). In addition, Goulder
et al. (2022) provides an excellent ex ante evaluation of the National ETS in China.

2China’s pledged goals, termed Nationally Determined Contributions (NDCs), include reducing carbon
intensity by 60-65% relative to 2005 levels by 2030; increasing the share of non-fossil fuels in primary energy
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a series of policies during the 12th Five Year Plan (FYP) period (2011-2015) and the 13th

FYP (2016-2020) period. A milestone policy is the establishment of regional carbon emissions

trading system (ETS) pilots in eight municipalities and provinces, which have helped China

accumulate the institutional and technical know-how of carbon markets and paved the way

for the national ETS launched in July 2021.

2.1 A Brief History of ETS Pilots in China

The National Development and Reform Commission (NDRC)3 approved and announced

seven regional ETS pilots in October 2011, with an initial trial-run period of 2013-2015.

These pilots cover five municipalities, Beijing, Tianjin, Shanghai, Chongqing, and Shenzhen,

and two provinces, Hubei and Guangdong. An eighth ETS pilot was established in Fujian

Province in 2016, after the conclusion of the trial-run period of the first seven ETS pilots.

The ETS pilots cover direct and indirect CO2 emissions4 from large emitters in vari-

ous industrial, transportation, and service sectors. In the covered sectors, participation is

mandatory for large emitters, selected based on their historical annual CO2 emissions.5The

thermal power generation sector is covered by all ETS pilots due to its lion’s share in local

carbon emissions.6 The ETS pilots cover 40-60% of local carbon emissions (ICAP, 2020).

In total, the eight pilots cover approximately 650 megatons of carbon emissions – roughly a

consumption to 20% by 2030; and increasing its forest stock by 4.5 billion cubic meters. In 2014, China also
pledged to peak its total CO2 emissions by 2030 as a part of the US-China Joint Announcement on Climate
Change. In the Climate Ambition Summit 2020, China upgraded its climate change mitigation goals and
announced its plan to reach carbon neutrality by 2060.

3The NDRC is a ministry-level agency under the State Council (the central government of China). It is
in charge of drafting and coordinating the implementation of socio-economic development strategies, mid-
to long-term development plans, and annual development goals.

4Pang and Duan (2016) discuss three reasons for the ETS pilots to cover indirect carbon emissions. First,
there is no binding cap on total carbon emissions in the ETS pilots. Second, electricity price is regulated by
the provincial Development and Reform Commission (DRC), which prevents the cost of carbon emissions to
be passed through to electricity consumers, thus nullifying incentives for energy saving behaviours. Third,
the ETS pilot regions import a fraction of their electricity from other regions. So, indirect emissions (mainly
through electricity consumption) are covered to prevent carbon leakage.

5Details on the industries covered by each ETS pilot and the thresholds of historical carbon emissions are
provided in Table A7. Except for Chongqing, all ETS pilots only cover CO2 emissions. The Chongqing ETS
also covers five other GHG, including methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs),
perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).

6In 2021, following the start of the national ETS, thermal power generation facilities covered by the
regional ETS pilots began transferring into the national ETS. The national ETS currently only covers the
thermal power generation sector, although its planned expansion will cover more sectors in the future.
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third of the size of the EU ETS.7

Figure 1: Regional Emission Trading System Pilots by Launch Year

Notes: From north to south and east to west, the light green areas cover the following six ETS pilots: Beijing, Tianjin, Shanghai,
Chongqing, Guangdong, and Shenzhen. These six ETS pilots started their first compliance period (CP) on January 1, 2013.
The darker green area is the Hubei ETS that began its first CP on January 1, 2014. The blue area covers the Fujian ETS that
began its first CP on January 1, 2016. Light grey bubbles represent 346 large and relatively isolated coal-fired power generation
facilities, selected based on criterion detailed in Section 4. The size of the bubbles represents the capacity of the facilities in
2012. Source: Author’s compilation based on Global Energy Monitor - Global Coal Plant Tracker.

The staggered rollout of the ETS pilots occurred between 2013 and 2016 in three

episodes. The first group of six ETS pilots, including Beijing, Tianjin, Shanghai, Chongqing,

Guangdong, and Shenzhen, started their first compliance period (CP) on January 1, 2013.

Due to delays in preparation, the Hubei ETS began its first CP on January 1, 2014. Lastly,

the first CP for the Fujian ETS started on January 1, 2016. The location and rollout timing

of all eight ETS pilots are shown in Figure 1.

The defining feature of the ETS pilots is their rate-based design, called Tradable Perfor-

mance Standards (TPS). In TPS systems, emitters must meet certain CO2 emission intensity

standards (or performance standards) set by regulators. However, their total CO2 emissions

are not capped – as in a mass-based Cap and Trade (C&T) system – because they can freely

adjust output in response to market demand. Due to this rate-based design, the ETS pilots

can amount to an implicit output subsidy for cleaner emitters, whose carbon emission inten-

7The World Bank. “Carbon Pricing Dashboard.” Accessed on September 5, 2021. https://

carbonpricingdashboard.worldbank.org/
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sities are already below the mandated standards or whose costs of meeting such standards

are sufficiently low (Goulder et al., 2022; Fischer, 2001).

Thermal power generation facilities under the ETS pilots can meet the mandated carbon

emission intensity standards by reducing their emission intensities (abatement) or purchasing

emission credits from the carbon market. Abatement is mainly achieved by reducing coal

consumption per unit of electricity production, which typically requires capital-intensive

investment to retrofit existing boiler units with cleaner technologies or to replace inefficient

units. In the short-run, it is also possible for a covered facility to reduce carbon emission

intensities by cutting back electricity production, if, for example, it is able to switch electricity

production from less to more efficient units. In the long-run, however, covered facilities will

likely retire or replace inefficient boiler units, since idle or standby units still require constant

maintenance.8

The cost of carbon emission credits across the ETS pilots is low, with the trading-

volume-weighted average carbon price ranging between 20 and 40 RMB/ton during the

2013-2015 trial-run period and an average spot price of about 28 RMB/ton (approximately

$4.5/ton). For reference, the U.S. EPA’s Social Cost of Carbon (SCC) in 2025 is 46$/ton.9

By the end of 2015, the cumulative trading volume across all ETS pilots has amounted to 50.3

million tons of CO2 (Ministry of Ecology and Environment, PRC, 2016). Figure 2 shows the

trends of trading-volume-weighted average carbon price and trading volume between 2014

and 2017. Trading activities in the ETS pilots mostly occur around the annual deadlines for

submitting carbon emission credits, as Panel (b) of Figure 2 shows. In addition, Figures A4

and A5 in the Appendix show the heterogeneity in local carbon prices and trading volumes

across the ETS pilots.

8In theory, facilities can also remove carbon emissions by installing carbon capture, utilization, and
storage (CCUS) technologies. However, in practice, the CCUS technologies are still in the early stage of
adoption in China and are not yet a cost-efficient option. Finally, switching to coal with higher heating
ratings may also be an abatement option. However, as Yang et al. (2018) show, coal-switching is also not
cost-efficient in the Chinese context.

9EPA’s Social Cost of Carbon (SSC) ranges between 12$/ton to 138$/ton. The SSC in the year 2025,
based on a 3% discount rate, is 46$/ton. Source: U.S. EPA. “Social Cost of Carbon Fact Sheet.” https:

//www.epa.gov/sites/default/files/2016-12/documents/social_cost_of_carbon_fact_sheet.pdf.
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Figure 2: Spot Price and Trading Volume of Carbon Emission Credits (2014-2017)

(a) Price (b) Volume

Notes: Carbon emission credit price shown in Panel (a) are trading-volume-weighted monthly average spot price and is in
nominal RMB. Trading volumes are denoted in million tons of CO2. The first dashed vertical lines in both panels roughly mark
the first carbon emission credit submission deadlines for Beijing, Tianjin, Shanghai, Shenzhen, and Guangdong. The second
dashed vertical lines in both panels roughly mark the first carbon emission credit submission deadlines for Hubei and Chongqing
and the second carbon credit submission deadlines for the other five ETS pilots. (Actual submission deadlines varied between
May and July.) Source: Author’s calculation based on Zhang et al. (2020).

2.2 Overlapping Environmental Regulations

Since the start of the 12th Five Year Plan (2011-2015), China has taken a comprehensive ap-

proach to combat environmental problems, introducing stricter environmental laws and new

emissions standards, incorporating pollution reduction targets into socioeconomic planning

and local government officials’ evaluations, and creating a mixture of new regulatory tools.10

Due to the prominence of the thermal power generation sector in governmental efforts to

reduce carbon emission and air pollution, a series of new environmental regulations have tar-

geted this sector. A summary of two sets of air pollution and power sector regulations, most

likely to contaminate the effects of the ETS pilots on coal-fired power generation facilities’

emissions, are provided below.

Ultra-Low Emissions Standard The most prominent air pollution regulation in the

thermal power generation sector is the “Emission Standards for Atmospheric Pollutants for

Thermal Power Generation” (GB13223-2011) released in 2011. Compared with the outgoing

standard, the new standard requires thermal power generation facilities to significantly re-

duce their emission rates of sulfur dioxide (SO2), nitrogen oxides (NOx), particulates (PM),

mercury, and other pollutants by 50% or more. Due to its stringency, this new standard is

10Karplus, Zhang, and Zhao 2021 provides an excellent comprehensive review of the environmental policy
landscape in China
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widely known as the ultra-low emissions (ULE) standard. This new standard went into effect

on July 1st, 2014 for all existing thermal power generation facilities.11 An essential feature

of the ULE standard is its tiered structure: the ULE standard sets lower (more stringent)

emission rates of air pollutants for facilities located in 47 prefecture cities, designated as

the “Key Zones of Atmospheric Pollutants Prevention and Control” (APPC key zones), and

higher (less stringent) rates for facilities in Chongqing, Guangxi, Sichuan, and Guizhou. (A

map of APPC zones in relation to the ETS pilots are shown in Figure A1.)

Energy Efficiency and Pollution Control Besides the ULE standard, China also

promulgated two plans to induce thermal power generation facilities to retire small and in-

efficient boiler units and to invest in energy efficiency and pollution control technologies.

They are the “Action Plan for Atmospheric Pollutant Prevention and Control” (2013-2017,

known as the ”Air Ten”) and the “Work Plan for the Comprehensive Implementation of

Ultra-Low Emissions and Energy Efficiency Upgrades of Coal-Fired Power Generation Fa-

cilities” (2014-2020, hereafter, the “Work Plan”). The “Work Plan” includes performance

standards on energy efficiency for boiler units of different sizes and technologies and provides

financial incentives for facilities that adopt the recommended energy efficiency and pollu-

tion control technologies12. Moreover, the “Work Plan” sets different regional deadlines for

thermal power generation facilities to meet the energy efficiency standards. The deadline for

facilities located in 11 eastern and eight central provinces to complete their upgrades and

meet the standards are 2017 and 2018, respectively, and the deadline for facilities elsewhere

in China is 2020. (A map of Eastern and Central provinces is shown in Figure A2.)

3 Research Design

As discussed above, the key to estimating the effects of ETS pilots on power generation

facilities’ SO2 emissions is to disentangle them from potential contamination effects from

overlapping air pollution and energy efficiency regulations in the power sector. Therefore, to

identify the causal effect of the ETS pilots on the covered facilities’ SO2 emissions, the DID

research design exploits the differences in temporal and spatial coverage of the ETS pilots

11The ULE standards came into effect for newly constructed thermal power generation units on January
1, 2012, and then for all existing units on July 1, 2014.

12Thermal power generation facilities that meet the energy efficiency improvement and emission reduction
targets on time are awarded a 0.001 RMB/kwh increase in electricity price, an additional 200 guaranteed
hours per year, and a 50% discount on pollution charges.
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relative to that of the overlapping regulations. The baseline two-way fixed effect (TWFE)

model is shown below.

Yijt = γi + λt + λtαk + δDit +X
′

ijtβ + εijt (1)

The dependent variable of interest, Yijt, is log SO2 emissions of thermal power generation

facility i in prefecture city j in period t. Since SO2 emissions is the product of output (qit)

and emission rates (µs
it), Yijt = qit × µs

ijt, a logarithmic transformation of SO2 emissions

thus additively decompose them into two terms, ln(Yijt) = ln(µs
ijt) + ln(qit). The first term,

µs
ijt, is affected by the ETS pilots, as treated facilities are incentivize to reduce their coal

consumption per unit of electricity output. This term is also regulated by the ULE standard

and the “Work Plan”.13

Dit is a binary treatment indicator that equals 1 for treated facilities in post-treatment

periods and 0 otherwise. δ̂ is the estimator for the Average Treatment Effect on the Treated

(ATT) of the ETS pilots on SO2 emissions, the parameter of interest.

γi are facility fixed effects that control for time-invariant unobserved characteristics of

thermal power generation facilities that determine the dynamics of their SO2 emissions or

treatment status. For instance, facilities’ historical carbon emission intensities or average

annual carbon emissions prior to the start of ETS pilots are captured by these facility fixed

effects. This term also captures any time-invariant technological attributes of facilities’ boiler

units. Moreover, the stringency of local environmental regulations may also differ based on

facilities’ fixed locations. For example, facilities located nearer to city centers or in the

upwind direction of large cities may be subject to more frequent and strict monitoring by

local government officials. This type of policy stringency variation is also captured by these

facility fixed effects.

λt are time fixed effects that capture macroeconomic or environmental policy shocks that

13Similarly, log CO2 emissions can also be decomposed into an output component and an intensity com-
ponent, ln(Zijt) = ln(qit) + ln(µc

ijt), where ln(Zijt) and ln(µc
ijt) are facilities’ CO2 emissions and CO2

emission intensities in logs, respectively. Substituting this equation into the log decomposition of SO2

emissions yields the following expression: ln(Yijt) = ln(Zijt) + [ln(µs
ijt) − ln(µc

ijt)]. This equation charac-
terizes the relationship between SO2 and CO2 emissions. When the second term on the right-hand side,
ln(µs

ijt) − ln(µc
ijt) = ln(µs

ijt/µ
c
ijt), is held constant, changes in SO2 emissions equal changes in CO2 emis-

sions. When facilities’ SO2 emission intensities µs
ijt decrease faster than their CO2 emission intensities µc

ijt,
the ln(µs

ijt/µ
c
ijt) term is increasingly negative, in which case the increases in SO2 emissions ln(Yijt) provide

lower bound estimates for increases in CO2 emissions ln(Zijt).
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affect all thermal power generation facilities. The interaction term, λtαk, is key to separating

the effect of ETS pilots from that of overlapping regulations such as the ULE standard and

the “Work Plan”. αk are dummy variables that categorize facilities’ locations based on

the above-mentioned regulations. This interaction term allows facilities subject to different

air pollutant emissions or energy efficiency standards to experience different technological

progress in each period that could change their SO2 and CO2 emissions intensities. Take

the ULE standard as an example, by controlling for differential effects of the ULE standard

in this flexible manner, the model only compares treated facilities with untreated facilities

within the same type of APPC zones (key vs. non-key) and thus netting out the potential

contamination effects of the ULE standard.

Xijt is a vector of control variables in logs, such as facility capacity; province-level energy

supply and demand variables like electricity demand, electricity price, and the fraction of

power generated by thermal sources (coal, oil, and natural gas); and local weather variables

such as cooling degree days (CDD) and heating degree days (HDD).14

The key identification assumption in the DID framework is the parallel trend assump-

tion. To provide indirect support for this assumption and examine the dynamic effect of ETS

pilots on SO2 emissions from large isolated coal-fired power plants, I estimate the following

event study (or dynamic DID) model.

Yipt = γi + λt + λtαk +
J∑

j=2

θjDi1[t
∗ − t = j] +

T∑
τ=0

ϕτDi1[t− t∗ = τ ] +X
′

ijtβ + εiptp (2)

A notable difference in this event study specification is the addition of leads and lags.

As equation (2) shows, J leads and T lags have been added. Di is a binary treatment dummy

that equals 1 for treated facilities and 0 for untreated facilities. 1[t∗ − t = j] is an indicator

function that yields 1 when the time of observation t is j periods before the occurrence of

treatment t∗. Similarly, the 1[t − t∗ = τ ] terms equal 1 when the time of observation is τ

periods after the treatment. Figure

14Cooling and heating degree days measure how hot and cold the daily temperatures are during a certain
period. These two measures are typically used in energy studies to control for the influence of weather on
energy demand for the cooling and heating of buildings and homes. They measure how far daily temperatures
are from a given threshold temperature. Consider the example of CDD using 24◦ Celsius as the threshold
temperature. A day with a mean temperature of 30◦ Celsius counts as 6 CDD as the temperature is 6
degrees hotter than the threshold temperature, and a day with a mean temperature of 20◦ Celsius counts as
0 CDD as it is not hotter than the threshold temperature.
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The θj describe the changes in SO2 emission of eventually treated facilities net of the

changes in untreated facilities before the launch of ETS pilots. A joint statistical test on

these terms provides evidence for the parallel trend assumption. The ϕτ trace out how the

sample average treatment effect on the treated (ATT) evolves through time. Yijt, γi, λt, λtαk

and Xijt are defined as before.

4 Data

Coal-Fired Power Plants Characteristics Data on coal-fired power generation fa-

cilities are obtained from the Global Coal Plant Tracker (GCPT).15 The GCPT database

contains information on 2,990 boiler units of 1,087 operating facilities in China. For each

power plant, GCPT reports their longitude and latitude, ownership, and additional back-

ground information. Additionally, GCPT provides detailed boiler-unit-level information such

as capacity, combustion technology, operational status, commission year, and, if applicable,

retirement year. Units that have retired before 2010 or are still under construction in 2019

are dropped, leaving me with a sample of 2,680 boiler units, belonging to 838 coal-fired power

generation facilities.16

SO2 Emissions of Coal-Fired Power Plants SO2 emissions of thermal power gen-

eration facilities are derived from a NASA Ozone Monitoring Instrument (OMI) satellite

product.17 This data provides daily SO2 concentrations with global coverage at a maximum

spatial resolution of 0.25 by 0.25 degrees. The high spatial resolution of OMI SO2 products

makes them ideal for studying the SO2 emissions of large stationary sources such as thermal

power generation facilities. The accuracy and credibility of OMI SO2 products in estimating

thermal power generation facilities’ emissions have been demonstrated by numerous studies

(Karplus, Zhang, and Almond, 2018; Fioletov et al., 2011, 2015; Mclinden et al., 2016; Liu

et al., 2015; Lu et al., 2013; Li et al., 2010).

15Global Coal Plant Tracker, Global Energy Monitor, July 2022, https://globalenergymonitor.org/
projects/global-coal-plant-tracker/

16Some coal-fired power generation facilities have moved to a new site during the study period 2010-2019.
I treat the new and the old sites of a facility as separate facilities. If the old site shut down before 2010, it
is dropped from the sample.

17OMI/Aura Sulfur Dioxide (SO2) Total Column L3 1 day Best Pixel in 0.25 degree x 0.25 degree
V3 (OMSO2e). https://disc.gsfc.nasa.gov/datacollection/OMSO2e_003.html. This data product is
developed and made public by a team of scientists (Li et al., 2020) at the Goddard Earth Sciences Data and
Information Services Center (GES DISC).
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Table 1: Summary Statistics on Large and Isolated Coal-Fired Power Generation Facilities

ETS Non-ETS

obs mean sd obs mean sd

Capacity in 2012 67 1797.224 1370.928 279 1551.405 1345.239
Number of units 67 4.047 2.060 279 3.443 1.649
Share of outdated capacity 67 0.216 0.408 279 0.139 0.308
Share of capacity built between 2009-2019 67 0.450 0.609 279 0.444 0.787
Share of capacity built between 2014-2019 67 0.084 0.224 279 0.116 0.628
Share of capacity retired between 2009-2019 67 0.110 0.276 279 0.036 0.153
Share of capacity retired between 2014-2019 67 0.087 0.254 279 0.035 0.151
Subcritical (dummy) 67 0.588 0.424 279 0.617 0.437
Supercritical (dummy) 67 0.174 0.315 279 0.167 0.326
Ultra-supercritical (dummy) 67 0.164 0.307 279 0.119 0.288
CFB (dummy) 67 0.020 0.128 279 0.003 0.034

Notes: This table presents summary statistics of 346 large and isolated coal-fired power generation
facilities. Large and isolated coal-fired power generation facilities are defined in Section 4. Capacity
shown in the first row is in megawatt (MW). Outdated capacity is defined as subcritical units with 200
MW or less capacity, based on the “Action Plan for Energy Efficiency and Pollution Reduction Upgrade
in the Coal-Fired Power Generation Sector” (2014-2020). Percentages of outdated, new, and retired
capacity, shown in the second to the seventh row, are in decimal points and are calculated by dividing
capacity that match each category against facilities’ total capacity in 2012. Four dummy variables in
rows 8-11 indicate shares of facilities capacity with each specific combustion technology. CFB stands
for circulating fluidized bed. For a given capacity, boiler units’ carbon emission intensity decreases from
subcritical, to super-critical and ultra-supercritical technologies. Although CFB technology reduces
emissions of co-pollutants such as SO2, the CFB technologies adopted in China tend to have higher
CO2 emission intensities than the subcritical boiler units (see Table 1 in Goulder et al. 2022).
Source: Author’s calculation based on Global Energy Monitor - Global Coal Plant Tracker.

Since the Aura/OMI SO2 product only produces accurate and credible estimates of

SO2 emissions for large facilities, I follow the methods of Lu et al. (2013) and Karplus,

Zhang, and Almond (2018) and select a subset of large and relatively isolated facilities. A

facility is considered as large and relatively isolated if its operating capacity in 2012 exceeds

1,700 megawatts18 or 50% of the total operating capacity of all facilities within a 35 km

radius.19 This process yields a sample of 346 facilities, consisting of 67 treated facilities20

and 279 untreated facilities. As table 1 shows, the treated and untreated facilities have

similar observable characteristics.

181700 megawatts is the 75th percentile of the size distribution of all Chinese coal-fired power plants in
the GCPT database.

19A detailed description of the data processing procedure is provided in Appendix C.

20The 67 facilities covered by the ETS pilots include 1 facility in Beijing, 3 in Tianjin, 4 in Shanghai, 1
in Shenzhen and 23 in the rest of Guangdong, 11 in Hubei, 7 in Chongqing, 10 in Fujian, and 7 in two cities
in Inner Mongolian that have voluntarily joined the Beijing ETS in 2015.
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Figure 3 below provides descriptive evidence on the effects of the ETS pilots on SO2

emissions. It shows that SO2 emissions of both the treated and untreated facilities have

declined rapidly between 2012 and 2019. However, the decline is more pronounced for the

untreated facilities than the treated facilities (about 16% versus 12% from 2012 to 2019).

Furthermore, SO2 emissions show high degrees of co-movement during the pre-ETS period,

particularly between 2012 and 2014. This pattern provides visual evidence in support of the

parallel trend assumption of the DID research design. Importantly, an apparent break in

the co-movement of SO2 emissions is also visible after 2014, with the trend of SO2 emissions

of treated facilities flattened relative to that of the untreated facilities. This pattern is also

robust when directly comparing the level of emissions (see Figure A6 in the Appendix).

Figure 3: SO2 Emissions of Coal-Fired Power Generation Facilities (2010-2019)

Notes: Quarterly group average SO2 emissions in logs are plotted above. The ETS line is plotted using quarterly averages of
SO2 emissions from 50 large and isolated coal-fired power generation facilities covered by the ETS pilots, excluding ten facilities
in Fujian and seven facilities in Inner Mongolia. The Non-ETS line is plotted using quarterly averages of 278 facilities located
outside the ETS pilots. Source: Author’s calculation based on NASA Aura/OMI OMSO2e.

Socioeconomic Characteristics Province-level socioeconomic variables are collected

from CEIC data21. Energy demand and supply variables are gathered from EPS China

Statistics. All energy sector variables are annually updated official statistics at the province

level, except for the industrial-use electricity price, which is reported at monthly frequency.

21CEIC Data is a data service that compiles various social, economic, and financial data from official
statistical agencies. In the case of China, most socioeconomic statistics come from the National Bureau of
Statistics

13



Lastly, to measure provincial private and public investments in environmental protection, I

collected annual investments in industrial waste gas control and annual public environmental

protection expenditures from CEIC data. Lastly, I collected heating degree days (HDD) and

cooling degree days (CDD) data from the International Energy Agency (IEA) to control for

the impact of local weather on energy demand.

As is shown in Table 2, the pilot ETS regions have higher GDP, more service-oriented

local economies, and higher population densities and growth rates than the non-ETS regions.

Moreover, the ETS regions also consume less electricity, have lower energy intensity, and

experience slower growth rate in electricity consumption compared with the non-ETS regions.

Table 2: Macroeconomic, Energy, and Weather Characteristics of ETS vs. Non-ETS Regions

Non-ETS Provinces ETS Provinces

obs mean sd obs mean sd

Panel A. Macroeconomy
GDP (bn. 2015 RMB) 230 2035.208 1696.862 70 2939.505 2042.295
Real GDP, growth rate 207 0.072 0.036 63 0.078 0.026
Primary industry (% GDP) 230 0.117 0.046 70 0.046 0.037
Secondary industry (% GDP) 230 0.426 0.071 70 0.398 0.105
Tertiary industry (% GDP) 230 0.458 0.056 70 0.556 0.133
Population (mn. ppl) 230 46.488 26.187 70 42.210 30.450
Population, growth rate 230 0.005 0.008 70 0.012 0.013
Population density (thn. ppl/km2) 230 0.263 0.206 70 1.136 1.160

Panel B. Energy Sector
Electricity price, industry (2015 RMB/kwh) 230 0.731 0.121 70 0.824 0.090
Electricity consumption (bn. kwh) 230 1523.186 910.841 70 1330.195 767.390
Electricity consumption, growth rate 207 0.034 0.052 63 0.019 0.046
Electricity generation, thermal (%) 230 0.735 0.249 70 0.767 0.211

Panel C. Environment & Climate
Industrial wastegas control investment (mn. 2015 RMB) 220 1537.558 1777.099 70 949.830 767.358
Public environmental protection expenditure (% GDP) 176 0.015 0.007 56 0.012 0.007
CDD26 230 111.464 109.693 70 196.648 78.574
HDD14 230 1903.300 1324.311 70 1006.231 737.135

Note: The selection of ETS pilot regions is not random. The ETS pilot regions are more economically developed.
Moreover, their local economies are also less energy-intense. Except for industrial electricity price, cooling degree
days (CDD), and heating degree days (HDD), all variables are province-level yearly variables. Industrial electricity
price, CDD, and HDD are province-level monthly variables. Source: CEIC Data, EPS China Statistics, and IEA.
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5 Results

Regression results from the two-way-fixed effects and dynamic difference-in-differences mod-

els show participation in ETS pilots has led to statistically significant increases in SO2

emissions of about 5-7% from the ETS-treated facilities vis-á-vis the untreated facilities.

Furthermore, the event study model suggests that this relative increase in SO2 emissions is

mainly driven by outcomes one year after the rollout of the ETS pilots and grows over time.

Further analysis reveals that the estimated sample average treatment effect on the treated

(ATT) is mainly driven by the 2013 cohort.

5.1 Effects of ETS Pilots on Treated Facilities’ SO2 Emission

Table 3 shows the regression results from the baseline two-way-fixed effects (TWFE) model

shown in equation (1). On average, participation in the ETS pilots has led to a 5-7% increase

in SO2 emissions from the treated facilities compared to the counterfactuals. In other words,

SO2 emissions of the treated facilities have increased relative to those of untreated facilities

by about 5-7% since the launch of the ETS pilots. This result is consistent with the post-ETS

trends of SO2 emissions shown in Figure 3.

Column (1) of Table 3 reports the regression results without controlling for the potential

contaminating effects of the overlapping regulations. The coefficient of interest, Treat×Post,

is the DID estimator of the ATT of ETS pilots. This coefficient suggests that, on average,

the ETS pilots have led to a relative increase in SO2 emissions by about 5.4%.

Robust standard errors are reported in column (1) of Table 3, and cluster robust stan-

dard errors are reported in columns (2)-(5). Following Bertrand, Duflo, and Mullainathan

(2004), standard errors in columns (2)-(5) are clustered at the prefecture city level, because

environmental policies are typically implemented at this administrative level. A comparison

of column (1) and (2) suggests that clustering standard errors at the prefecture city level

does not change the significance of the point estimates.

Column (3) of Table 3 controls for seasonal changes in SO2 emissions due to winter

heating, by adding an interaction term between quarter fixed effects and a winter heating

dummy. The winter heating dummy equals 1 if a prefecture city supplies a central heating

during winter months and 0 otherwise. Generally speaking, cities to the north of the Huai

River have central heating and cities to the south do not, as is discussed in Chen et al.

15



Table 3: Relationship between ETS Pilots and Treated Facilities’ SO2 Emissions

(1) (2) (3) (4) (5) (6)

Treat × Post 0.054*** 0.054*** 0.053*** 0.059*** 0.067*** 0.069***
(0.013) (0.018) (0.018) (0.019) (0.021) (0.022)

Ln(capacity) -0.00014 -0.00014 -0.00014 -0.00023 -0.00066 -0.00067
(0.0019) (0.0021) (0.0021) (0.0020) (0.0022) (0.0022)

Ln(electricity price) 0.26*** 0.26*** 0.25*** 0.24*** 0.25*** 0.25***
(0.043) (0.061) (0.063) (0.062) (0.056) (0.057)

Ln(power consumption) 0.10*** 0.10** 0.10** 0.12*** 0.12** 0.13**
(0.036) (0.045) (0.044) (0.042) (0.054) (0.052)

% Power generation, thermal -0.012** -0.012* -0.012* -0.012* -0.018** -0.019**
(0.0056) (0.0065) (0.0065) (0.0064) (0.0075) (0.0079)

Ln(HDD14) 0.0072*** 0.0072*** 0.0074*** 0.0063*** 0.0053** 0.0057**
(0.0018) (0.0020) (0.0019) (0.0020) (0.0024) (0.0025)

Ln(CDD26) -0.0025 -0.0025 -0.00019 -0.0012 0.00091 0.0015
(0.0016) (0.0020) (0.0024) (0.0020) (0.0020) (0.0020)

Constant -0.40 -0.40 -0.41 -0.51* -0.48 -0.52
(0.26) (0.32) (0.32) (0.30) (0.38) (0.36)

N 11759 11759 11759 11759 11759 11759
R-Square 0.3011 0.3011 0.3039 0.3120 0.3240 0.3374

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Quarter FE ✓ ✓ ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓ ✓ ✓
Central Heating Dummy × Quarter FE ✓
APPC Key Zone Dummy × Year-Quarter FE ✓
Region Dummies × Year-Quarter FE ✓
APPC Key Zone × Region × Year-Quarter FE ✓

Notes: Standard errors are reported in parentheses. Robust standard errors are reported in column (1), and cluster-
robust standard errors are reported in columns (2)-(5). The clustering is by prefecture cities, because environmental
regulations are typically enforced at the city level (Bertrand, Duflo, and Mullainathan, 2004). * p < 0.10, ** p < 0.05,
*** p < 0.01.

Model in column (3) controls for differences in seasonal changes in SO2 emissions due to winter heating. The central
heating dummy equals 1 if a city provides centralized heating to residents and businesses and 0 otherwise. Model in
column (4) controls for the effects of the ultra-low emissions (ULE) standard (see Section 2.2 for details), by adding
interaction terms between the Air Pollution Prevention and Control (APPC) Key Zone dummy and year-quarter fixed
effects. Model in column (5) controls for the effects of several power sector regulations (see Section 2.2) that more
aggressively promote energy efficiency improvements in thermal power plants in eastern and central provinces in China.
Model in column (6) simultaneously controls for the effects of the ULE standard and power sector regulations that affect
facilities’ energy efficiencies, by adding a triple interaction term between APPC Key Zone dummy, region dummies, and
year-quarter fixed effects.

Seven facilities in two Inner Mongolia cities were dropped, because they were reported to have voluntarily joined the
Beijing ETS in 2015 but no further information can be found on whether they remained in it since then. Ten facilities
in Fujian Province were dropped from the treated group due to violation of the parallel trend assumption (see Panel (c)
of Figure 5).
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(2013). The addition of this interaction term only results in minor changes the estimated

treatment effect.

Column (4) of Table 3 presents the regression coefficients of the baseline DID model

shown in equation (1) in Section 3. As discussed, this model flexibly controls for the effects

of the ULE standard on SO2 emission intensities. To the extent that differences in local

stringency of the ULE standard fully account for the variation in facility-level SO2 emission

intensities, changes in SO2 emissions have a one-to-one correspondence with changes in

output. A comparison of columns (2) with (4) shows that controlling for effects of ULE

standards increases the estimated treatment effect by about half a percentage point.

To control for the effects of power sector policies that improve facilities’ energy effi-

ciency (the “Work Plan”), column (5) adds an interaction term between dummy variables

for eastern and central provinces and year-quarter fixed effects. As discussed in Section 2.2,

these regulations could affect facilities’ coal consumption intensity. The results suggest that

conditioning on this source of variation in facility-level SO2 emission intensities increases the

estimated treatment effect to 6.7%.

Finally, the model in column (6) simultaneously controls for the effects of the ULE

standard and the “Work Plan” by adding triple interaction terms between APPC Key Zone

dummy, region dummies, and year-quarter fixed effects. The results are virtually unchanged

compared the those of the model in column (5).

Across all model specifications shown in Table 3, the coefficients on industrial-use elec-

tricity price and electricity consumption at the province level are significant and positive.

These two energy supply- and demand-side variables are arguably exogenous to individual

facilities. Moreover, local electricity consumption is a function of economic activities, energy

intensity, population, and other factors that affect energy demand. Under the assumption

that SO2 emissions is a linear function of output, the coefficients on log electricity price can

be interpreted as the price elasticity of electricity supply. Consistent with the fact that price

and output are regulated in the power sector in China (Goulder et al., 2022), the estimated

price elasticity of supply is inelastic in all columns of Table 3.

The coefficient on the fraction of power generation from thermal sources (coal, natural

gas, and oil) is significant and negative in all columns of Table 3. This variable captures

local dependence on fossil fuels. Since recent air pollution regulations more heavily impact

regions with more thermal power generation facilities, high shares of fossil fuel facilities could

be a proxy for higher levels of impact from air pollution regulations or higher levels of local
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environmental enforcement efforts. Lastly, the coefficient on heating degree days (HDD) is

statistically significant and positive, suggesting that colder climate is correlated with higher

energy demand for heating, and thus, responsible for higher SO2 emissions.

5.2 Robustness of the Baseline Results

To evaluate the robustness of the baseline results, I test whether the estimated coefficients

are sensitive to alternative definitions of treatment timing, potential spillover effects, and

using different sub-samples. Results from the robustness tests are presented in Table A2.

Alternative Treatment Timing As mentioned in Section 2.1, the start of the first

compliance period is defined as the time of treatment to avoid anticipation effects in the

study. As Duan (2015, 2017) discuss, firms were in the consultation process leading up

to the launch of ETS pilots, which implies that they could have formed expectations of

how the pilots were to be implemented and could have planned their responses accordingly.

Nevertheless, column (2) of Table A2 tests the robustness of TWFE model results to using

the opening dates of carbon markets as the timing of treatment. In comparison with column

(1), which uses the beginning of the first compliance period as the time of treatment, as in

the baseline models, the estimated treatment effect of the ETS pilots does not change at all.

Spillover Effects An implicit assumption for the causal interpretation of the estimated

ATT is the stable unit treatment value (SUTVA) assumption embedded in the Neyman-

Rubin Causal Model. SUTVA requires the potential outcome of a given facility to be un-

affected by the treatment status of any other facility. For this assumption to hold, SO2

emissions of untreated facilities must not be affected by the effect of ETS pilots on the

treated facilities. In other words, there must be no spillover effects. A potential violation

of this assumption is the shifting of electricity production from the treated to untreated

facilities. To the extent that this type of spillover has occurred, the estimated ATT will be

downward biased and, thus, provides a lower bound of the true effect.

Under the hypothesis that the shifting of electricity production is more likely to occur

within a regional power grid, I expect to find a smaller treatment effect when comparing

treated facilities only to untreated facilities in the same regional power grid. As column

(3) of Table A2 shows, the estimated treatment effect increases rather than decreases, after

adding interaction terms between regional power grid dummies and year-quarter fixed effects.

However, I acknowledge that this test does not rule out potential violation of SUTVA,
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especially in the long run. This is because untreated facilities are more likely to be affected

via general equilibrium effects in the long run.

Alternative Samples Selection Criteria Next, I provide evidence that the results are

robust to changes to the sample. In column (4) of Table A2, I show that results of the baseline

model are robust to dropping ten facilities that have completely retired since the start of

the ETS pilots. Furthermore, I show in column (5) that the results of the baseline model

are also robust to dropping ten facilities in Fujian. As Goodman-Bacon (2021) discusses,

the traditional TWFE estimator may be biased when it assigns large weights to comparisons

between late-treated and early-treated facilities. To assess the magnitude of this potential

bias, facilities in Fujian are dropped because they are treated three years after the rest of

the treated facilities. As column (5) shows, the results do not change significantly, indicating

that such bias, if exists, is minimal. To further investigate components within the TWFE

estimator, I perform the decomposition described in Goodman-Bacon (2021). As Figure A11

in Appendix D suggests, the weights assigned to the late versus early comparison are too

small to affect the TWFE estimator.

Lastly, I show in column (6) of Table A2 that the results of the TWFE model are also

robust to using a smaller sample of much larger thermal power generation facilities, selected

using more strict criterion. This sample contains isolated large facilities, whose capacities

are at least 2,600 megawatts or account for 75% of all coal-fired power generation capacity

within a 35 km radius (see Appendix C for details).

5.3 Assessing the Parallel Trend Assumptions using Dynamic Dif-

ference in Differences

To provide indirect support for the parallel trend assumption and to shed light on the

dynamic effect of ETS pilots on large power plants’ SO2 emissions, I estimate the event

study (or dynamic DID) model shown in equation (2) in Section 3. Figure 4 provides

evidence that, conditional on a vector of covariates, the differences between the average

annual SO2 emissions of the treated and untreated facilities are not statistically different

from zero prior to the rollout of ETS pilots.

Furthermore, Figure 4 shows that the effects of the ETS pilots on treated facilities’

SO2 emissions become significantly one year after the launch of ETS pilots. This timing

coincides with the completion of the first compliance period (2013-2014) in Beijing, Tianjin,
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Shanghai, Shenzhen, Guangdong, and Chongqing. This delayed effect is also consistent with

the hypothesis that learning takes time. As the covered facilities complete the first compli-

ance period, they accumulate knowledge, develop capacity, and adjust their production and

investment plans based on their experience with the ETS pilots. Moreover, the estimated

treatment effect of the ETS pilots increases over time, which is consistent with the hypothesis

that capital-intensive abatement technologies take time to build.

Figure 4: Dynamic Effects of ETS Pilots on Treated Facilities’ SO2 Emissions

Notes: Estimated causal effects of ETS pilots on treated facilities’ SO2 emissions based on the event study model (see Equation
(2) in Section 3) are plotted above. The dependent variable is log SO2 emissions, and the control variables include province-level
energy market and weather variables such as log electricity price, log electricity consumption, percentage of electricity generated
from thermal sources, log investment in industrial waste gas control, HDD (14◦C), CDD (26◦C), and interaction terms between
dummies for air pollutant prevention and control key zones and year-fixed effects.

Next, I estimate the heterogeneous treatment effects of ETS pilots on each treatment

cohort and report the results in Figure 5. A treatment cohort or a timing group (to borrow

the language of Sun and Abraham (2020) and Callaway and Sant’Anna (2020)) consists of

facilities whose treatment began in the same period. Using the start of the first compliance

period as the timing of treatment, I group facilities into three cohorts. The 2013 cohort

consists of 39 facilities located in Beijing, Tianjin, Shanghai, Shenzhen, Guangdong, and

Chongqing. The 2014 cohort consists of 11 facilities located in Hubei province, and the 2016

cohort includes ten facilities covered by the Fujian ETS.

Figure 5 yields two important takeaways. First, the pre-trends in SO2 emissions of the

2013 and 2014 cohorts, conditional on the control variables, are not statistically different
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Figure 5: Heterogeneity in Dynamic Effects of Pilot ETS on Treated Facilities’ SO2 Emissions

(a) ETS (2013) (b) Hubei (c) Fujian

Notes: ETS pilots are grouped by the timing of treatment, defined as the start of the first compliance period. The 2013 cohort
includes facilities in Beijing, Tianjin, Shanghai, Shenzhen, Guangdong, Chongqing. The 2014 cohort includes 11 facilities in the
Hubei ETS. The 2016 cohort consists of 10 facilities in Fujian. The control group in all three event study models above is the
untreated facilities. The dependent variable is log SO2 emissions, and the control variables include province-level energy market
and weather variables such as log electricity price, log electricity consumption, percentage of electricity generated from thermal
sources, log investment in industrial waste gas control, HDD (14◦C), CDD (26◦C), and interaction terms between dummies for
air pollutant prevention and control key zones and year-fixed effects.

from those of the untreated facilities. However, the parallel trend assumption is violated for

the facilities in Fujian. As a result, the main event study results shown above in Figure 4

are produced without the ten facilities in Fujian. Second, the treatment effects are mainly

driven by the 2013 cohort, especially two to three years after treatment. The lag in treatment

effects is more pronounced for the 11 facilities in Hubei.

5.4 Falsification Tests

To further assess the validity of my baseline results, I perform placebo tests by randomly

assigning ETS treatment to untreated facilities. The 278 untreated facilities in the non-ETS

regions are randomly split into two groups. One group is assigned the placebo ETS treatment

(placebo group), and the other acts as the control group. Since the rollout of ETS did not

occur simultaneously, the random assignment of treatment timing is carried out in two ways.

First, all facilities in the placebo group are assigned the treatment timing of the first quarter

of 2013, when the first compliance period began for all ETS pilots except for Hubei and

Fujian. Second, three treatment timings that match the launch of carbon exchanges, the

second quarter of 2013 (Shenzhen), the fourth quarter of 2013 (Beijing, Tianjin, Shanghai,

Guangdong), and the second quarter of 2014 (Hubei and Chongqing) were randomly assigned

to facilities in the placebo group.

Table 4 presents the results of the placebo tests. In columns (1) and (2), the timing of

treatment of the placebo group is the first quarter of 2013. In columns (3) and (4), three
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treatment timings are randomly assigned to facilities in the placebo group. In addition,

models in columns (2) and (4) include an interaction term between the dummy variable for

APPC key zones and year-quarter fixed effects to control for effects of the ULE standards.

The estimated placebo effects are not statistically different from zero, which lends credence

to the main results of this study.

Table 4: Placebo Treatment Effects of ETS Pilots on SO2 emissions

(1) (2) (3) (4)

Placebo × Post 0.0076 0.0069 0.0073 0.0070
(0.010) (0.010) (0.011) (0.011)

Ln(capacity) 0.0011 0.00052 0.0011 0.00050
(0.0019) (0.0018) (0.0019) (0.0018)

Ln(electricity price) 0.27*** 0.27*** 0.27*** 0.27***
(0.063) (0.070) (0.063) (0.070)

Ln(power consumption) 0.089** 0.10** 0.089** 0.10**
(0.044) (0.040) (0.044) (0.040)

% Power generation, thermal -0.012* -0.024*** -0.012* -0.024***
(0.0073) (0.0067) (0.0073) (0.0067)

Ln(HDD14) 0.0097*** 0.011*** 0.0097*** 0.011***
(0.0026) (0.0029) (0.0026) (0.0029)

Ln(CDD26) -0.0046** -0.0030 -0.0046** -0.0030
(0.0023) (0.0023) (0.0023) (0.0023)

Constant -0.32 -0.34 -0.32 -0.34
(0.31) (0.28) (0.31) (0.28)

N 11119 11119 11119 11119
R-Square 0.3146 0.3435 0.3147 0.3435
Plant FE ✓ ✓ ✓ ✓
Quarter FE ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓
APES Zones × Year-Quarter ✓ ✓

Notes: The 278 untreated facilities in the non-ETS regions are randomly split
into two groups. One group is assigned the placebo ETS treatment (placebo
group), and the other acts as the control group. Since the rollout of ETS did
not occur at the same time, the random assignment of treatment timing is
carried out in two ways. First, all facilities in the placebo group are assigned
the treatment timing of the 2013q1, when the first compliance period began
for all ETS pilots except for Hubei and Fujian. Second, three treatment tim-
ings that match the launch of carbon exchanges, 2013q2 (Shenzhen), 2013q4
(Beijing, Tianjin, Shanghai, Guangdong), and 2014q2 (Hubei and Chongqing)
were randomly assigned facilities in the placebo group.
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5.5 An Economic Explanation for the Relationship between ETS

and Power Plants’ SO2 Emissions

To explain the main empirical findings of the TWFE and event study models, I present

a stylized model adapted from Goulder et al. (2022). This model explicitly examines the

interactions between ETS pilots that regulate CO2 emission intensities and overlapping en-

vironmental regulations that regulate SO2 emission intensities. I argue that the implicit

output subsidy from the ETS pilots could explain the relative increase in SO2 emissions by

the ETS-treated facilities compared with the untreated facilities. In addition, as ETS facili-

ties become cleaner and more fuel-efficient due to capital-intensive investments in abatement

technologies, the positive effects of ETS pilots on output are further strengthened.

Why Do SO2 Emissions of Treated Facilities Increase Relative to the Untreated?

To see how the implicit output subsidy of ETS pilots affects thermal power generation

facilities’ output, I begin by defining the profit maximization problem of a representative

facility (shown below). Assume that this facility is a price-taker in both the electricity

market and the carbon market.

max
qi,ci,si

πi = p̄q̄i + p(qi − q̄i)− C0 − C(qi, ci, si)− τ(ci − µ̄cqi) (3)

s.t.
si
qi

≦ µ̄s (4)

p̄ and q̄i are government-guaranteed electricity price and output, and p is market price

for electricity. As Goulder et al. (2022) describe, China has a three-tiered electricity pricing

scheme. In the first two tiers, power generators face fixed electricity prices (“guaranteed

price”) for output up to certain thresholds (“guaranteed hours”), which government regu-

lators set. When power generators’ output exceeds the thresholds, they can sell the excess

electricity at market price (the third tier). Given that the guaranteed prices are typically

higher than market prices, the guaranteed hours are typically exhausted, so I assume that

qi > q̄i in what follows.

C0 is a fixed cost that captures any lump sum capital investments. The variable cost is a

function of output qi, carbon emissions ci, and SO2 emissions si. The cost function is assumed

to be increasing in output and decreasing in emissions over the relevant range, so Cq > 0,
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Cc < 0, and Cs < 0, where subscripts denote the partial derivatives of the cost function.

Furthermore, assume the cost function is convex in output, Cqq > 0 and that the marginal

cost of output increases as more CO2 and SO2 emissions are abated, Cqc < 0, Cqs < 0.

For simplicity, assume that the marginal cost of abating CO2 emissions and SO2 emissions

are independent of each other, Ccs = Csc = 0. Note that the average abatement cost is

decreasing in output due to upfront fixed-cost investments required to upgrade, retrofit, or

replace existing boiler units and pollution control technologies, or in the form of overhead

cost of improving management and production processes to run the existing facilities more

efficiently.

τ is the price of carbon, determined by supply and demand of carbon emission credits

in the ETS pilots. µ̄c is the mandated carbon emission intensity, and each thermal power

generation facility’s actual carbon emission intensity is given by ci/qi. Facilities can sell

carbon credits for profit if ci − µ̄cqi < 0, but will need to purchase credits if the opposite is

true. µ̄s is the command-and-control style SO2 emission intensity standard that applies to

all facilities.

Under the assumption that Cs < 0, firms will always choose to emit as much SO2 as

regulation permits, so
s∗i
q∗i

= µ̄s for optimal SO2 emission level and output. I can therefore

replace si in equation (3) with µ̄sqi. To determine the optimal output for specific values of µ̄c

and µ̄s, I then take the total derivative of the profit function and set dπ
dq

= 0 (see Appendix

D: Mechanism for details), this yields:

p+ τ(µ̄c −
dc

dq
) = Cq + Ceµ̄s + Cc

dc

dq
(5)

The facility subscript i is suppressed in equation (5) for brevity. The left-hand side is

the marginal revenue from producing an additional unit of output. It consists of two parts,

the market price of electricity and an extra term τ(µ̄c − dc
dq
) that represents a net implicit

output subsidy when µ̄c − dc
dq

> 0 and a net carbon tax otherwise. The right-hand side is

the marginal cost of producing an additional unit of output. It is made up of three terms.

The second and third terms capture the marginal cost of reducing SO2 and CO2 emissions.

Under the assumptions that Cqq > 0 and Cqc < 0, Cqs < 0, the marginal cost curve (the

right-hand side of equation (5)) is upward sloping in output. The slope of the marginal benefit

curve (the left-hand side of equation (5)) depends on the relationship between marginal

emission intensity dc
dq

and output. For simplicity, assume that dc
dq

is constant so that marginal
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emission intensity equals average emission intensity. This assumption is plausibly realistic

because emission rates are primarily determined by the type of technology that facilities use,

for example, the combustion technology of boilers.

Figure 6: Predicted Effects of ETS on Treated Facilities’ Output

(a) Non-binding (b) Binding

As Figure 6 shows, the effects of ETS pilots on facilities’ output depend on their carbon

emission intensities. Panel (a) depicts one of two possible corner solutions when carbon

emission intensity is not binding22. In this case, the representative facility’s initial carbon

emission intensity is already lower than the mandated intensity, dc
dq

< µ̄c. Therefore, the TPS

amounts to an implicit output subsidy and raises the marginal revenue curve, which leads

to an increase in output from q to q′.

It is worth noting that SO2 emission intensity standards are held constant in the analysis

above. As Figure A9 in the Appendix shows, ceteris paribus, more stringent SO2 emission

standards reduce facilities’ output. This prediction is supported by Table A6 in the Ap-

pendix, which shows that the ULE standard has led to a reduction in SO2 emissions from

facilities located in the APPC Key Zones vis-á-vis facilities located elsewhere. Therefore,

the correct interpretation of the result above in light of co-existing SO2 emission standards is

that ETS pilots increase the output of the treated facilities relative to the untreated facilities

subject to the same SO2 emission standards, if their carbon emission intensities are below

the mandated level.

22The other corner solution is when the marginal abatement cost the first unit of CO2 emissions of a
facility is higher than the equilibrium carbon price, which means it is cheaper for the facility to not abate
any CO2 emissions but rely on purchasing carbon emission credits to meet the mandated emission intensity.
In this case, TPS amounts to a carbon tax and reduces output.
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Panel (b) of Figure 6 shows one of two possible interior solutions when the mandated

carbon emission intensity is binding. In this case, the TPS induces a covered facility to

reduce its carbon emission intensity below the mandated level. This has two effects. First, it

provides an implicit output subsidy and shifts the marginal benefit curve up. Second, it shifts

the marginal cost curve up as a result of the increased marginal cost of abating CO2 emissions

because Cqc < 0. When the increase in marginal benefit is greater than that of the marginal

cost, the facility’s output increases from q to q′′, although the increase is not as large as in

the previous case. However, a second possible interior solution exists. A facility’s marginal

cost of abating CO2 emissions could be high enough that it does not reduce its emission

intensity below the mandated intensity. In this scenario, the TPS reduces marginal benefit

by placing a carbon tax and/or increases marginal cost due to carbon emission abatement.

As a result, output decreases.

To sum up, I show that the ETS pilots could increase the output of two types of

treated facilities relative to the untreated. And for a given SO2 emission intensity standard,

increases in output lead to increases in SO2 emissions. On average, this increase in SO2

emissions may be observed in data if the selected facilities are more likely to have relatively

low carbon emission intensities or marginal abatement cost of carbon emissions. To provide

some suggestive evidence, I show in Table A1 in the Appendix that the treated facilities in

my sample have about twice the capacity, more boiler units and more fuel-efficient units (i.e.,

units with supercritical and ultra-supercritical combustion technologies), and lower shares of

outdated and retired capacity compared with other facilities inside or outside the ETS pilot

regions.

Why Do the SO2 Emissions of Treated Facilities Increase over Time vis-á-vis the

Untreated?

As mentioned in Section 2, although thermal power generation facilities can reduce

CO2 emission intensities in the short run by switching electricity production from inefficient

boiler units to more efficient ones, abatement of CO2 emissions in the long run likely requires

capital-intensive investments. For example, thermal power generation facilities can increase

fuel efficiency by retrofitting and upgrading existing boiler units with better technologies.

They can also retire inefficient units and build new ones.

Since building new equipment takes time due to governmental approval and construc-

tion processes, it takes time for their effects to manifest. As the new equipment is gradually

commissioned, a facility’ carbon emission intensity decreases relative to the mandated level,

26



further increasing its marginal benefit via the implicit output subsidy provided by the TPS

system. Furthermore, the government provides financial incentives to thermal power gener-

ation facilities that have installed new equipment with high fuel efficiency and low emission

intensity23. The incentives include a 0.001 RMB/kwh increase in guaranteed electricity price,

an additional 200 guaranteed hours per year, and a 50% discount on pollution charges. These

financial incentives could further encourage facilities to increase output. Last but not least,

Fowlie (2010) shows that co-existing command and control policies could further strengthen

the investment incentives of ETS (a cap and trade system on NOx called RECLAIM in

her context) and encourage power plant managers to take more capital-intensive abatement

options.

6 Conclusion

This study provides a timely ex post evaluation of the ETS pilots in China, not long after

the launch of the national ETS in July 2021. By exploiting differences in the temporal

and spatial coverage of the ETS pilots vis-á-vis the ULE standards and other power sector

regulations, I causally estimate the sample average treatment effect on the treated (ATT) of

the ETS pilots on SO2 emissions of large and relatively isolated thermal power generation

facilities, using staggered and dynamic difference-in-differences (DID) frameworks.

Contrary to the belief that the ETS pilots can reduce the emissions of co-pollutants (Li

et al., 2018; Zhang and Zhang, 2020; Cai et al., 2016), I document three important empirical

findings. First, although SO2 emissions declined significantly for all facilities during the

study period (2010-2019), SO2 emissions of treated facilities increased by about 5% relative

to those of untreated facilities as a result of their participation in the ETS pilots. Second, the

estimated ATT of the ETS pilots on SO2 emissions increases to about 6-7% upon controlling

for the influence of ULE standards and other power sector regulations on facilities’ SO2

emission rates. Third, the relative increase in SO2 emissions of treated facilities grows over

time.

To provide an economic explanation of the empirical findings, I present a stylized model

based on Goulder et al. (2022). The model shows that the ETS pilots based on TPS could

23Ministry of Ecology and Environment. 2015. “Work Plan for the Comprehensive Implementation
of Ultra-Low Emissions and Energy Efficiency Upgrades of Coal-Fired Power Generation Facilities” (in
Chinese). Accessed Sept 15, 2021. https://www.mee.gov.cn/gkml/hbb/bwj/201512/t20151215_319170.
htm
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encourage facilities with relatively low initial carbon emission intensities or marginal abate-

ment cost to increase output and thus emit more SO2 relative to a counterfactual world

in which the ETS pilots had not been established. Furthermore, based on the findings of

Fowlie (2010), I postulate that capital-intensive investments in carbon emission abatement

technologies explain the continued relative increase in SO2 emissions over time and that

overlapping command-and-control regulations could have strengthened the incentives for

the treated facilities to invest in abatement technologies.

The observed relative increase in SO2 emissions from the ETS-treated facilities points to

a low-hanging fruit for policymakers in China. Introducing policy measures to offset the TPS

system’s incentives to increase output and thus SO2 emissions could bring co-benefits in terms

of public health and improved environmental quality (Kou et al., 2021; Almond and Zhang,

2021; Li et al., 2018; Dong et al., 2015). SO2 emissions are widely known to harm human

respiratory systems, particularly for people with pre-existing respiratory conditions, such as

asthma (Sims, Leggett, and Myla, 2020; Smargiassi et al., 2009). In addition, SO2 can form

acid rain that damages sensitive ecosystems (Powe and Willis 2004; U.S. EPA24). Therefore,

reducing SO2 emissions from the ETS-covered facilities with relatively low carbon emission

intensities or marginal abatement costs could reap health and environmental benefits.

Furthermore, the focus of this study on the thermal power generation sector makes the

empirical findings informative for the national ETS that covers the same sector. Thermal

power generation facilities in the coastal regions in Eastern China are generally more techno-

logically advanced (Pang and Duan, 2016), they are therefore more likely to have relatively

low carbon emission intensities or marginal abatement costs compared to facilities in the

central and western parts of China. Therefore, a national ETS based on TPS could increase

electricity output and emissions of co-pollutants such as SO2 in the more densely populated

eastern provinces vis-á-vis other regions. In this context, the empirical findings of this study

call for measures to alleviate this potential issue. One possible policy response is designing

separate emission intensity standards for different regions or power generation facilities using

different combustion and cooling technologies. Another potential policy response could be to

restrict the trading of carbon emission credits between facilities located in different regions.

Lastly, due to the lack of high-quality publicly available facility-level data on emissions

and operation, this study relies on SO2 emission estimates derived from a NASA Aura/OMI

satellite SO2 data product. Although OMI satellite data products provide good alternatives

to ground-based pollutant emission measures, they also have one major limitation: accurate

24https://www.epa.gov/so2-pollution/sulfur-dioxide-basics
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and credible estimates of SO2 emissions can only be obtained for large and relatively isolated

stationary sources such as thermal power generation facilities, which means that the empirical

results of this study may not extend to smaller facilities. Future empirical work can extend

the analyses in this study when new and credible facility-level air pollutant emissions data

becomes available. Moreover, future work that examines the ETS pilots’ effects on firms’

performance, abatement actions, and adoption of cleaner technologies is also needed to shed

light on the mechanisms through which carbon markets impact firm behaviours.
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Appendix A: Additional Tables and Figures

Figure A1: Geographic Overlap between ETS Pilots and APPC Key Zones

Notes: 47 prefecture cities were designated as the Atmospheric Pollutant Prevention and Control (APPC) Key Zones in the
“12th Five-Year Plan for Atmospheric Pollution Prevention and Control in Key Zones”. As discussed in Section 2.2, thermal
power generation facilities in APPC Key Zones are subject to more stringent air pollutants emissions standards.
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Figure A2: Geographic Overlap between ETS Pilots and Eastern, Central, and Western
Provinces in China

Notes: Eleven eastern Provinces include Beijing, Tianjin, Hebei, Liaoning, Shandong, Shanghai, Jiangsu, Zhejiang, Fujian,
Guangdong, and Hainan. Eight central Provinces include Heilongjiang, Jilin, Shanxi, Anhui, Hubei, Hunan, Henan, and
Jiangxi. As discussed in Section 2.2, the “Work Plan” sets different regional deadlines for thermal power generation facilities to
meet the energy efficiency standards. The deadline for facilities located in 11 eastern and eight central provinces to complete
their upgrades and meet the standards are 2017 and 2018, respectively, and the deadline for facilities elsewhere in China is
2020.
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Figure A3: Location of ETS Pilots in Relation to Regional Power Grids

Notes: In 2002, the national power grid in China was broken into 6 regional grids (as shown above) in an effort to introduce
competition into electricity transmission and distribution. Of the 8 ETS pilots, Beijing and Tianjin belong to the Northern
China Grid, Shanghai and Fujian to the Eastern China Grid, Shenzhen and the rest of Guangdong to the Southern China Grid,
and Chongqing and Hubei to the Western China Grid.
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Figure A4: Carbon Emission Credit Price by ETS Pilots, 2014-2017

(a) Beijing (b) Tianjin (c) Shanghai

(d) Guangdong (e) Shenzhen (f) Chongqing

(g) Hubei

Notes: Volume-weighted monthly average nominal spot carbon credit prices are shown in figures above. The first dashed
vertical line in each panel marks the first carbon emission credit submission deadlines for Beijing, Tianjin, Shanghai, Shenzhen,
and Guangdong. Actual submission deadlines varied between May and July. The second dashed vertical line in each panel
marks the first carbon emission credit submission deadlines for Hubei and Chongqing and the second carbon credit submission
deadlines for the other five ETS pilots. Source: Author’s calculation based on Zhang et al. (2020)

40



Figure A5: Carbon Emission Credit Trading Volumes by ETS Pilots, 2014-2017

(a) Beijing (b) Tianjin (c) Shanghai

(d) Guangdong (e) Shenzhen (f) Chongqing

(g) Hubei

Notes: Allowance traded are in thousand tons of CO2. The first dashed vertical line in each panel marks the first carbon
emission credit submission deadlines for Beijing, Tianjin, Shanghai, Shenzhen, and Guangdong. Actual submission deadlines
varied between May and July. The second dashed vertical line in each panel marks the first carbon emission credit submission
deadlines for Hubei and Chongqing and the second carbon credit submission deadlines for the other five ETS pilots. Source:
Author’s calculation based on Zhang et al. (2020)
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Figure A6: Reduction in SO2 Emissions from Coal-Fired Power Generation Facilities

Notes: Quarterly group average SO2 emissions are plotted above. The ETS line is plotted using quarterly averages of SO2
emissions from 50 large and isolated coal-fired power generation facilities covered by the ETS pilots, excluding ten facilities in
Fujian and seven facilities in Inner Mongolia. The Non-ETS line is plotted using quarterly averages of 278 facilities located
outside the ETS pilots. Source: Author’s calculation based on NASA Aura/OMI OMSO2e.
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Table A1: Summary Statistics of Coal-Fired Power Plants

ETS Non-ETS

Panel A. All Facilities obs mean sd obs mean sd

Capacity in 2012 145 956.228 1095.227 693 764.209 796.413
Number of units 145 3.434 1.848 693 3.149 1.817
Share of outdated capacity 145 0.271 0.473 693 0.193 0.409
Share of capacity built between 2009-2019 145 0.454 0.602 693 0.535 0.706
Share of capacity built between 2014-2019 145 0.166 0.427 693 0.197 0.561
Share of capacity retired between 2009-2019 145 0.148 0.358 693 0.042 0.181
Share of capacity retired between 2014-2019 145 0.120 0.312 693 0.033 0.161
Subcritical (dummy) 145 0.624 0.452 693 0.583 0.479
Supercritical (dummy) 145 0.159 0.330 693 0.187 0.376
Ultra-supercritical (dummy) 145 0.118 0.285 693 0.111 0.299
CFB (dummy) 145 0.016 0.120 693 0.005 0.069

Panel B. Large and Isolated Facilities

Capacity in 2012 67 1797.224 1370.928 279 1551.405 1345.239
Number of units 67 4.047 2.060 279 3.443 1.649
Share of outdated capacity 67 0.216 0.408 279 0.139 0.308
Share of capacity built between 2009-2019 67 0.450 0.609 279 0.444 0.787
Share of capacity built between 2014-2019 67 0.084 0.224 279 0.116 0.628
Share of capacity retired between 2009-2019 67 0.110 0.276 279 0.036 0.153
Share of capacity retired between 2014-2019 67 0.087 0.254 279 0.035 0.151
Subcritical (dummy) 67 0.588 0.424 279 0.617 0.437
Supercritical (dummy) 67 0.174 0.315 279 0.167 0.326
Ultra-supercritical (dummy) 67 0.164 0.307 279 0.119 0.288
CFB (dummy) 67 0.020 0.128 279 0.003 0.034

Notes: Panel A presents summary statistics of 838 coal-fired power generation facilities. Panel B is the same as Table 1 in
Section 4. It presents summary statistics of 346 large and isolated coal-fired power generation facilities. Large and isolated
coal-fired power generation facilities are defined in Section 4. Capacity shown in the first row of each panel is in megawatt
(MW). Outdated capacity is defined as subcritical boiler units with 200 MW or less capacity, based on the “Action Plan for
Energy Efficiency and Pollution Reduction Upgrade in the Coal-Fired Power Generation Sector” (2014-2020). Percentages
of outdated, new, and retired capacity, shown in the second to the seventh row of each panel, are in decimal points and are
calculated by dividing capacity of each category into facilities’ total capacity in 2012. Four dummy variables in rows 8-11 of each
panel indicate shares of facilities’ capacity with each specific combustion technology. CFB stands for circulating fluidized bed.
For a given capacity, boiler units’ carbon emission intensity decreases from subcritical, to super-critical and ultra-supercritical
technologies. Although CFB technology reduces emissions of co-pollutants such as SO2, the CFB technologies adopted in China
tend to have higher CO2 emission intensities than the subcritical boiler units (see Table 1 in Goulder et al. 2022). Source:
Author’s calculation based on Global Energy Monitor - Global Coal Plant Tracker.
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Table A2: Robustness of Relationship between ETS Pilots and Treated Facilities’ SO2 Emis-
sions

(1) (2) (3) (4) (5) (6)

Treat × Post 0.054*** 0.054*** 0.051*** 0.055*** 0.049*** 0.052**
(0.018) (0.018) (0.017) (0.015) (0.018) (0.022)

Ln(capacity) -0.00014 0.000042 0.00039 -0.00011 0.0055** -0.00025
(0.0021) (0.0021) (0.0018) (0.0021) (0.0022) (0.0025)

Ln(electricity price) 0.26*** 0.26*** 0.21*** 0.26*** 0.26*** 0.23***
(0.061) (0.061) (0.066) (0.060) (0.062) (0.055)

Ln(power consumption) 0.10** 0.100** 0.18*** 0.11** 0.086* 0.11**
(0.045) (0.045) (0.056) (0.044) (0.045) (0.047)

% power generation, thermal -0.012* -0.013* 0.0068 -0.014** -0.013* -0.0038
(0.0065) (0.0065) (0.0068) (0.0054) (0.0067) (0.0080)

Ln(HDD14) 0.0072*** 0.0073*** 0.0094*** 0.0070*** 0.0071*** 0.0080***
(0.0020) (0.0020) (0.0031) (0.0019) (0.0021) (0.0023)

Ln(CDD26) -0.0025 -0.0024 -0.0017 -0.0021 -0.0030 -0.0011
(0.0020) (0.0020) (0.0028) (0.0020) (0.0021) (0.0021)

Constant -0.40 -0.39 -1.22*** -0.42 -0.32 -0.55
(0.32) (0.32) (0.41) (0.32) (0.32) (0.33)

N 11759 11759 11759 12079 11359 8199
R-Square 0.3011 0.3016 0.3830 0.2973 0.3105 0.2715
Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Quarter FE ✓ ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓ ✓ ✓
Grid × Year-Quarter ✓

Notes:

Cluster-robust standard errors are reported in parentheses. The clustering is by prefecture cities, because
environmental regulations are typically enforced at the city level (Bertrand, Duflo, and Mullainathan,
2004).

*** Significance at the 1% level; ** Significance at the 5% level; * Significance at the 10% level.

Column (1) reports the baseline results from the two-way fixed effect (TWFE) difference-in-differences
(DID) model. Column (2) tests the robustness of the baseline results to an alternative definition of
treatment timing. Instead of using the start of the first compliance period, treatment timing is defined
as the quarter in which carbon exchanges opened in column (2). Column (3) tests the robustness of
the baseline results to spatial spillover effects – the shifting of electricity production from the treated
facilities to untreated facilities within the same regional power grid. Column (4) tests the robustness
of the baseline results to the shutting down of facilities, by dropping facilities that have fully retired
after 2013. Column (5) shows that the baseline results is virtually unchanged by dropping 10 facilities
in Fujian, which provides evidence that the potential bias from comparing the late-treated group to the
early-treated group (Goodman-Bacon, 2021) is minimal. Finally, column (6) shows that baseline results
are robust to using a smaller sample of ultra-large facilities (see Section 4 for details).

44



Figure A7: Robustness of Dynamic Effects of ETS Pilots on SO2 Emissions by Coal-Fired
Power Plants to Functional Form, Linear Model

Notes: Estimated causal effects of ETS pilots on treated facilities’ SO2 emissions based on the event study model (see Equation
(2) in Section 3) are plotted above. Unlike Figure 4, the dependent variable and control variables are in levels. Note that due
to staggered rollout of the ETS pilots, the 4th lead term is estimated using the comparison of the 11 facilities in Hubei with
the untreated facilities, and the last lag term is estimated using the 39 facilities in Beijing, Tianjin, Shanghai, Guangdong,
Shenzhen, and Chongqing.
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Figure A8: Dynamic Effects of ETS Pilots on Coal-Fired Power Plants, Quarterly Data

(a) All (b) ETS (2013)

(c) Hubei (d) Fujian

Notes: Estimated causal effects of ETS pilots on treated facilities’ SO2 emissions based on the event study model (see Equation
(2) in Section 3) are plotted above. The dependent variable is log SO2 emissions, and the control variables include province-
level energy market and weather variables such as log electricity price, log electricity consumption, percentage of electricity
generated from thermal sources, log investment in industrial waste gas control, HDD (14 ◦C), CDD (26 ◦C), and interaction
terms between dummies for air pollutant prevention and control key zones and year-fixed effects.

The 2013 cohort consists of 39 facilities in Beijing, Tianjin, Shanghai, Guangdong, Shenzhen, and Chongqing. The 2014 cohort
consists of 11 facilities in Hubei. The 2016 cohort consists of ten facilities in Fujian.

Unlike Figure 4, which pools four quarters into one period, the model above uses quarterly SO2 emissions. As Bailey and
Goodman-Bacon (2015) mention, the point estimates from this specification are less precise. Nevertheless, the results shown
above are consistent with those of the baseline event study model shown in Section 5.
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Table A3: Sensitivity of TWFE Model Results to Covariates

(1) (2) (3) (4) (5) (6)

Treat × Post 0.057*** 0.054*** 0.053*** 0.043** 0.043** 0.043**
(0.017) (0.018) (0.018) (0.018) (0.018) (0.018)

Ln(capacity) -0.00052 -0.00014 -0.00011 -0.00052
(0.0023) (0.0021) (0.0021) (0.0023)

Ln(electricity price) 0.22*** 0.26*** 0.26***
(0.060) (0.061) (0.062)

Ln(power consumption) 0.096** 0.10** 0.10**
(0.047) (0.045) (0.044)

% Power generation, thermal -0.013** -0.012* -0.012*
(0.0062) (0.0065) (0.0065)

Ln(HDD14) 0.0054*** 0.0072***
(0.0019) (0.0020)

Ln(CDD26) -0.0012 -0.0025
(0.0022) (0.0020)

Ln(wastegas control investment) -0.017***
(0.0043)

Constant -0.23 -0.40 -0.37 0.24*** 0.24*** 0.24***
(0.34) (0.32) (0.32) (0.016) (0.0097) (0.0097)

N 10919 11759 11759 11759 11759 11759
R-Square 0.3187 0.3011 0.2992 0.2823 0.2822 0.2822

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Quarter FE ✓ ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at prefecture city level.

*** Significance at the 1% level; ** Significance at the 5% level; * Significance at the 10% level.
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Table A4: Robustness of TWFE Model Results to Functional Form Assumption, Linear
Model

(1) (2) (3) (4) (5) (6)

Treat × Post 0.081*** 0.081*** 0.080*** 0.086*** 0.10*** 0.10***
(0.020) (0.028) (0.028) (0.029) (0.035) (0.035)

Capacity (MW) -0.000012 -0.000012 -0.000012 -0.000010 -0.000011 -0.000011
(0.000018) (0.000018) (0.000018) (0.000017) (0.000017) (0.000016)

Electricity price (2015 RMB/kwh) 0.46*** 0.46*** 0.46*** 0.43*** 0.40*** 0.41***
(0.091) (0.13) (0.13) (0.13) (0.11) (0.12)

Power consumption (GWh) 0.0000082 0.0000082 0.0000080 0.000026 0.000060 0.000062
(0.000033) (0.000039) (0.000039) (0.000039) (0.000041) (0.000042)

% Power generation, thermal -0.019** -0.019** -0.019** -0.019** -0.026** -0.028**
(0.0081) (0.0092) (0.0092) (0.0092) (0.011) (0.012)

HDD14 -0.0000064 -0.0000064 -0.0000024 -0.0000048 -0.000011 -0.000012
(0.0000079) (0.000010) (0.000017) (0.000010) (0.0000099) (0.0000097)

CDD26 -0.00018*** -0.00018*** -0.00013* -0.00014*** -0.000050 -0.000030
(0.000043) (0.000056) (0.000075) (0.000055) (0.000052) (0.000053)

Constant 0.065 0.065 0.062 0.051 0.078 0.094
(0.11) (0.14) (0.14) (0.14) (0.14) (0.13)

N 11759 11759 11759 11759 11759 11759
R-Square 0.2764 0.2764 0.2770 0.2861 0.3004 0.3140

Plant FE ✓ ✓ ✓ ✓ ✓ ✓
Quarter FE ✓ ✓ ✓ ✓ ✓
Year-Quarter FE ✓ ✓ ✓
APPC Key Zone × Year-Quarter FE ✓
Region × Year-Quarter FE ✓
Central Heating × Quarter FE ✓
APPC Key Zone × Region × Year-Quarter FE ✓

Notes:

Standard errors are reported in parentheses. Robust standard errors reported in column (1) and cluster-robust standard errors are
reported in columns (2)-(5). The clustering is by prefecture cities, because environmental regulations are typically enforced at the city
level (Bertrand, Duflo, and Mullainathan, 2004).

*** Significance at the 1% level; ** Significance at the 5% level; * Significance at the 10% level.

Model in column (3) controls for differences in seasonal changes in SO2 emissions due to winter heating. The central heating dummy
equals 1 if a city provides centralized heating to local residents and businesses and 0 otherwise. Model in column (4) controls for the
effects of the ultra-low emissions (ULE) standard (see Section 2 for details), by adding interaction terms between the Air Pollution
Prevention and Control (APPC) Key Zone dummy and year-quarter fixed effects. Model in column (5) controls for the effects of several
power sector regulations (see Section 2) that more aggressively promote energy efficiency improvements in thermal power plants in
eastern and central provinces in China. Model in column (6) simultaneously controls for the effects of the ULE standard and power
sector regulations that affect facilities’ energy efficiencies, by adding a triple interaction term between APPC Key Zone dummy, region
dummies, and year-quarter fixed effects. Seven facilities in two Inner Mongolia cities and ten facilities in Fujian Province were dropped
from the treated group.
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Table A5: Robustness of TWFE Model Results to Frequencies of SO2 Emissions Data

(1) (2) (3)

Treat × Post 0.042*** 0.058*** 0.038**
(0.016) (0.021) (0.016)

Ln(capacity) -0.00069 -0.00033 -0.00083
(0.0017) (0.0022) (0.0017)

Ln(electricity price) 0.24*** 0.30*** 0.33***
(0.055) (0.079) (0.071)

Ln(power consumption) 0.12*** 0.14** 0.14***
(0.043) (0.057) (0.043)

% Power generation, thermal -0.014*** -0.019*** -0.012**
(0.0050) (0.0068) (0.0054)

Ln(HDD14) 0.0065*** 0.00021 -0.032**
(0.0020) (0.0018) (0.014)

Ln(CDD26) -0.0018 -0.012*** 0.020***
(0.0019) (0.0025) (0.0054)

Constant -0.52* 0.59 -0.53*
(0.31) (0.41) (0.32)

N 13799 40727 3450
R-Square 0.2910 0.1895 0.4656

Plant FE ✓ ✓ ✓
Quarter FE ✓ ✓
Time FE ✓ ✓ ✓

Notes: All SE are clustered at prefecture city level. Column (1) runs the baseline TWFE specification on OMI SO2 data
averaged to quarters, as in the baseline TWFE results shown in Table 3. Column (2) regresses the same TWFE model using
monthly SO2 data. Column (3) uses yearly SO2 data and does not include quarter or month fixed effects.
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Figure A9: Predicted Effects of Tightening SO2 Emission Standard on Power Generation
Firms’ Output
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Table A6: Relationship between ULE Standards and Power Plants’ SO2 Emission

(1) (2) (3) (4)

APPC Key Zones × Post ULE -0.028* -0.028* -0.035** -0.030*
(0.016) (0.016) (0.016) (0.016)

Ln(capacity) -0.0016 -0.0016 -0.00077 -0.0011
(0.0018) (0.0018) (0.0016) (0.0016)

Ln(electricity price) 0.23*** 0.23*** 0.22*** 0.19***
(0.056) (0.057) (0.054) (0.059)

Ln(power consumption) 0.12*** 0.12*** 0.13*** 0.16***
(0.038) (0.038) (0.041) (0.049)

Pct. power generation, thermal -0.010* -0.010* -0.015*** 0.0064
(0.0053) (0.0053) (0.0054) (0.0057)

HDD14 0.0000043 0.000015 -0.0000019 -0.0000066
(0.0000069) (0.000011) (0.0000073) (0.000015)

CDD26 -0.00017*** -0.00012** -0.00019*** -0.00014*
(0.000040) (0.000052) (0.000041) (0.000071)

Constant -0.53* -0.54* -0.52* -0.91**
(0.27) (0.28) (0.29) (0.36)

N 13799 13799 13799 13799
R-Square 0.2897 0.2911 0.3038 0.3633
Plant FE Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes
Year-Quarter FE Yes Yes No No
Central Heating × Quarter No Yes No No
ETS × Year-Quarter No No Yes Yes
Grid × Quarter No No No Yes

Notes: Standard errors are clustered at prefecture city level. Column (2) adds controls for seasonality in average SO2 emission
due to winter heating. Column (3) adds interaction term between ETS dummy and year-quarter FE. For further robustness,
column (4) also includes regional power grid specific year-quarter FE.
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Appendix B: Details of ETS Pilots

Table A7: ETS Pilots: Covered Sectors and Inclusion Thresholds for Firms

Beijing Tianjin Shanghai Shenzhen Guangdong Chongqing Hubei Fujian

Power and heat ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Iron and steel ✓ ✓ ✓ ✓ ✓ ✓
Cement ✓ ✓ ✓ ✓ ✓ ✓
Petrochemicals ✓ ✓ ✓ ✓ ✓ ✓
Chemicals ✓ ✓ ✓ ✓
Manufacturing ✓ ✓ ✓
Non-ferrous metals ✓ ✓ ✓
Textile ✓ ✓
Paper ✓ ✓ ✓ ✓ ✓
Other industries ✓ ✓ ✓ ✓ ✓ ✓
Aviation ✓ ✓ ✓ ✓
Shipping ✓ ✓
Other transportation ✓ ✓
Buildings ✓ ✓
Utilities ✓ ✓ ✓
Services ✓ ✓

Inclusion thresholds 5,000 20,000 20,000 (10,000) 3000 20,000 20,000 10,000 10,000
10,000 (5,000) 10,000 10,000

Covered emissions 40% 55% 57% 40% 60% 50% 45% 60%

Notes: For inclusion thresholds, units are tons of CO2 (tCO2) per year for direct emissions and tons of carbon equivalent (tce) per year for indirect emissions;

top numbers are for direct emissions, and bottom numbers indirect emissions. Only top numbers are shown for ETS pilots that adopt the same inclusion

threshold for all industries and for direct and indirect emissions. Shanghai ETS sets different inclusion thresholds for different industries: numbers outside

parenthesis are for power generation and industrial sectors, and numbers inside parenthesis are for aviation, ports, and buildings; inclusion thresholds for

shipping is 100,000 tCO2/yr for direct emissions and 50,000 tce/yr for indirect emissions. Source: Duan (2015), ICAP (2020).
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Appendix C: Details on Data Cleaning and Processing

Data Processing

Coal-fired power plants tend to locate near cities. Due to high population and economic
density in Eastern and Southern coastline areas in China, power plants may also locate near
each other and even in clusters. This spatial feature poses a unique challenge in application
of using remote-sensed SO2 emission amount of power plants. OMI SO2 data product, due
to their high temporal and spatial resolutions, have been demonstrated to offer accurate
estimates of SO2 emissions of large stationary emission sources like coal-fired power plants
when processed properly (Karplus, Zhang, and Almond, 2018; Fioletov et al., 2011, 2015;
Mclinden et al., 2016; Liu et al., 2015; Lu et al., 2013; Li et al., 2010). So, extra care is given
to the processing of power plants and OMSO2e data by following established procedures.

Clustering and Selection of Power Plants

Two techniques, the clustering and the selection of isolated large power plants, ensure that
SO2 concentrations in pixels near a large stationary source can be mainly attributed to it.
For power plants that collocate in close proximity to each other, a clustering procedure is
performed. As is demonstrated in Lu et al. (2013) in the context of India, SO2 concentrations
of 23 clustered power plants regions derived from OMI SO2 products closely match the
readings of ground-based monitoring stations within those regions.

Clustering is performed using QGIS software with strict distance parameter (the “eps”)
of 13 kilometer (km) and a minimum number of members (the “minPts”) of two. This low
distance bound ensures that power plant clusters do not span a large geographic area and
thus are more likely to cover other sources of SO2 emissions. 13 km is chosen because it is
the minimum dimension of an OMI pixel, so clustered plants are likely to reside in the same
pixel or in a neighboring pixel. The center of a cluster is computed as the capacity weighted
centroid of member power plants. This procedure groups 349 power plants into 136 clusters,
with an average cluster size of 3 plants and a median size of 2.

As the next step, only relatively isolated large power plants and clusters are selected
into the analytical sample. The following selection criterion are adopted. Following Karplus,
Zhang, and Almond (2018), a power plant or cluster is considered to be isolated if its installed
capacity in 2012 accounts for at least 50% of the total capacity of all power plants/ clusters
(including itself) that locate within 35 km radius. The 35 km distance cutoff is adopted
in Karplus, Zhang, and Almond (2018) and can be justified on the basis of Fioletov et al.
(2011). On average, the 35 km circle covers 6 OMI pixels, with a minimum of 4 pixels and
a maximum of 9.

Additionally, power plants and clusters whose total capacity is equal to or greater than
1,700 megawatts (MW) are also selected into the analytical sample. 1,700 MW is the 75th
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percentile of the size distribution of all power plants in China in the GCPT database. In
the top 25th percentile of the size distribution, the average capacity is 2915 MW, with a
maximum capacity of 7500 MW. Power plants and clusters in this size class do not tend
to locate near one another to avoid creating huge emission hot spots. Nevertheless, manual
inspection was performed to ensure that they are not located near another large and isolated
emission source defined above.

By applying the clustering and selection process described above, I obtain a sample
of 349 large and isolated power plants and clusters, consisting of 251 power plants and
98 clusters. Power plants and clusters that pass this selection criterion (the “dominant
facilities”) can be considered as the most dominant source of emission within their own
“circle of neighbors”. The average capacity of power plants/ clusters in this selected sample
is 1,165 MW, compared to the mean capacity of only 350 MW of the remaining power plants/
clusters in the full sample.

As a robustness check, the above-mentioned selection criteria were tightened to 75% of
total capacity or 2,600 MW (90th percentile). Main results are not affected by this change
(see Table A2).

Deriving coal power plants’ SO2 emissions

The processing of NASA’s OMISOe data product closely follow the methodology established
by Karplus, Zhang, and Almond (2018), who performs pixel averaging with limited over-
sampling. First, daily values of each pixel were average to month by using NASA’s Giovanni
application. This is done to over come the issue of having null pixels around a power plant
and also to increase measurement precision. A pixel could contain null value if pixel quality
is poor due to high cloud cover, high solar zenith angle, low air mass factor, etc. (see the
linked READ-ME document25 for more details). As Table A9 shows, the missing rate drops
to 0.04 after averaging pixel values by month. As an additional step, pixel values were further
averaged to the quarterly level to further increase measurement precision.

Second, a 35 kilometer circle is drawn around each isolated large power plant, and values
of all pixels that fall within the 35 km radius are averaged to produce an estimate for the SO2
emission of the power plant. By assigning all SO2 concentrations near the dominant facilities
as their emissions, an implicit assumption is made that the variations in atmospheric SO2
concentrations near the dominant facilities are driven by their emissions. In order words, it
is assumed that the temporal variations in SO2 emissions by the dominant facilities drive
changes in SO2 signals in OMI pixels.

As noted in Karplus, Zhang, and Almond (2018), the data retrieval algorithm used by
NASA scientists (Li et al., 2020) produces some negative values in SO2 column amounts.
These values are the byproducts of the principal component analysis based algorithm and

25https://cmr.earthdata.nasa.gov/search/concepts/C1266136112-GES_DISC.html

55

https://cmr.earthdata.nasa.gov/search/concepts/C1266136112-GES_DISC.html


signify very small SO2 concentrations. Following the approach taken in Karplus, Zhang, and
Almond (2018), I set these values to zero. Figure A10 shows the histogram of power plants’
SO2 emissions before and after this change.

Table A9: Summary of OMI SO2 Data Quality

Panel A. Monthly

obs mean std min max
Number of pixels 41,880 6.006 0.996 4 9
Number of valid pixel 41,880 5.755 1.385 0 9
Number of null pixels 41,880 0.247 0.940 0 9
Missing ratio 41,880 0.043 0.162 0 1

Panel B. Quarterly

obs mean std min max
Number of pixels 13,800 18.009 2.983 12 27
Number of valid pixel 13,800 17.266 3.616 0 27
Number of null pixels 13,800 0.743 1.940 0 19
Missing ratio 13,800 0.043 0.112 0 1

Figure A10: Distribution of SO2 Column Amounts from OMSO2e

(a) Mean SO2 (b) Negative =0
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Appendix D: Details on DID Research Design

The econometric literature on difference-in-differences (DID) research design has seen rapid
new developments in recent years (Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020;
Sun and Abraham, 2020; Athey and Imbens, 2021; de Chaisemartin and D’Haultfœuille,
2020; Borysyak and Jaravel, 2017; Cengiz et al., 2019). A key insight from these recent
advancements in the DID literature is that the standard two-way fixed effect (TWFE) es-
timator, as shown in equation (1) of Section 3, can be biased, when there is heterogeneity
in treatment effect across time. This bias arrives from comparing the late-treatment group
with the early-treatment group.

To evaluate whether such bias is present in the context of this study, I perform the
decomposition analysis recommended by Goodman-Bacon (2021). Figure A11 shows the
results from this exercise. The red horizontal line marks the sample average treatment effect
on the treated (ATT) estimated by the TWFE model (see Equation (1) in Section 4 of the
paper). As is shown in Figure A11, although the estimated treatment effect from the pair-
wise comparisons of the early and the late groups are close to zero, the weights assigned to
these comparisons are also near zero. Therefore, even if the bias, described by Goodman-
Bacon (2021), exists in the context of this study, it will have negligible effects on the ATT
estimated from the TWFE models.

Figure A11: Bacon Decomposition of Baseline TWFE Model

Notes: The red horizontal line shows the sample average treatment effect on the treated (ATT) estimated by the TWFE model
shown in Section 4 of the paper.
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