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Abstract 

 

A next generation of innovation in transformative grid modernization and renewables integration 

technologies is needed to further accelerate the decarbonization of electricity systems. Few studies 

have investigated the policy determinants of innovation in this sector to glean insights on how 

government may support the development and deployment of these technologies. We argue that 

policies that were successful at supporting the first wave of renewables innovation may not be 

sufficient to produce similar results in the next wave of green innovation since those face higher 

coordination bottlenecks. We investigate the effects of interoperability standards - an instrument 

that may facilitate coordination - on patenting using smart grid as an example of a technology that 

has high interoperability requirements. We find that standards decrease patenting at the extensive 

and intensive margins, but these results vary across types of firms. We find that this negative effect 

is driven by large firms, whereas standards increase entry by firms without prior smart grid 

innovation experience. We interpret this result as an information effect: standards provide useful 

information to new entrants and may help diversity the range of players innovating in this space.  
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1.Introduction  

Many challenges remain to deploy low-carbon energy at a scale necessary to meet net-zero 

emission targets by 2050 (Popp et al., 2022). The past two decades have seen a dramatic decline 

in the cost of solar and wind power generation. In many locations, these technologies are now cost-

competitive with fossil fuel generation (IRENA, 2022). Despite these advances, renewable energy 

technologies have yet to be deployed vastly. Important bottlenecks stand in the way of large-scale 

adoption because the electrical grid was not designed to accommodate a growing share of 

intermittent distributed generation. A new wave of green energy innovation that includes 

complementary technologies to enable the integration of renewables into the grid is needed for 

continued progress towards decarbonization (Popp et al., 2022).  

The International Energy Agency (IEA) estimates that half of the technologies needed to 

achieve net-zero goals by 2050 in highly polluting sectors such as heavy industry, transportation 

and electricity generation are still in early stages of development (IEA, 2021). What is needed is 

not just more innovation, but advances in new sectors of green energy technology (Popp et al., 

2022). One of these areas is smart grid technology. These have the potential to radically transform 

the model of the grid into a network that is decentralized, digitalized, leverages big data analytics 

and artificial intelligence to automate grid management decision (Colak et al., 2016; Lopes et al., 

2020). Such features would be pivotal in enabling a suite of other flexibility tools - such as 

microgrids, vehicle to grid applications, and demand response – to enhance grid reliability and 

resilience (Martinot, 2016). 

Market failures, such as environmental externalities and knowledge spillovers, affect all 

types of green innovation (Popp, 2019). Smart grid technology development faces additional 

bottlenecks in the form of coordination dilemmas. Smart grid devices are networked technologies 
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and must therefore be interoperable (Brown et al., 2018). Policies that have been shown to promote 

patenting in solar and wind, such as R&D subsidies, consumer subsidies, carbon taxes/energy 

prices and emissions trading schemes, may not be sufficient to overcome the coordination 

challenges endemic to the next wave of innovation in enabling technologies.  

We study the effects of technology standards - as a possible coordination device for 

technology selection - on patenting. Technology standards have been under-studied in the literature 

on green innovation, despite being one of few instruments promoted by governments to 

specifically support complementary grid technologies. In the aggregate, we find that 

interoperability standards decrease both the likelihood that a firm develops a smart grid patent in 

a given year (the extensive margin) and how much it patents in that same year (the intensive 

margin). This suggests that standards endorse already existing technology and leaves open the 

question of whether standards affect the quality of innovation through focusing technology 

selection. In addition, firms that innovate in this space are diverse in terms of age, size and 

technological backgrounds. We further investigate heterogeneous effects and find that standards 

facilitate the entry of new inventors. We interpret this result as an information effect: standards 

provide know-how about accepted practices and technical specifications that would otherwise only 

be available to industry insiders. 

2. Motivation and context 

2.1 Transforming electricity systems: building a smarter grid to integrate renewables 

Energy systems are undergoing profound socio-technological transformations, which may 

eventually displace the prevailing top-down model of electricity generation, transmission, and 

distribution (Stephens et al., 2013). Radical changes have unfolded in electricity systems over the 

past two decades, calling for more decentralized and digitalized grid networks.  Technological 
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advances and green energy policies enabled the deployment of distributed renewable electricity 

generation. Electricity is now produced in a more decentralized way by facilities of various scales 

operating in both wholesale and retail markets. This has in turn diminished utilities’ control over 

the supply of electricity because intermittent sources are not as readily dispatchable as 

conventional electricity (Martinot, 2016). Matching the supply and demand for electricity has 

become a more involved task, requiring greater flexibility in the management of grid operations 

(Martinot, 2016; NREL, 2015). During the same period, the consequences of climate change have 

become increasingly visible. More frequent and acute weather spells further aggravate these grid 

stability challenges (Martinot, 2016; Palensky and Kupzog, 2013; Stephens et al., 2013). As these 

challenges become more severe, the need for greater flexibility in the management of grid 

operations will become more pressing. In fact, the IEA estimates that hour-to-hour grid flexibility 

needs will quadruple by 2050 (IEA, 2021).   

Smart grid technologies will be instrumental in increasing grid resilience and maintaining 

reliable service in the face of these challenges (Brown et al., 2018). A smart grid would be more 

effective at coordinating the activities of a multitude of independent actors that operate on the grid, 

forecasting the supply and demand for electricity, monitoring grid conditions, detecting faults and 

automating some grid management decisions (Brown et al., 2018; Palensky and Kupzog, 2013). 

Building a smarter grid implies developing and deploying both hardware and software to collect 

and utilize highly granular power data in applications that help the grid operate more efficiently 

(Colak et al., 2016; IEA, 2022; Lopes et al., 2019). Smart grids encompass a range of technologies 

that include - but are not limited to - smart meters, remote and automated sensing, smart switching, 

phasor measurement units, hierarchical or distributed control architectures and an array of big data 

analytics and artificial intelligence applications (Brown et al., 2018; Palenski and Kupzog, 2013; 
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Lee et al., 2017; Syed et al., 2020). Moving forward, advances in technologies such as the internet 

of things, cloud computing, 5G networks, artificial intelligence and data analytics are expected to 

lead to further disruptive innovation in this sector (IEA, 2021). Furthermore, a smart grid is vital 

to enable a suite of other grid flexibility tools such as grid-integrated smart vehicle charging, 

responsive load, distributed energy storage, and microgrid islanding (Martinot, 2016).  

To achieve the promise of a smarter, more flexible and reliable electrical grid, large scale 

deployment of smart grid devices will be required. This will necessitate investments by various 

actors at different locations on the grid, especially as power generation and distribution becomes 

more decentralized. If smart grids devices are installed across the grid at the requisite scale, it may 

unlock important networks externalities. As more users adopt these technologies, more data will 

be exchanged, increasing the usefulness of smart grid devices (Katz and Shapiro, 1985). This may 

in turn enable the further development of inventions that leverage these data (examples of smart 

grid technologies at different levels of maturity, including possible future applications, are 

included in Appendix A1). Achieving this will require coordination to overcome bottlenecks in 

both technology development and deployment.  

2.2. Barriers to smart grid technology development: the challenges of interoperability and 

of interdisciplinarity  

Smart grid devices are networked technologies. They are deployed within a grid system 

that interconnects devices operated by different actors. As is common with networked 

technologies, particularly in the information technology sector, these devices must be interoperable 

(Baron and Spulber, 2018).  This raises additional coordination dilemmas for technology 

development, especially during the early stages. Inventors face uncertainty about which technical 

specifications or conventions the market will select. In the area of smart grids, such conventions 
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relate to wireless communication protocols, data architecture, and data encryption protocols, for 

example. For inventors, this uncertainty raises risks that their products may not be compatible with 

other devices on the market, which could impede their commercial success. For users, this 

uncertainty may raise the risk of stranded assets, this is, the risk of purchasing smart grid devices 

that become obsolete as technology evolves (Stephens et al., 2013; Schwister and Fiedler, 2015). 

This illustrates how uncertainty on the demand side not only affects technology development, but 

also technology deployment. In addition, power utilities, as potential key users of these smart grid 

technologies, are notoriously risk-averse (Brown et al., 2018) and under current electricity rate-

making regulations, have little incentives to invest in smart grid devices because they are limited 

in their ability to recover costs while facing declining revenues (Lowry et al., 2017, Mandel, 2015, 

Marques et al., 2013; Schwister and Fiedler, 2015; Brown et al., 2018; De Castro and Dutra, 2013). 

All these factors contribute to suppressing demand for smart grid products, which may in turn quell 

R&D investment levels in this area.  

Smart grid technologies are also cross-sectoral and embed specialized knowledge from 

multiple technological domains. For example, developing technologies for grid network 

automation requires expertise in both industrial engineering and information engineering (Ghiani 

et al., 2018). Emerging computer engineering technologies such as the internet of things, cloud 

computing, 5G networks, artificial intelligence and big data analytics have the potential to be 

disruptive in the energy sector (IEA, 2021). Smart grid technologies combine knowledge from 

these frontier areas with expertise in electrical and electronic engineering. Having experience in 

several complementary technology domains and the ability to broker knowledge across different 

fields may help inventors be successful at innovating in this space.  Because combining knowledge 

from diverse fields is both important and challenging, in this paper we provide insights about what 
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experience is needed to innovate in smart grids, as well as what kind of external knowledge is 

helpful to inventors.   

2.3 Interoperability standards as a tool for overcoming coordination dilemmas?  

The coordination dilemmas discussed previously suggest policy should play an important 

role for supporting technology development in smart grids. Many of the policy tools that make up 

the renewable energy policy mix, such as taxes, R&D subsidies, cap-and-trade, and feed-in-tariffs 

help redress market failures such as environmental externalities and knowledge spillovers (Popp, 

2019). However, they do not address the coordination dilemmas described above. The 

interoperability challenge is ubiquitous in smart grids (Ho & O’Sullivan, 2017; Iqtiyanillham et 

al., 2017, Lin et al., 2013; Brown et al., 2018). To target those specific challenges, some 

governments have promoted the development of interoperability standards for the smart grid. For 

example, with the Energy Independence and Security Act of 2007, the United States government 

mandated the National Institute of Standards and Technology (NIST) to develop such standards. 

With Mandates M/441(2009) and M/490(2011), the European Commission instructed its standard-

setting organizations to develop standards for smart meters and cybersecurity. Similarly, Germany, 

Canada, Korea and others OECD countries have issued roadmaps in which they signal their 

commitment to engage in international standardization efforts in this area (SCC, 2012; VDE/DKE, 

2010; KSGI, 2010). While standards are omnipresent in modern economies, their effect on 

patenting has been largely understudied, let alone in the green energy innovation sector. There is 

a paucity of empirical, large-N, studies that investigate the relationship between standards and 

innovation. Through investigating the effect of interoperability standards on patenting activity in 

smart grids, we contribute to two literatures: the literature on green energy innovation and the 

literature on standards and innovation.        
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3. Literature review  

3.1. Lessons from the literature on green energy innovation 

Supporting clean energy innovation at requisite levels to meet net-zero goals will require a 

mix of policy instruments to address multiple market failures that suppress innovation. The most 

commonly discussed market failures include environmental externalities and knowledge spillovers 

(Popp, 2019). The literature provides insights about the effectiveness of policies that target the 

supply and the demand sides of innovation to address these market failures.  

On the demand side, policies may expand market size for green technologies through 

pricing environmental externalities from fossil fuel generation. Studies find that higher fuel prices, 

as a proxy for a carbon tax, induce clean energy innovation (Newell et al., 1999; Popp, 2002; 

Verdolini and Galeotti, 2011; Crabb and Johnson, 2010; Aghion et al., 2016). Other policies that 

work on the demand side, such as consumer subsidies for the purchase of solar panels, also 

contribute to raising levels of green energy patenting (Gerarden, 2022). The latter is an example 

of a technology-specific policy. Technology-neutral policies that expand demand for innovation, 

such as emissions trading programs, have also been shown to induce innovation (Calel and 

Dechezleprêtre, 2016). Overall, Johnstone et al. (2010) find that technology-specific policies have 

a greater impact on emerging technologies, while inventors respond to technology-neutral policies 

by focussing R&D efforts in technologies that are closer to being cost-competitive with fossil fuel 

generation. 

On the supply side, governments may directly support inventive activity through R&D 

subsidies. These subsidies compensate inventors for the public good they generate, because 

knowledge spillovers to other inventors prevent them from fully appropriating the value of their 

inventions. Costantini et al. (2017) find that technology-push instruments have a smaller effect on 
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innovation than demand-pull instruments. Their results also highlight the importance of balance 

and comprehensiveness of policy mixes. R&D subsidies are often technology-specific and as such, 

may also distinctly affect technologies at different levels of maturity. Government R&D support 

may be particularly beneficial when technology is in the early stages and faces greater uncertainty. 

Comparing first- and second-generation bio-fuel technology, Costantini et al. (2015) find evidence 

that technology-push policies were instrumental in encouraging innovation in second generation 

emerging technology but had no effect on the more mature technology vintage.  

Recent studies leverage firm-level analysis to investigate the R&D decisions of firms. 

Aghion et al. (2016) first used this approach to study the global automotive industry. They find 

that increases in the price of fossil fuels induce firms to switch from dirty to clean innovation. 

Firm-level analysis also underscores the importance of knowledge stocks for explaining path-

dependency in fossil fuel patenting (Aghion et al., 2016).  Using a sample of more than 5000 

European firms in the electricity sector, Noailly and Smeets (2015) find that the recent surge in 

clean energy patenting may be explained by the entry of specialized renewable energy firms and 

the exit of specialized fossil fuel firms, rather than firms switching from dirty to clean innovation. 

Using a similar methodology, Lazkano et al. (2017) further find evidence of complementarities 

between firm’s knowledge stocks in energy storage and in renewables. This approach also allows 

researchers to study credit constraints at the firm-level as an additional market failure that lowers 

R&D investments in green innovation below socially-optimal levels. For example, Noailly and 

Smeets (2022) find that firms innovating in renewables are more vulnerable to financial constraints 

than firms innovating in fossil fuels. 

Together these studies highlight the critical role that policy mixes comprising both 

technology-push and demand-pull instruments play in supporting green energy innovation. But 
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this literature has paid little attention to issues of coordination in technology development and 

deployment, and to the policy tools that may help address this specific challenge.  

3.2. Lessons from the literature on standards and innovation 

This paper also contributes to the literature on standards and innovation, in which large-N 

quantitative empirical evidence about the effect of standards on inventive activity is limited. 

Standards, like patents, are a vehicle for codifying technical knowledge.  Firms use a combination 

of the two, along with scientific publishing, for disclosing new knowledge (Blind et al., 2022). The 

National Institute of Standards and Technology defines a standard as: “A document that contains 

technical specifications or other precise criteria to be used consistently as a rule, guideline, or 

definition of characteristics, to ensure that materials products, processes, personnel or services are 

competent and/or fit for their intended purposes(s)” (cited in Baron and Spulber, 2018, p.4). As 

opposed to regulatory standards, compliance with technology standards is voluntary (Baron and 

Spulber, 2018). Beyond this overarching definition, standards can be classified along various 

dimensions: de facto or formal; proprietary or open; quality, information, variety reduction or 

interoperability standards.  

A first distinction is between de facto and formal standards. Rules and guidelines may 

emerge informally to become widely used within an industry. In this case, there is no need for a 

formalized document if industry actors already have a shared understanding of these guidelines 

and see the value in conforming with those. Companies may use strategies such as contracting and 

advertising to incite others to use their technology as the industry standard (Baron and Spulber, 

2018; Katz and Shapiro, 1985; Spulber, 2008). In this case, de facto standard may be sufficient for 

coordination. Often times, standards are instead the product of formal consultative processes 

piloted by standard-setting organizations (SSOs) (Baron and Spulber, 2018; Baron and Schmidt, 
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2019).  The standard-setting process may be conceptualized as a process of technology selection 

that reduces uncertainty (Aggarwal et al., 2011), shapes expectations (Lerner and Tirole, 2015) 

and informs the coordinated implementation of new technologies across an industry (Baron and 

Schmidt, 2019; Spulber 2008). Empirical evidence shows that these formal standardization bodies 

are effective at selecting high value technologies (Rysman and Simcoe, 2008). Smart grids 

standards included in our sample were developed within such formal standardization bodies.  

Those are usually open and differ from proprietary standards because they can be accessed by all 

inventors often at the price of purchasing the standard document (Baron and Spulber, 2018). Given 

this, they may diffuse information more widely. Another way of classifying standards is by the 

function they perform in the market. Quality standards are devised to ensure products meet certain 

quality and safety requirements. Similar to information standards which seek to inform consumer 

choices, they redress information asymmetries and reduce transactions costs.  Variety reduction 

standards may be useful when differences between products are trivial and prevent economies of 

scale (Swann, 2000; Tassey, 1999; DeVries, 1999).  Finally, interoperability standards – the 

variety of standards this paper investigates – help coordinate market actors to achieve product or 

component compatibility, and realize network externalities (Swann, 2000; Tassey, 1999; DeVries, 

1999). Those may be particularly helpful to coordinate actors whose products are used as inputs 

into a same product or network. These are prevalent in the information technologies sector where 

complex manufactured products and networked technologies are ubiquitous (Baron and Spulber, 

2018).   Smart grids devices belong to this category of products.  

In recent history, it has become more common for standards to be developed through 

consensus-building processes within formal standard-setting organizations. As a process of 

technology selection, standards may endorse proprietary technology. This provides economic 
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value to inventors, especially when the technology is deemed essential to the implementation of a 

standard. Firms therefore have an incentive to engage strategically in these venues (Contreras, 

2017; Chiao et al., 2007; Lerner and Tirole, 2015). This has motivated a sway of theoretical and 

empirical studies that investigate how the institutional rules of SSOs  - for example relating to the 

disclosure of patents, the negotiation of licensing agreements for standard-essential patents, and 

voting – influence how firms venue-shop between SSOs. These studies are also interested in how 

different types of firms strategically engage in these venues, and how institutional rules shape the 

outcome of the standardization process (Lerner and Tirole, 2015; Chiao et al., 2007; Leiponen, 

2008; Simcoe, Graham and Feldman, 2009; Simcoe, 2014; Bar and Leiponen, 2014; Kang and 

Bekker, 2015; Contreras, 2017; Wiegmann et al., 2022). Overall, these concern how the innovation 

profiles of firms that participate in standard-setting shape standards.  

Conversely, few large-N empirical studies investigate how standards shape innovation 

(Wen et al., 2022). Once a standard embedding specialized technical knowledge is released, the 

information it contains becomes accessible to a larger group of users. Use of this knowledge is 

therefore not restricted to firms that participate in the standard development process. How 

standards affect the inventive activities of firms more broadly is less well understood. For example, 

standards provide information that reduces technological and legal uncertainty, and is paramount 

for supporting new inventions in complementary technologies (Wen et al., 2022).  Wen and 

colleagues (2022) find that standards generate high impact innovation by complementor firms in 

the IT sector – firms not involved in standard development - and that this effect is stronger when 

standards are developed by vertically-integrated firms that have activities in downstream markets. 

Standards may not only have an impact on the quantity and quality of innovation, but also the type 

of innovation that firms conduct. In their study of manufacturing firms in the United Kingdom, 
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Foucard and Li (2021) find that standards favor incremental innovation rather than radical 

innovation. Through their effect on firm productivity, standards also have macroeconomic effects. 

Using standards to proxy technology shocks, Baron and Schmidt (2019) find that standards 

decrease total factor productivity (TFP) in the short run as firms adjust to new technology that is 

incompatible with incumbent technology, but raises TFP in the long run.  

While sparse and covering few sectors of technology, these empirical studies raise several 

key questions for new research in this area.  What is the effect of standards on patenting levels and 

on the quality of innovation in other sectors of technology?  Do standards influence the R&D 

activities of different types of firms through similar channel(s)? How do they affect the R&D 

decisions of new industry entrants compared to industry incumbents? Do standards have varying 

effects on patenting at different stages of technology development? Below we describe our 

contribution to providing insights to these questions.  

4. Theory and hypotheses  

In this paper we estimate the effects of interoperability standards on patenting levels in 

smart grids. The firms that innovate in this space are diverse in terms of age, size and expertise. 

Given this, we further investigate heterogeneous effects across firms from different backgrounds 

by considering the role of different knowledge stocks, and by comparing effects between industry 

incumbents and new entrants.  We posit that standards may affect the inventive activities of 

different types of firms through three channels.  

Information mechanism. Standards describe and endorse technical specifications that are 

useful to the conduct of economic activity (Blind et al., 2022; Tassey, 2000). They embed 

information that may reduce uncertainty and risks associated with R&D investments (Wen et al., 

2022; Blind et al., 2017; Blind et al., 2018, Blind, 2004). When this is the case, standards should 
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encourage inventive activity.  This information may be particularly valuable to new industry 

entrants who do not possess know-how about best practices and industry conventions acquired 

through experience (Tassey, 2000). Furthermore, this channel may be salient when technology is 

in the early stages. This is when uncertainty is the highest because different research directions are 

being explored (Tassey, 2000). Standards provide information about what inventors expect will 

become the industry norm. Inventors can then take steps to increase the likelihood that their 

innovations will be compatible with technology being simultaneously developed by other 

inventors.  

 

H1. Standards increase patenting activity for new industry entrants. 

H2. Standards increase patenting activity when technology is in the early stages. 

 

Experimentation stifling mechanism. Experimentation breeds innovation. While standards 

may provide direction that helps reduce uncertainty, they may also remove incentives to test new 

ideas if they signal to inventors that the industry has already settled on a convention (Tassey, 

2000). This would result in a slow-down in patenting activity, particularly among incumbent firms. 

Incumbent firms are early experimenters and possess insider industry information before standards 

make this knowledge explicit and widely available. For this reason, they are likely to have tested 

many of their most promising ideas prior to the introduction of a standard.  For them, the 

introduction of a standard may signal that the technology they have already developed is 

satisfactory. It may remove incentives to test further ideas because the expected marginal gain is 

small. Furthermore, when technology is more mature, standards adoption may be followed by a 

reduction in patenting activity for this same reason - many promising ideas have already been 
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tested - but also because there is less uncertainty about technology direction in these later stages 

of technology development.  In this case, standards legitimize existing practice (Wiegmann et al., 

2022) but provide less useful new information to inventors.   

 

  H3. Standards decrease patenting activity for large industry incumbents 

  H4. Standards decrease patenting activity when technology is mature 

 

Endorsement mechanism. It may also be that standards merely formalize conventions that 

the industry has already de facto widely adopted. In this case, standards may have no effect on the 

direction of patenting since they endorse what has already become common practice. If standards 

are introduced at the peak of a patenting boom, they may even be followed by a decline in patenting 

activity (Wen et al., 2022). This decline might have naturally occurred as technology matured 

regardless of standardization. In this case, the endorsement mechanism becomes difficult to 

disentangle from the experimentation stifling mechanism described above, but provides an 

alternative theoretical explanation for H4.   

Because these three channels work, at least in part, in opposing directions, the net impact 

of standards on smart grid innovation is ambiguous.  As such, while we present results for the 

overall effect of standards on smart grid innovation, we use our firm-level patent data to test for 

the heterogeneous impacts formulated in H1-H4.  These tests allow us to better understand the 

mechanisms through with technology standards affect innovation. 
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5. Empirical setting  

5.1. Identification of causal effects 

We use firm-level patent data to measure smart grid innovation.  Our data includes all firms 

with at least one smart grid patent in the period the years 2000-2016. Appendix B1 presents the 

patent classes used to identify smart grid innovations. Using methods first described in Noailly 

and Smeets (2015) and Aghion et al. (2016), we use data on the countries in which firms obtained 

patents in the pre-sample period to construct weights that capture the importance of each market 

to a firm.  This allows changes in standards, policies, and market conditions in a given country to 

have varying impacts on different firms, and to treat lagged values of these variables as plausibly 

exogenous.  No firm is influential enough to affect those variables in all the countries where it 

operates, yet it is reasonable to expect that a firm considers policy and economic conditions in its 

main markets when making R&D investment decisions.  This identification strategy has been 

increasingly used in recent years to study green innovation (Noailly and Smeets, 2015, 2022; 

Aghion et al., 2016; Lazkano et al., 2017; Rozendaal and Vollebergh, 2021).  

The standards included in our sample originated for the most part in international or 

regional standard-setting organizations (a list of standards included in our sample is available in 

Appendix A2). These standards were then released at the country-level by national standardization 

bodies. For the same standard, country-level adoption sometimes occurs at different times. We use 

the variation in country-level timing of adoption to estimate the effects of standards on firms’ 

patents.3 Given this, reverse causality is a negligible threat to the internal validity of our results. In 

the context we study, firms that have relevant smart grid patents ex ante and wish to influence in 

their favor the drafting of a standard are unlikely to succeed. To position its proprietary technology 

 
3 In contrast, the initial release of a standard by an international or regional standardization body will be captured 
by year fixed effects in our model. 
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in standards developed at international standard-setting organizations such as the International 

Electrotechnical Commission (IEC), a firm would need to influence sufficient voting country 

members (Appendix A3 provides further details about the standard-setting process at IEC and why 

this is unlikely). Even if a firm were to succeed at influencing the outcome of the standard-setting 

process at the international level, it would need to further influence standard accreditation at the 

country-level in all its markets for reverse causality to be a concern in our study context. This is 

unlikely. Concern about firms engaging strategically in the standard setting process is greatest 

when firms can benefit by having their technologies (and related patents) declared essential to the 

standard (Lerner and Tirole, 2015).  However, we could not find any declarations of standard-

essential patents for smart grid standards developed at the IEC. This suggests that firms did not 

seek to position proprietary technology as essential to the implementation of smart grid patents.  

Instead, firms are more likely to engage in standard-setting in the smart-grid space because they 

value the mutual benefits it provides, such as jointly shaping technology development, enabling 

information-sharing and legitimizing technical solutions. This is consistent with Wiegmann and 

colleagues’ findings about firms’ motivations for participating in standardization in the Internet of 

Things field (Wiegmann et al., 2022). 

5.2. Model 

Our dependent variable is a count of successful smart grid patent applications filed by firm 

i in year t.  As patents vary in quality, we only include patent applications subsequently granted 

by at least one patent office.4  In our main model, we use Zero-inflated Poisson regression. This 

 
4 Noailly and Smeets (2015) also use granted patents. Other recent papers, including Aghion et al. (2016), Lazkano 
et al. 2017), and Rozendaal and Vollebergh (2021) use triadic patents (e.g., patent applications filed at the USPTO, 
European Patent Office, and Japanese patent office) to eliminate low-quality patents.  We do not do that for two 
reasons.  First, because of differences in the electricity grid in North American and Europe, we observed examples 
where smart grid patents were filed in multiple North American or European countries, but not on the other 
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two-stage estimation strategy first estimates the likelihood that a firm has any smart grid patent 

with a logit model (e.g., the extensive margin). In the second stage, a Poisson model is used to 

predict the number of patents per firm in a given year (e.g., the intensive margin). This two-stage 

estimation strategy is appropriate in our setting because our sample comprises many small firms 

that seldom patent and it assumes that their excess zeros are generated through a separate process.  

Furthermore, smart grid innovation is an emerging area of technology. Given this, many new firms 

appear after the beginning of the sample period, which runs from 2000-2016. To account for this, 

we use an unbalanced panel that considers the years in which each firm was active.5   

 

We write our main model as follows:  

 

𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 = exp(𝛽0 + 𝛽1𝑆 𝑖𝑡−2 + 𝛽2𝑙𝑜𝑔 𝑅𝐺𝑖𝑡−2 + 𝛽3𝑙𝑜𝑔 𝑅𝑅𝑖𝑡−2 + 𝛽4 log 𝐾𝑆𝑖𝑡−2

+ 𝛽5 log  𝐾𝐺𝑖𝑡−2 + 𝛽6𝑙𝑜𝑔 𝐾𝐸𝑖𝑡−2 + 𝛽7𝑙𝑜𝑔 𝐾𝐼𝑖𝑡−2 + 𝛽8𝑙𝑜𝑔 𝐸𝑆𝑖𝑡−2

+ 𝛽9𝑙𝑜𝑔 𝐸𝐺𝑖𝑡−2 + 𝛽10𝑙𝑜𝑔 𝐸𝐸𝑖𝑡−2 + β11𝑙𝑜𝑔 𝐸𝐼𝑖𝑡−2 + β12𝑋 𝑖𝑡−2 + 𝑎𝑖 + 𝑦𝑡 + 𝑢𝑖𝑡 ) 

 

Here S is a count of standards, RG is government RD&D budgets in grid-related technologies, and 

RR is government RD&D budgets in renewables. KS represents a firm’s internal knowledge stock 

in smart grids technologies, KG is a firm’s internal knowledge stock in green innovation, KE is a 

firm’s internal knowledge stock in electricity, and KI is a firms’ internal knowledge stocks in 

information technologies. Internal knowledge stocks capture the firms’ accumulated experience in 

 
continent.  Second, we are interested in the effect of standards on new entrants.  New entrants will include smaller 
firms that may be less likely to file patent applications abroad. 
5 To proxy for this we use the years in which the firm files for a patent for the first and the last time in relevant patent 
classes: green innovation, electricity generation, information technology, smart grids. Patent classes used to identify 
smart grid innovations are described in Table 1 of Appendix B1. Patent classes used to identify green, electricity 
generation and information technology innovations are described in Table 3 of Appendix B1.  
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relevant sectors. ES are external knowledge stocks in smart grids, EG are external knowledge 

stocks in green innovation, EE are external knowledge stocks in electricity, EI are external 

knowledge stocks in information technologies. External knowledge stocks capture the knowledge 

firms are exposed to based on the location of their inventors.6 Appendix B2 details how the 

knowledge stocks variables were constructed. We control for other time-varying factors likely to 

increase market demand for smart grid devices, and thus potentially increase patenting.  These 

variables are denoted as X. They include income (GDP per capita), household electricity prices, 

the share of renewables in the electricity mix, and the growth in electricity consumption. The latter 

two proxy for other energy policies that have supported the deployment of renewables, pulling 

demand for enabling grid technologies.  Moreover, faster growth in electricity consumption may 

strain existing transmission infrastructure, increasing the value of smart grid technologies to better 

manage transmission of electricity. When these country-level explanatory variables are weighted 

and translated to the firm level, they vary over time and across firms. A detailed description of 

these variables can be found in Appendix B3.  All the right-hand side variables are lagged two-

years to avoid reverse causality, and our results are robust to using different lags (robustness checks 

are included in Appendix C2). Finally, we control for unobserved heterogeneity overtime by 

including year fixed effects, denoted as y. For example, year fixed effects control for general 

changes in the expected productivity of smart grids innovation over time, allowing our firm-

specific standards variable to capture the specific effects resulting from variation in standard 

adoption in different markets. 

Our estimation faces two additional challenges.  First, as the knowledge stocks are 

functions of lagged dependent variables, strict exogeneity does not hold.  In such cases, the 

 
6 Appendix B7 details how patent families were assigned an originating country, based on the country of the 
inventor(s). 
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standard Poisson fixed effects model may produce biased results (Appendix C3). To control for 

unobserved confounding firm attributes, we instead include their mean patenting activity in the 

pre-sample period (e.g., Blundell et al. 1995; Noailly and Smeets, 2015, Rozendaal and Vollebergh 

2021).7  While our dependent variable only includes smart-grids patents, for this pre-sample mean 

we include a wider range of relevant technologies: green innovation, electricity generation, 

information technology and smart grids.  Using the pre-sample mean requires assuming that a 

firm’s innovative activity is stationary and follows an AR(1) process. As smart grids are an 

emerging technology experiencing much patent growth over our sample period, such an 

assumption would be unrealistic for smart grid patents themselves.  Instead, the pre-sample mean 

can be thought of as each firm’s overall propensity to innovate. Second, because of the novel nature 

of smart grid technology, our sample includes many new firms that were not actively patenting in 

the pre-sample period. To accommodate these firms when using the pre-sample mean, we include 

a dummy variable for firms with no patents in the pre-sample.   

5.3. Data   

We combine data on standards from a novel database on technology standards with data 

on patents to investigate the effect of standards on patenting activity in a sample of 2,751 firms.8 

Our sample is comprised of large multinational conglomerates such as Panasonic, Toshiba and 

General Electric; IT firms such as IBM and Intel; traditional electricity sector players such as Asea 

Brown Boveri, Infineon and Texas Instruments; clean tech firms that specialize in renewable 

energy, load management, or other grid services such as Acciona, GridPoint, Voltalis and Solar 

 
7 To be consistent with the period used when building the policy weights, we go back to 1977 or the first year the 
firm was active when computing these yearly averages.  
8 We exclude patents by applicants that are not firms, such as universities, government agencies and non-
governmental organizations. Appendix B4 details how we cleaned firm names and retrieved their knowledge 
stocks in areas beyond smart grids.  



 

 21 

City.9 These firms are located in10 and have at least one granted smart grid patent in 19 sample 

countries: Austria, Australia, Canada, Switzerland, Czech Republic, Germany, Denmark, Spain, 

Finland, France, United Kingdom, Italy, Japan, Korea, Netherlands, Norway, Sweden, Turkey and 

the United States.11  

5.3.1 Standards data 

We find relevant standard document numbers in lists of smart grid standards published by 

the International Electrotechnical Commission (IEC), the European standardization organizations 

(CEN, CENELEC, ETSI), and the Smart Electric Power Alliance (SEPA). We keep standards of 

core and high relevance to the smart grid (the full list of international standards included in our 

sample is included in Appendix A2). To identify country-level adoptions of smart grid standards 

we then use the Searle Centre on Law, Business and Economics’ database on Technology 

Standards and Standard Setting Organizations (SSO) and Schmidt and Steingress’ algorithm 

(2022) for identifying standards harmonizations.12  We count standards at the part level: first, to 

avoid including standard parts that are not directly relevant to the smart grid; second, to 

acknowledge that standards are updated with new parts as technology evolves. Appendix A5 

shows an example of a standard with multiple parts introduced over time and released in different 

countries at different times. Furthermore, we do not count revisions because those are routinely 

scheduled to ensure standards stay up-to-date. The concept we intend to measure is the purposive 

decision to coordinate in the face of emerging technology interoperability challenges. This is best 

captured by counting only the initial release of a standard part.   

 
9 Appendix A4 lists the largest smart grid innovators, 
10 Appendix B5 details how home countries were assigned to firms.  
11 Other OECD countries were excluded due to incomplete data on standards and on household electricity prices. 
12 This algorithm fills in gaps in the reporting of equivalences across standards that arise because of different 
timing of standard releases, to ensure that our data on country-level accreditations of international standards is 
complete.  



 

 22 

5.3.2 Patent data 

To capture innovation, we use patent data from the European Patent Office’s PATSTAT 

database. Because patents are filed early in the research and development process, they provide a 

good indication of when the inventive activity took place. However, because there is a lag between 

the moment a patent is filed, and the moment it is granted and appears in the database, our sample 

ends in 2016 to avoid truncation bias. To identify patents relevant for the smart grid, we rely on 

the Cooperative Patent Classification (CPC). We extract patents that belong to 4 areas of smart 

grid technology: 1) systems integration and efficiency, 2) use in buildings, 3) ICT applications to 

smart grids, and 4) end-user applications (see Appendix B1 for corresponding patent classes).  

5.4 Constructing weighted policy variables  

Our policy and control variables are collected at the country level.  Many of the firms in 

our sample operate in multiple markets, and will be affected differently by policy changes in each 

country depending on how important each market is to them.  We follow the standard approach in 

the environmental innovation literature (e.g., Noailly and Smeets 2015, Aghion et al. 2016, 

Lazkano et al. 2017, and Rozendaal and Vollebergh 2021) and construct firm-specific weights 

based on the countries that they patent in during the pre-sample period (1977-1999).  Using the 

pre-sample period makes the weights weakly exogenous, as they do not change in response to 

changes in policy in potential markets.  These time-invariant weights identify markets to which 

firms actively participate.  To account for market size, we weight each market by GDP0.35, using 

the average GDP for each country in the last five years of the pre-sample (Dechezlepretre et al. 
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2021, Rozendaal and Vollebergh 2021).13  Defining  𝑤𝑐𝑖
𝑃𝐴𝑇 as the share of firm i’s pre-sample 

patents filed in country c, the weight becomes: 

 

𝑤𝑐𝑖 =
𝑤𝑐𝑖

𝑃𝐴𝑇𝐺𝐷𝑃𝑐
0.35

∑ 𝑤𝑐′𝑖
𝑃𝐴𝑇𝐺𝐷𝑃𝑐′

0.35
𝑐′≠𝑐

 

 

 

We build weights based on the share of pre-sample patents in relevant CPC classes filed in our 19 

sample countries, since we do not have complete data for our control variables for countries outside 

of these 19. This weighting scheme assumes that these variables take an average value. By 

including only firms whose home country is in the 19 countries in our sample, our sample firms 

have only limited exposure to other markets. Appendix B6 provides further details on country 

coverage in our sample.  Notably, 90% of our sample firms have at least 93% of their granted 

patents in the 19 countries in our sample.  Because smart grids are an emerging technology, most 

firms have few smart-grid patents during the pre-sample period.  Thus, as we did when calculating 

the pre-sample mean for each company, we use patents in green innovation, electricity generation, 

or information technology (IT), as well as smart grid patents, when calculating the weights. 

Our data include 1,755 firms without pre-sample patents.  For these firms, we use a 

weighted average (based on total patents in relevant technology areas) of the weights from other 

firms located in the same country.  This assumes that firms from the same home country are likely 

to operate in similar markets – e.g., European firms are likely to patent within Europe and Canadian 

firms are likely to also patent in the U.S.  This assumption is more likely to apply to larger new 

firms that operate internationally.  WiTricity corporation is an example of such firms, an American 

 
13 Dechezlepretre et al. (2021) suggest the exponent of 0.35, saying that it fits estimates of the elasticity of exports 
to GDP of the home country found by Eaton, Kortum, and Kramarz (2011). We include robustness checks using an 
exponent of 1, as in Aghion et al. (2016), in Appendix C2. 
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company specializing in wireless electrical vehicle charging founded in 2007. In the period 

between 2006 and 2016, it produced 41 smart grids patented inventions. Because we have no pre-

sample data for WiTricity, we assume that its main markets are the same as other American firms 

that patent in smart grids, on average. In Appendix C2 we show results for robustness checks that 

assume that the main market for these new firms is their home country.  Such an assumption is 

more likely to hold for smaller firms with less patenting activity. 

6. Descriptive statistics 

Smart grid is an emergent area of technology.  Figure 1 shows little patenting activity prior 

to 2000 and that inventive activity has grown significantly since. Patenting in both our sample 

countries and sample firms peaks in 2011 and declines thereafter, following the trend observed in 

green energy innovation more generally (Popp, 2020). Patenting in all countries has continued to 

grow after 2011. This trend is driven by Chinese inventions that were not granted patents outside 

China.  

Figure 2 plots, for the same period, the number of standards adopted in a given year in select 

markets. It shows there was standardization activity during the entire time period under study. It 

also shows variation in the timing of smart grid standards adoption across these different markets. 

We use this variation to estimate the effect of standards on patenting levels: each firm has a unique 

weighted count of standards for each year depending on the combination of markets in which it 

operates and standardization activity in those markets. Additional summary statistics are included 

in Appendix B8.  

 



 

 25 

Figure 1. Trends in smart grids patenting 

 
Notes: i) Country-level counts of patents were computed using the country of the 

inventor and weighted for the number of inventors on a patent. These counts only 

include granted patents, ii) After excluding patent assignees that are not firms, 

such as universities, government research laboratories and non-governmental 

research organizations, patenting in our sample firms and countries still follows 

the general trend observed in smart grid innovation. 

 

Figure 2. Smart grids standards accreditations in select markets 

 
Notes: Figure 2 shows counts of standards accredited at the country-level in each 

year. This simple count of patents is the measure we use in our main regression 

model.  
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7. Results  

7.1 Main model: Zero-Inflated Poisson 

Table 1 shows results for our main Zero-Inflated Poisson model using a balanced and an 

unbalanced panel of firms.14 With the exception of the coefficients at the extensive margin of 

patents for the standards and R&D policy variables, results are consistent across the two models. 

This difference in the first stage of the model is expected. Coefficients in this first stage can be 

interpreted as firm’s entry (extensive margin), and what varies across the two models is the period 

during which firms are active.  Because many new firms enter this market during the sample 

period, the ZIP model using an unbalanced panel better captures the true effect of these policies 

on firms’ decision to patent at the extensive margin (e.g., whether or not a firm have any patent(s) 

in a given year). We discuss results pertaining to four areas: (i) the effect of standards, (ii) the 

effects of other policy variables, (iii) the effects of internal knowledge stocks, (iv) the effects of 

external knowledge stocks, (v) other demand-pull factors.  

Overall, standards reduce the likelihood that firms will patent15 (e.g., the extensive margin) 

and the level of patenting (e.g., the intensive margin). Marginal effects for these two stages 

combined show that an additional standard is associated with an overall reduction in patenting of 

7.3%. This is consistent with the experimentation stifling and the endorsement hypotheses. We 

find no effect from government support to R&D in grid-related technologies, but find that an 

increase in government support to renewables R&D is associated with a decline in smart grid 

patenting. This indicates a tradeoff between the two sectors, possibly because firms active in both 

areas must chose to allocate R&D resources to one or the other.  Results for the internal knowledge 

 
14 In Table 1 we focus on the main results of interest in our study. Appendix C1 shows results for the full model. 
15 The logit model in the first stage predicts the likelihood that a firm has zero patents, so that a positive coefficient 
signifies decreased likelihood of entry.  
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stocks variables provide evidence of path-dependency in the R&D activities of firms. Firms with 

more smart grid experience are more likely to patent in smart grids. Firms that have experience in 

other areas of green innovation or in electricity also patent more in smart grids. This confirms that 

knowledge from these sectors is transferable to smart grids. However, while firms with more prior 

experience in information technologies are no less likely to have a smart grid patents, they produce 

fewer smart grid patents. Similarly, firms whose inventors are located in countries where more 

smart grid innovation takes place also are more likely to have smart grid patents, and to have higher 

patenting levels. This indicates that firms receive knowledge spillovers from other smart grid 

inventors.  External knowledge stocks in other green innovation sectors and in information 

technologies are associated with fewer patents and entry, respectively. These results suggest 

specialization within countries. Finally, an increase in the share of renewables in the electricity 

mix is associated with greater entry.  However, when combining the intensive and extensive 

margin effects, the net marginal effect is negative and insignificant.16  Given that much of the 

growth in renewable generation was policy driven during this time period, neither those policy 

initiatives nor increased grid flexibility challenges stimulated significant growth in smart grid 

technologies to aid renewables integration   

  

 
16 The marginal effect for renewable share is -0.454, with a standard error of 1.051. 
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Table 1. Regression results from Zero-Inflated Poisson regressions 

  ZIP, unbalanced ZIP, balanced 

Variables Intensive 

margin 

Extensive 

margin 

Intensive 

margin 

Extensive 

margin 

          

Standards -0.038*** 0.016* -0.038*** 0.009 

  (0.012) (0.008) (0.012) (0.008) 

RD&D smart grid 0.116 0.019 0.116 0.071* 

  (0.074) (0.039) (0.074) (0.037) 

RD&D renewables -0.197** -0.033 -0.195** -0.084* 

  (0.091) (0.050) (0.091) (0.047) 

Int. knowledge stocks - smart grids 0.598*** -1.436*** 0.598*** -1.390*** 

  (0.032) (0.050) (0.032) (0.051) 

Int. knowledge stocks - green tech 0.075** -0.180*** 0.075** -0.150*** 

  (0.032) (0.022) (0.032) (0.022) 

Int. knowledge stocks - electricity 0.137*** -0.147*** 0.137*** -0.122*** 

  (0.034) (0.029) (0.034) (0.028) 

Int. knowledge stocks - ICTs -0.165*** -0.012 -0.166*** 0.020 

  (0.029) (0.025) (0.029) (0.024) 

Ext. knowledge stocks - smart grids 0.454** -0.414*** 0.463** -0.239*** 

  (0.185) (0.098) (0.184) (0.087) 

Ext. knowledge stocks - green tech -0.565*** 0.078 -0.563*** -0.069 

  (0.151) (0.096) (0.151) (0.092) 

Ext. knowledge stocks - electricity -0.010 0.013 -0.013 -0.075 

  (0.177) (0.094) (0.177) (0.088) 

Ext. knowledge stocks - ICTs 0.108 0.290*** 0.102 0.307*** 

  (0.151) (0.101) (0.150) (0.096) 

Renewables share -1.077 -1.146** -1.044 -1.508*** 

  (0.887) (0.564) (0.883) (0.551) 

          

Marg. effect, standard (combined) -0.076*** -0.049*** 

  (0.021) (0.014) 

          

Observations 30,628 30,628 44,370 44,370 

Log-likelihood -47022 -47022 -48675 -48675 

Note: The variables RD&D expenditures in grid-related technologies and in renewables technologies were adjusted 

for PPP and inflation, and converted into 2015 real USD. All regressions include the firms' average yearly patents 

in the pre-sample period, a complete set of year dummies, a dummy for firms with no patents in the pre-sample 

period, 4 dummies for knowledge stocks that are equal to zero (smart grids, green innovation, electricity and ICT 

knowledge stocks). Country-level control variables were also weighted and included in all regressions: the share of 

electricity production from renewables, the growth in electricity consumption, household electricity prices 

(USD/MWh, real 2015 USD) and GDP per capita (real 2015 USD). All time-varying variables are lagged by 2 time 

periods. We use the log transformation for all the internal and external knowledge stocks, for GDP per capita and 

for household electricity prices. Regressions start in 2000 and end in 2016. Robust standard errors are included in 

parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

        

 

 



 

 29 

7.2. Heterogeneous effects across firms 

We hypothesize that standards affect different types of firms through different channels: 

standards can increase the entry of new innovators in this space through providing information, 

but can also reduce patenting activity by industry incumbents through removing incentives to test 

new ideas or endorsing already well-established conventions. To test these hypotheses, we propose 

two approaches. 

  First, we estimate an unbalanced Zero-Inflated Poisson model on a sample of large firms 

and on a sample of small firms separately. This allows coefficients for all variables to vary across 

the two groups. We use these two groups to proxy for large industry incumbents and new entrants. 

In most cases, large firms are firms that have been active longer in this space and small firms are 

new entrants.  Large firms are defined as companies that have more than 100 granted patents in 

the period 1977-2016 in relevant patent classes: green innovation (including smart grids), 

electricity and information technologies.17 Small firms are defined as companies that have 100 or 

fewer granted patents in the same period and patent classes.   

Second, we estimate a model in which we interact a dummy variable that identifies firms 

with no smart grid patents before year t with the standards variable. This allows to test the effect 

of standards on new entrants more directly. These firms all eventually enter the smart grid space, 

so this model tests whether they are more likely to enter after standards are introduced.  

 

 

 

 

 

 
17 We use this period and these patent classes to be consistent with the data we used to construct the policy 
weights.  
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Table 2. Regression results by firm size 

  Large firms Small firms 

Variables 

Intensive 

margin 

Extensive 

margin 

Intensive 

margin 

Extensive 

margin 

          

Standards -0.051*** 0.043*** -0.001 -0.001 

  (0.015) (0.016) (0.015) (0.011) 

RD&D smart grid -0.015 0.085 0.236*** 0.062 

  (0.117) (0.067) (0.081) (0.050) 

RD&D renewables 0.013 0.021 -0.445*** -0.116* 

  (0.127) (0.081) (0.101) (0.069) 

Int. knowledge stocks - smart grids 0.635*** -1.228*** 0.389** -1.535*** 

  (0.034) (0.056) (0.190) (0.095) 

Int. knowledge stocks - green tech 0.075** -0.145*** -0.198 -0.068 

  (0.037) (0.025) (0.154) (0.062) 

Int. knowledge stocks - electricity 0.213*** 0.013 -0.017 -0.301*** 

  (0.046) (0.036) (0.064) (0.052) 

Int. knowledge stocks - ICTs -0.206*** -0.085*** -0.089 -0.005 

  (0.036) (0.032) (0.072) (0.049) 

Ext. knowledge stocks - smart grids 0.286 -0.358* 0.340 -0.249** 

  (0.354) (0.197) (0.209) (0.119) 

Ext. knowledge stocks - green tech -0.624*** 0.220 -0.351* -0.091 

  (0.234) (0.160) (0.200) (0.125) 

Ext. knowledge stocks - electricity 0.401 -0.193 -0.293* 0.029 

  (0.308) (0.195) (0.160) (0.117) 

Ext. knowledge stocks - ICTs 0.026 0.241 0.317* 0.296** 

  (0.211) (0.199) (0.182) (0.122) 

Renewables share 0.424 -1.266 -2.189** 0.287 

  (1.098) (0.815) (1.052) (0.902) 

          

Marg. effect, standards (combined) -0.238*** -0.001 

  (0.062) (0.011) 

          

Number of firms 597 597 2,154 2,154 

Observations 9,523 9,523 21,105 21,105 

Log-likelihood -23768 -23768 -21228 -21228 

Note: These regressions use the same specification and control variables as the main model. Large firms are 

defined as firms that had more than 100 patents in the ICT, electricity and green innovation patent classes during 

the period 1977-2016. Small firms are defined as firms that 100 or fewer patents in the same patents class and 

period.  Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 
 

Table 2 shows that the negative effect of standards is driven by large firms. For these firms, 

an additional standard decreases patenting by 21.2%. This appears to confirm our hypothesis that 
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standards affect the inventive activity of incumbent firms through the experimentation stifling 

and/or the endorsement mechanisms. The R&D investment decisions of small firms are more 

responsive to technology-push policies in the form of government R&D subsidies. This aligns with 

our expectation that smaller - and presumably more resource-constrained firms – are more 

influenced by policy. Furthermore, the tradeoff between R&D in smart grids and R&D in 

renewables is concentrated in these firms.  This is not surprising given that smaller and more 

resource constrained firms do not have the capacity to do R&D in several areas at a time and may 

need to choose between one or the other. Crowding out might also explain why small firms patent 

less in smart grids when the share of renewables increases: smaller firms might find entering the 

renewables market more attractive in markets where policy has supported renewables deployment 

rather than entering the market for an enabling technology. Combined with the results on 

government R&D, our results suggest that policies promoting clean energy are insufficient for 

inducing innovation in complementary energy technologies. Without policies targeting 

complementary and enabling energy technologies – which are currently missing from the policy 

mix - markets will not likely deliver sufficient innovation in these areas critical to the energy 

transition.  

Results presented in Table 3 confirm the information hypothesis for new entrants. The 

coefficient for the interaction term between standards and the zero stocks dummy variable is 

negative at the extensive margin, indicating that firms with zero patents are less likely to have zero 

patents when exposed to more standards. The joint significance between the standards coefficient 

and the interaction term coefficient shows the net effect of standards on these firms. It remains 

negative and significant at the extensive margin, providing evidence that standards increase entry 

for new players in this space. While there is a negative effect of standards on the level of smart 
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grid patenting, this occurs for both new entrants and incumbents. That standards increase entry 

into the smart grid space but not the overall level of patenting activity is suggestive of the role of 

standards reducing uncertainty.  Standards provide clarity on how technology will evolve, allowing 

innovators to focus their efforts on what they know will be needed rather than trying to anticipate 

multiple technology scenarios. 

 

7.3 Heterogeneous effects over time  

The effect of standards may also vary over time. In the early stages of technology 

development, when uncertainty about research directions is the highest, information embedded in 

the standard potentially reduces risks to inventors, thus increasing innovation (H2). Conversely, 

we also hypothesize that standards reduce patenting in later stages through the experimentation 

stifling and/or endorsement mechanisms (H4).  To test these hypotheses, we allow the effect of 

standards to change before and after a proposed cutoff year.  This cutoff year suggests a moment 

where technology changes from early-stage to mature. Because the choice of cutoff year is 

arbitrary, we present results allowing the cutoff to vary between 2008 and 2012. This allows us to 

ascertain whether our results are not sensitive to the choice of the cutoff year and driven by 

idiosyncratic events occurring in that year.  For example, like other green energy technologies, 

smart grids experience a peak in patenting around the year 2011 (as shown in Figure 1). While 

year fixed effects in our model control for such year-specific idiosyncrasies affecting all firms, so 

that our coefficients are identified based on firms having different exposure to standards in a given 

year, finding that our results hold for years as early as 2008 provides reassurance about the validity 

of our results. 
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Table 3. Effect of standards on new entrants 

Variables Intensive margin Extensive margin 

  
  

Standards -0.033** 0.120*** 

  (0.015) (0.013) 

Interaction standards and zero stock dummy -0.014 -0.165*** 

  (0.015) (0.011) 

RD&D smart grid 0.114 0.004 

  (0.073) (0.039) 

RD&D renewables -0.193** 0.036 

  (0.090) (0.050) 

Int. knowledge stocks - smart grids 0.595*** -1.442*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.075** -0.178*** 

  (0.032) (0.021) 

Int. knowledge stocks - electricity 0.136*** -0.148*** 

  (0.034) (0.028) 

Int. knowledge stocks - ICTs -0.165*** -0.003 

  (0.029) (0.024) 

Ext. knowledge stocks - smart grids 0.454** -0.263*** 

  (0.184) (0.099) 

Ext. knowledge stocks - green tech -0.563*** 0.043 

  (0.151) (0.096) 

Ext. knowledge stocks - electricity -0.017 -0.041 

  (0.177) (0.096) 

Ext. knowledge stocks - ICTs 0.113 0.231** 

  (0.151) (0.101) 

Renewables share -1.039 -0.890 

  (0.878) (0.567) 

  
  

Joint significance -0.047*** -0.044*** 

  (0.011) (0.009) 

  
  

Observations 30,628 30,628 

Log-likelihood -46872 -46872 

Note: This regression uses the same specification and control variables as the main model. This model interacts the 

standards variables with a dummy variable that indicates whether the firm had any internal knowledge stocks in past 

periods. As with other variables, we use the second lag. Robust standard errors are included in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1 

 

 



Table 4. Regression results for early-stage versus mature technology  

  2008 2009 2010 2011 2012 

  Intensive Extensive Intensive Extensive Intensive Extensive Intensive Extensive Intensive Extensive 

Prior to year X 0.038 -0.025 0.088** -0.045 0.055* -0.033 -0.012 -0.018 -0.033 0.006 

  (0.051) (0.039) (0.043) (0.033) (0.033) (0.025) (0.036) (0.023) (0.03) (0.019) 

Marginal effect 0.054 0.124*** 0.088** -0.003 -0.056 

  (0.053) (0.047) (0.039) (0.049) (0.048) 

Year X and after -0.040*** 0.015* -0.044*** 0.016** -0.046*** 0.018** -0.040*** 0.017** -0.038*** 0.014 

  (0.012) (0.008) (0.013) (0.008) (0.013) (0.009) (0.013) (0.009) (0.013) (0.009) 

Marginal effect -0.094*** -0.106*** -0.114*** -0.096*** -0.081*** 

  (0.025) (0.026) (0.028) (0.025) (0.024) 

                      

Observations 30,628 30,628 30,628 30,628 30,628 30,628 30,628 30,628 30,628 30,628 

Log-likelihood -47696 -47696 -47638 -47638 -47631 -47631 -47706 -47706 -47714 -47714 

Note: These regressions use the same specification and control variables as the main model, but add an interaction between the count of standards and the cut-off 
year.  The results for prior to year X present the joint effect of the main standards coefficient and this interaction.  Robust standard errors are included in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 



Table 4 shows regression results for separate regressions using five different cutoff years. 

Each column represents a regression using a different potential cutoff year.  For each regression, 

we interact the standards variable with a dummy variable indicating years prior to the proposed 

cutoff for that column.  

Our strongest results are for standards adopted at later stages, which are presented in the 

bottom half of Table 4.  Standards adopted after the cutoff year decrease patenting levels (intensive 

margin) for any proposed cutoff year, and in all models except a 2012 cutoff year, standards also 

increase the likelihood of having zero patents (e.g., decreases entry at the extensive margin).  In 

all cases, the marginal effects reveal that late standards decrease patenting by about ten percent.  

These results support either the experimentation stifling and/or the endorsement hypotheses for 

later years, but the effect of each of these two mechanisms is difficult to further disentangle.  Our 

results suggest that when technology has matured and many research directions have already been 

explored, standards lock-in incumbent technology. This removes incentives to test out alternative 

ideas that go against the established norm, as the resulting devices would be difficult to 

commercialize. 

For standards adopted in the early stages of technological development (top half of Table 

4), we see some evidence that standards decrease the likelihood of having zero patents, but the 

results are sensitive to the cutoff year chosen.  Using a cutoff year of 2009 or 2010, standards 

increase patenting activity at the intensive margin in the early years of the sample.  The marginal 

effects show that early standards increase the level of patenting activity by about ten percent. We 

find similar results using 2008 as a cutoff, but the coefficients are imprecise.  These results provide 

suggestive evidence supporting the information hypothesis in the early stages: when no clear 

technology direction has been established, standards may help reduce uncertainty and provide 
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guidance to inventors, which encourages inventive activity.  However, these results are not as 

robust as the results for standards adopted in later stages of technology development. 

7.4. Robustness checks 

We also verify that our results are not sensitive to the research decisions we made, with 

respect to the choice of depreciation rate applied to the knowledge stocks, strategy used to build 

policy weights for new firms with no pre-sample data, GDP-weighting of the policy weights to 

account for market size, number of lagged periods for the explanatory variables, and the measure 

used for the standards variable. Appendix C2 shows that our results are robust to using these 

alternative measurements.  

8. Discussion 

We find that standards decrease patenting at the extensive and intensive margins in the 

aggregate. Our analysis also reveals important heterogeneity, which provides more insight for 

policy than the net effects. These heterogeneous effects show that standards affect the R&D 

activities of firms through different mechanisms. Different mechanisms mean that the appropriate 

policy choice varies depending on context and the goals of policy-makers. For example, that 

standards affect the inventive activities of incumbent firms through an endorsement or 

experimentation stifling mechanism teaches important lessons for the timing of introduction of 

standards. If the goal is to encourage incumbent firms to experiment broadly, governments may 

choose to delay the introduction of standards. If the goal is to encourage entry by new players to 

increase competition or bring fresh ideas, then it is preferable to introduce standards earlier because 

they provide useful information to new entrants.  

Our inquiry also raises additional unanswered questions about the role of standards in 

fostering technology development versus diffusion, and tradeoffs between the two. We show that 
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standards reduce patenting, but this result should not be interpreted as evidence that standards are 

detrimental to innovation. Standards might, in turn, support the diffusion of technologies through 

lowering uncertainty faced by technology users. In this case, introducing standards when 

technology is mature may be warranted, if the policy goal is to support technology diffusion rather 

than development. In many contexts, the level of patenting is a secondary concern to supporting 

the large-scale deployment of technologies that already exist. This is an important policy tradeoff 

that calls for further research on the effects of standards on technology diffusion.  

Another tradeoff of policy relevance relates to the effect of standards on the quality of 

innovation as opposed to patent quantity. Even when standards decrease patenting levels, it is 

possible that they help improve innovation quality through providing information that focusses 

inventive activity in fewer, more promising research directions. Some findings from the literature 

clue us in on how standardization contribute to enhancing the quality of innovation, but more work 

is needed to test this hypothesis. For example, Rysman and Simcoe (2008) find that patents 

disclosed during the standard setting process are more highly cited and have longer-lasting 

influence. Their results show that standard-setting organizations are effective at selecting high 

quality technology. Similarly, Wen et al. (2022) find that in the information technologies sector, 

standards help complementor firms produce high-impact innovation through lowering 

technological and legal uncertainty. Investigating the effect of standards on smart grid patent 

quality is left for future work. 

Finally, our results are of more general relevance to many other areas of green energy 

innovation where coordination is also needed. For example, the effectiveness of green and blue 

hydrogen as a fuel depends on safe storage and distribution. With adaptations to infrastructure, 

hydrogen could be blended into natural gas to allow transport using existing natural gas pipelines. 



 

 38 

But equipment modification would be necessary for machines to work with higher concentrations 

of hydrogen. New pipelines and distribution networks could be built, but standards for safely 

developing this infrastructure need to be agreed upon. Methods to certify the carbon content of 

hydrogen are also necessary to allow for trade of hydrogen across countries with different climate 

policies (IEA, 2019). Standards may play an important role in the development of many enabling 

technologies. 

9. Conclusion 

In this paper, we argue that complementary technologies will be pivotal in enabling further 

decarbonization of electricity systems. We posit that the development of the requisite technologies 

for achieving net-zero goals face important barriers in the form of coordination challenges and 

interoperability requirements. Using firm-level analysis, we investigate the effects of standards, as 

a coordination tool, on innovation in smart grids. We contribute to the literature on green energy 

innovation by casting light on this under-studied sector of innovation, and by considering a policy 

tool – technology standards – that has received little attention. We advance understanding of the 

different channels through which standards impact innovation. We find that, while standards lead 

a decline in the number of patents produced by large firms, they help new players penetrate this 

sector of innovation. We further find evidence of heterogeneous effects of standards at different 

stages of technology development. This is of relevance to two literatures. First, the literature on 

standards and innovation, in which there is a paucity of empirical work. Second, the literature on 

green energy innovation, which has paid little attention to innovation in enabling and 

complementary technologies and has not considered technology standards as a possible policy tool 

for supporting decarbonization efforts. Our findings raise additional questions of policy relevance 
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regarding tradeoffs between technology development and diffusion, and between patent quantity 

and patent quality that are left to future research.  



 

 40 

Bibliography 

 

Aggarwal, N. Q. Dai and E. Walden. 2011. The more the merrier? How the number of partners in 

a standard-setting initiative affects shareholders’ risk and return. MIS Quarterly, 35(2): 445-

462.   

Aghion, Philippe, Antoine Dechezleprêtre, David Hémous, Ralf Martin and John Van Reenen. 

2016. Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the 

Auto Industry. Journal of Political Economy, 124(1). 

Bar, T., & Leiponen, A. 2014. Committee composition and networking in standard setting: The 

case of wireless telecommunications. Journal of Economics & Management Strategy, 23(1), 

1-23. 

Baron, Justus and Daniel F. Spulber. 2018. Technology Standards and Standard Setting 

Organizations: Introduction to the Searle Center Database. Journal of Economics and 

Management Strategy, 27(3): 462-503.  

Baron, Justus and Julia Schmidt. 2019. Technological Standardization, Endogenous Productivity 

and Transitory Dynamics. Banque de France Working Paper no.503.  

Blind, Knut. (2004). The Economics of Standards: Theory, Evidence, Policy. Edward Elgar 

Publishing.  

Blind, Knut, Sören S. Petersen, Cesare A.F. Riillo. (2017). “The impact of standards and regulation 

on innovation in uncertain markets”. Research Policy, 46(1): 249-264.  

Blind, Knut, Axel Mangelsdorf, Crispin Niebe and Florian Rame. (2018). “Standards in the global 

value chains of the European Single Market”. Review of International Political Economy, 

25(1): 28-48.  

Blind, Knut, Bastian Krieger, Maikel Pellens. 2022. The interplay between product innovation, 

publishing, patenting and developing standards. Research Policy, 51(7).  

Blundell, R., Griffith, R., & Reenen, J. V. 1995. Dynamic count data models of technological 

innovation. The economic journal, 105(429), 333-344. 

Brown, Marilyn A., Shan Zhou and Majid Ahmadi. 2018. Smart grid governance: An international 

review of evolving policy issues and innovations. WIREs Interdisciplinary Reviews: Energy 

Environment,  7(5):e290 

Calel, Raphael and Antoine Dechezleprêtre. 2016. Environmental Policy and Directed 

Technological Change: Evidence from the European Carbon Market. The Review of 

Economics and Statistics, 91(1): 173-191.  

Chiao, B., Lerner, J., & Tirole, J. 2007. The rules of standard‐setting organizations: An empirical 

analysis. The RAND Journal of Economics, 38(4), 905-930. 

Colak, Ilhami, Sagiroglu, Seref., Fulli, Gianluca, Yesilbudak, Mehmet, & Covrig, Catalin-Felix. 

2016. A survey on the critical issues in smart grid technologies. Renewable and Sustainable 

Energy Reviews. 54: 396-405. 

Contreras, J. L. 2017. Essentiality and standards-essential patents. Cambridge Handbook of 

Technical Standardization Law-Antitrust, Competition and Patent Law (Jorge L. Contreras, 

ed., 2017), University of Utah College of Law Research Paper, (207) 

Costantini, Valeria. Francesco Crespi and Yienia Curci. 2015. A Keyword Selection Method for 

Mapping Technological Knowledge in Specific Sectors Through Patent Data: the Case of 

Biofuels Sector. Economics of Innovation and New Technology. 24(4): 282-308. 



 

 41 

Costantini, V., F. Crespi, and A. Palma. 2017. Characterizing the Policy Mix and its Impact on 

Eco-innovation: A Patent Analysis of Energy-Efficient technologies. Research Policy. 46: 

799-819. 

Crabb, J.M. and D.K.N. Johnson. 2010. Fueling Innovation: The Impact of Oil Prices and CAFE 

Standards on Energy-Efficient Automotive Technology. The Energy Journal. 31(1): 199- 

216. 

De Castro, Luciano and Joisa Dutra. 2013. Paying for the smart grid. Energy Economics 40: S74-

S84.  

Dechezleprêtre, Antoine, David Hémous, Morten Olsen and Carlo Zanella. 2021. Induced 

Automation: Evidence from Firm-Level Patent Data. University of Zurich, Department of 

Economics, Working Paper No.384.  

DeVries, H.J. (1999). Standardization – A business Approach to the Role of National 

Standardization Organizations Kluwer Academic Publishers, Boston, Dordrecht, London. 

Eaton, J., Kortum, S., and Kramarz, F. 2011. An anatomy of international trade: evidence from 

French firms. Econometrica, 79(5):1453-1498. 

Energy Independence and Security Act (EISA), H.R. 6, 110th Cong. 2007). 

https://www.congress.gov/bill/110th-congress/house-bill/6/text  

Foucart, Renaud and Qian Cher Li. 2021. The role of technology standards in product innovation: 

Theory and evidence from UK manufacturing firms. Research Policy, 50(2).  

Gerarden. Todd. 2022. Demanding Innovation: The Impact of Consumer Subsidies on Solar Panel 

Production Costs. Forthcoming, Management Science.  

Ghiani, Emilio, Alessandro Serpi, Virginia Pilloni, Giulina Sias, Marco Simone, Gianluca 

Marcialis, Giuliano Armano and Paolo Atillio Pegoraro. 2018). A Multidisciplinary Approach 

for the Developmen of Smart Distribution Networks. Energies, 11(2530).  

Ho, Jae-Yin and Eoin O’Sullivan. 2017.  Strategic standardisation of smart systems: A 

roadmapping process in support of innovation. Technological Forecasting and Social Change, 

115: 301-312.  

IEA. 2019. The Future of Hydrogen, Paris, France: IEA. 

IEA. 2021. Net zero by 2050: A Roadmap for the Global Energy Sector. Paris, France: IEA 

IEA/NEA. 2020. Projected costs of generating electricity, 2020 Edition. Paris: International 

Energy Agency and Nuclear Energy Agency.  

Iqtiyanillham, Nur, M. Hasanuzzaman and Hosenuzaman, M. 2017. European smart grid 

prospects, policies and challenges. Renewable and Sustainable Energy Reviews, 67: 776-790.   

IRENA. 2022. Renewable Technology Innovation Indicators: Mapping progress in costs, patents 

and standards. Abu Dhabi: International Renewable Energy Agency. 

Byeongwoo Kang, Rudi Bekkers. 2015. Just-in-time patents and the development of standards. 

Research Policy, 44(10): 1948-1961 

Johnstone, Nick, Ivan Haščič and David Popp (2010). Renewable Energy policies and 

Technological Innovation: Evidence Base on Patent Counts. Environmental and Resource 

Economics 45(1): 133-155. 

Katz, M.L. and C. Shapiro. 1985. Network externalities, competition, and compatibility. American 

Economic Review, 75(3): 424-440.  

KSGI. 2010). Korea's Smart Grid Roadmap 2030: Laying the Foundation for Low Carbon, Green 

Growth by 2030. Ministry of Knowledge Economy and Korea Smart Grid Institute. 

Lazkano, Itziar, Linda Nøstbakken and Martino Pelli. 2017. From Fossil Fuels to Renewables: The 

Role of Electricity Storage. European Economic review 99: 113-129.   

https://www.congress.gov/bill/110th-congress/house-bill/6/text


 

 42 

Lee, H., Cui, B., Mallikeswaran, A., Banerjee, P., & Srivastava, A. K. 2017. A review of 

synchrophasor applications in smart electric grid. Wiley Interdisciplinary Reviews: Energy 

and Environment, 6(3), e223 

Leiponen, A. E. 2008. Competing through cooperation: The organization of standard setting in 

wireless telecommunications. Management science, 54(11), 1904-1919. 

Lerner, J. and J. Tirole. 2015. Standard-essential patents. Journal of Political Economy, 123(3): 

547-586.  

Lin, Chen-Chun, Chian-Han Yang and Joseph Z. Shyua. 2013. A comparison of innovative policy 

in the smart grid industry across the pacific: China and the USA. Energy Policy 57:119-132. 

Lopes, João Abel Peças, André Guimarães Madureira, Manuel Matos, Ricardo Jorge Bessa, Vítor 

Monteiro, João Luiz Afonso, Sérgio F. Santos, João P.S. Catalão, Carlos Henggeler Antunes, 

Pedro Magalhães (2020). The future of power systems: Challenges, trends, and upcoming 

paradigms. Wiley Interdisciplinary Reviews: Energy and Environment, 9(3), e368. 

Mandel, Benjamin H. 2015. The Merits of an ‘Integrated’ Approach to Performance-Based 

Regulation. The Electricity Journal, 28(4): 8-17. 

Marques, Vítor, Nuno Bento and Paulo Moisés Costa. 2014. The ‘Smart Paradox’: Stimulate the 

deployment of smart grids with effective regulatory instruments. Energy, 69: 96-103. 

Martinot, Eric. 2016. Grid Integration of Renewable Energy: Flexibility, Innovation, and 

Experience. Annual Review of Environmental Resources 41:223-51.  

Newell, Richard and Adam Jaffe. 1999. The Induced Innovation Hypothesis and Energy-Saving 

Technological Change. The Quarterly Journal of Economics, 114(3): 941-975.  

Noally, Joëlle and Roger Smeets. 2015. Directing technical change from fossil-fuel to renewable 

energy innovation: An application using firm-level patent data. Journal of Environmental 

Economics and Management, 72(C): 15-37.  

Noailly, Joëlle and Roger Smeets. 2022. Financing Energy Innovation: Internal Finance and the 

Direction of Technical Change. Environ Resource Econ 83, 145–169. 

NREL. 2015. The Role of Smart Grids in Integrating Renewable Energy: ISGAN Synthesis 

Report. Technical Report TP-6A20-63919, National Renewable Energy Laboratory.  

Palensky, Peter and Friederich Kupzog. 2013. Smart Grids. Annual Review of Environment and 

Resources 38:201-226.  

Popp, David. 2002. Induced Innovation and Energy Prices. American Economic Review, 92(1): 

160-180.  

Popp, David. 2019. Environmental Policy and Innovation: A Decade of Research. NBER Working 

Paper 25631.  

Popp, David, Jacquelyn Pless, Ivan Hascic and Nick Johnstone. 2020. Innovation and 

Entrepreneurship in the Energy Sector, in Aaron Chatterji et al. The Role of Innovation and 

Entrepreneurship in Economic Growth. University of Chicago Press.  

Popp, D., Vona, F., Gregoire-Zawilski, M., & Marin, G. 2022. The Next Wave of Energy 

Innovation: Which Technologies? Which Skills? (No. w30343). National Bureau of Economic 

Research. 

Rozendaal, Rik L. and Herman Vollebergh. 2021. Policy-induced Innovation in Clean 

Technologies: Evidence from the Car Market. CESifo Working Paper 9422-2021.  

Rysman, M. and T. Simcoe. 2008. Patents and the performance of voluntary standard-setting 

organizations. Management Science, 54(11): 1920-1934.  

SCC. 2012. The Canadian Smart Grid Standards Roadmap: A strategic planning document. 

CNC/IEC Task Force on Smart Grid Technology and Standards.  



 

 43 

Schmidt, J., & Steingress, W. 2022. No double standards: quantifying the impact of standard 

harmonization on trade. Journal of International Economics, 103619. 

Schwister, Fabian and Marina Fieder. 2015. What are the main barriers to smart energy 

information systems diffusion? Electron. Markets 25: 31-45.  

Simcoe, T. 2014. Governing the anticommons: Institutional design for standard-setting 

organizations. Innovation Policy and the Economy, 14(1), 99-128. 

Simcoe, T. S., Graham, S. J., & Feldman, M. P. 2009. Competing on standards? Entrepreneurship, 

intellectual property, and platform technologies. Journal of Economics & Management 

Strategy, 18(3), 775-816. 

Spulber D. 2008. Consumer coordination in the small and in the large: implications for antitrust in 

markets with network effects. Journal of Competition Law and Economics, 4(2): 207-262.  

Stephens, Jennie C. , Elizabeth J. Wilson, Tarla R. Peterson and James Meadowcroft. 2013. 

Getting Smart? Climate Change and the Electric Grid. Challenges, 4: 201-216.  

Swann, Peter G. M. 2000. The Economics of Standardization, Manchester Business School, Final 

Report for Standards and Technical Regulations Directorate Department of Trade and 

Industry, 57p. 

Syed, D., Zainab, A., Ghrayeb, A., Refaat, S. S., Abu-Rub, H., & Bouhali, O. 2020. Smart grid big 

data analytics: Survey of technologies, techniques, and applications. IEEE Access, 9, 59564-

59585. 

Tassey, Gregory. 2000. Standardization in Technology-Based Markets Research Policy, 29(4): 

587-602.  

VDE/DKE. 2010. The German Standardization Roadmap E-Energy/Smart Grid. German 

Commission for Electrical, Electronic and Information Technologies of DIN and VDE. 

Verdolini, E. and M. Galeotti. 2011. At Home and Abroad: An Empirical Analysis of Innovation 

and Diffusion in Energy Technologies. Journal of Environmental Economics and 

Management. 61: 119–134. 

Wen Wen, Chris Forman, Sirkka L Jarvenpaa. 2022. The effects of technology standards on 

complementor innovations: Evidence from the IETF. Research Policy, 51(6).  

Wiegmann, P. M., Eggers, F., de Vries, H. J., & Blind, K. 2022. Competing standard-setting 

organizations: A choice experiment. Research Policy, 51(2), 104427. 



 

 i 

APPENDIX A: BACKGROUND ON SMART GRIDS AND STANDARDS 

Appendix A1: Examples of smart grid technologies at different stages of maturity  

 Smart grids encompass a range of technologies that include - but are not limited to - 

smart meters, remote and automated sensing, smart switching, hierarchical or distributed control 

architectures and an array of big data analytics and artificial intelligence applications. Below, we 

provide some examples of smart grid technologies that are at different levels of maturity. As these 

technologies are deployed, more data will be collected, opening up further possibilities for new 

inventions that utilize these data. While hardware such as smart meters and synchrophasors are 

routinely used, the data that is collected by these devices remain under-utilized (Syed et al., 2020). 

Advances in big data analytics and artificial intelligence are needed to realize the full potential of 

smart grid technologies. 

 Advanced metering infrastructure. Resolutely the most salient smart grid 

technology, smart metering has reached maturity and been deployed at scale in many industrialized 

economies. Across the United States, utilities had installed 102.9 million smart meters by 202018.  

These devices have the ability to collect data multiple times per second (Syed et al., 2020), and 

communicate information to both utilities and their consumers. Because these devices enable 

remote automated meter readings, they make possible the implementation of time-varying 

electricity tariffs. Paired with smart appliances, this can enable demand response (NREL, 2015; 

Palensky and Kupzog, 2013, p.208). The mass deployment of these devices is sometimes equated 

to the smart grid, but advanced metering infrastructure is just one of many technologies that must 

be deployed to achieve a smarter and greener grid. Their deployment is a first, but insufficient, 

step towards the implementation of a smarter electrical grid.  (Brown et al., 2018).  

 
18 https://www.eia.gov/tools/faqs/faq.php?id=108&t=3, consulted on 11 June 2022 

https://www.eia.gov/tools/faqs/faq.php?id=108&t=3


 

 ii 

 

Synchrophasors. Another technology that has been widely adopted by utilities is the phasor 

measurement unit19. These devices are capable of monitoring voltage, current and frequency on 

the grid in real time (Palensky and Kupzog, 2013, p.205; Lee et al., 2017). The data collected by 

these units is currently used by industry in grid monitoring and post-mortem analysis, but 

possibilities for using these data to further improve grid management abound (Lee et al., 2017). 

As more devices are installed at different nodes on the grid, new software applications will become 

possible due to greater data availability. For example, the data collected by synchrophasors could 

be used in oscillation monitoring, voltage stability monitoring, angle-frequency monitoring, 

adaptive protection, model valuation or linear state estimation (Lee et al., 2017) 

 Smart inverters. Smart inverters are another type of device that is already 

commercially available.  These devices are used to convert DC current from solar photovoltaic 

installations into AC current that can be fed onto the grid. Their intelligent characteristics also 

enable them to monitor grid frequency and voltage, and automate decisions that help maintain grid 

stability (NREL, 2015). For example, these units have the capacity to adjust the output of solar 

installations in response to grid conditions (Martinot, 2016, p.236; Palensky and Kupzog, 2013, 

p.207). They may also enable the PV installation to absorb power from the grid if needed to help 

maintain grid frequency stability, keep installations online during minor disturbances and restart 

gradually after a power outages to avoid cascading power failures (NREL, 2015).  

 Blockchain technology. Champions of blockchain technology believe it could 

revolutionize electricity markets, especially in the area of electricity trading and billing (Fulli et 

al., 2022; Lopes et al., 2019; Kuzlu et al., 2020). While there is interest on the part of the energy 

 
19 https://www.energy.gov/articles/how-synchrophasors-are-bringing-grid-21st-century, consulted on 11 June 
2022 

https://www.energy.gov/articles/how-synchrophasors-are-bringing-grid-21st-century
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industry to leverage this technology - apart from a handful of start-up companies that offer services 

made possible by blockchains (such as WePower, Power Ledger and the Sun Exchange) (Kuzlu et 

al., 2020) - applications to the electricity sector remain in early stages of development (pilots, use 

cases) (Fulli et al., 2022; Kuzlu et al., 2020). Blockchain technology is a form of distributed digital 

ledger that uses computer networks to record and coordinate transactions without the need for 

centralized oversight. Proponents believe it could enable new community-based/sharing economy 

business models such as peer-to-peer energy trading (Lopes et al., 2019, p.4-5; Kuzlu et al., 2020). 

Other possible blockchain applications to the electricity sector encompass microgrids, virtual 

power plants, renewable energy certificate trading, and electric vehicle charging and payment 

settlement platforms (Kuzlu et al., 2020). But the availability of comprehensive network of 

interoperable advanced metering infrastructure will be indispensable to enable blockchain 

technology in the electricity sector (Fulli et al., 2022).  

 Big data analytics and artificial intelligence. Other technologies that are likely to 

flourish as more hardware - such as smart meters, smart sensors, smart inverters – is installed 

across the grid include big data analytics and artificial intelligence.  Without data availability, these 

technologies’ potential remains under-utilized. Challenges extend beyond data acquisition 

however: several limitations in data storing, processing and security must be overcome to deploy 

these technologies. (Syed et al., 2020).  The digital transformation program implemented by 

Iberdrola illustrates the potential of big data analytics to the electricity sector. The Spanish utility 

uses wind generation data in developing curtailment optimization plans and consumer data for 

designing time-of-use rates (Syed et al., 2020). Beyond a handful of examples however, the 

commercial deployment of these technologies remains limited (Syed et al., 2020, p.59575; Bose, 

2017). Many possible applications that use AI and big data to facilitate grid monitoring and 
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automate power system control decisions can be envisioned. These include, but are not limited to: 

fault identification and classification, preventative maintenance, transient stability analysis, 

topology identification, health monitoring of wind generation systems, coordinated electric vehicle 

charging, hierarchical and distributed control architectures, automated load management, virtual 

energy storage systems, fault pattern identification, automated design, simulation and controller 

tuning of wind generation systems and more (Lopes et al., 2019; Palensky and Kupzog, 2013; Syed 

et al., 2020; Bose, 2017).
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Appendix A2: List of sampled standards  

 

STANDARD NUMBER STANDARD NAME 

ANSI C 12.1 Electric Meters - Code for Electricity Metering 

ANSI C 12.18 Protocol Specification for Ansi Type 2 Optical port (communication between a C12.18 decide and a C12.18 

client via an optical port) 

ANSI C 12.19 American national Standard for Utility Industry End Device Data Tables 

ANSI C 12.20 Electricity Meters - 0.2 and 0.5 Accuracy Classes  

ANSI C 12.21 Protocol Specification for Telephone Modem Communication 

ANSI C 12.22 Protocol Specification for Interfacing To Data Communication Networks 

ANSI/ASHRAE 135 A Data Communication Protocol for Building Automation and Control Networks  

ANSI/CEA 709.1 Control Network Protocol Specification 

ANSI/CEA 709.2 Control Network Power Line (PL) Channel Specification 

ANSI/CEA 709.3  Free-Topology Twisted-Pair Channel Specification 

ANSI/CEA 709.4 Fiber-Optic Channel Specification 

ANSI/CEA 852-B Tunneling Device Area Network Protocols Over Internet Protocol Channels  

ANSI/CEA 852.1 Enhanced Protocol for Tunneling Component Network Protocols Over Internet Protocol Channels 

ANSI/NEMA SG-IPRM 1 Smart Grid Interoperability Process Reference Manual 

CEA/CEDIA-CEB 29 Recommended Practice for the Installation of Smart Grid Devices 

CEN/CLC/ETSI/TR 50572 Functional reference architecture for communications in smart metering systems 

CLC/TS 50568-4 prTS 50568-4: Electricity metering data exchange – The Smart Metering Information Tables and Protocols 

(SMITP) suite – Part 4: Physical layer based on B-PSK  modulation +Data Link Layer 

CLC/TS 50568-8 prTS 50568-8: Electricity metering data exchange – The Smart Metering Information Tables and Protocols 

(SMITP) suite – Part 8: PLC profile based on B-PSK modulation 
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Appendix A3: Primer on the standard-setting process  

The rules and procedures specific to the organizations that develop standards have a 

bearing on whether standards are at risk of being endogenously determined. Technology 

endorsement by a standard has economic value and firms with a large smart grid patent portfolio 

may seek to influence the standard-setting process to strategically position their inventions. This 

may in turn affect their level of inventive activity after standards are introduced. Below, we argue 

that the likelihood that standards and patents are co-determined in the context of our study is low 

because the institutional rules and procedures for developing and adopting standards at the 

International Electrotechnical Commission (IEC) do not allow direct participation by firms. For 

firms to influence technology selection during the drafting, comment-and-response and voting 

process at the IEC - where most of standards in our sample originated - firms would need to 

successfully influence the majority of IEC member country organizations.  Furthermore, our 

identification of the causal effect of standards on patenting uses variation in country-level 

accreditations. For standards to be endogenously determined, firms would need to successfully 

control the outcome of similar drafting, comment-and-response and voting processes at the 

country-level in all the national markets where they operate. We believe this is highly unlikely. 

Below we describe the standard-setting process at the IEC as an example. The process in European 

standard-setting organizations – ETSI/CEN/CENELEC – that also developed some smart grid 

standards is similar.  

Standard-setting at the IEC  

The International Electrotechnical Commission is a non-governmental organization 

composed of 62 full members and 26 associate members20. Individuals and firms can only 

 
20 https://www.iec.ch/national-committees, consulted September 9th 2022 

https://www.iec.ch/national-committees
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influence the standard-setting process through national committees or liaison organizations. 

National committees coordinate the technical inputs of stakeholders at the national-level and 

represent the interests of their country at the IEC. Typically, they are housed in national standards 

bodies that are part of national governmental structures or are mandated by government. For 

example, the United States National Committee21 of the IEC is part of the American National 

Standards Institute (ANSI) and is composed of more than 4,000 members, many from industry. 

Technical experts from industry, government, academia, and consumer or labor groups may also 

participate in the work of technical committees as liaison organizations. To be eligible, liaison 

organizations must have a sufficient degree of representativity, such as industry consortia, 

professional associations or scientific societies22. Examples of organizations that have a 

memorandum of understanding with the IEC to participate as liaisons include the European 

Network of Transmission System Operations, the International Conference on Electricity 

Distribution and the IEEE Power & Energy Society. This implies that individual firms cannot 

independently participate, and instead must work through a liaison organization to provide 

technical inputs to working groups that draft standards.  

Overall, the standard development process follows these stages: the proposal stage, the 

preparatory stage, the committee stage, the enquiry stage, the approval stage, and the publication 

stage23.  These stages aim at building consensus. Below we provide a short account of this process, 

with a view to clarifying how firms may provide input, as this is the main concern for identification 

in our study (e.g., this account is not intended to be exhaustive).  

 
21 https://www.ansi.org/usnc-iec/usnc-overview, consulted September 9th 2022 
22 https://www.iec.ch/global-partnerships, consulted September 9th 2022 
23 https://www.iso.org/stages-and-resources-for-standards-development.html, consulted on 9 September 2022 

https://www.ansi.org/usnc-iec/usnc-overview
https://www.iec.ch/global-partnerships
https://www.iso.org/stages-and-resources-for-standards-development.html
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Various actors can propose a new standard project: a national committee, the secretariat of 

a technical committee or subcommittee, or a category A liaison. However, only participating 

members – this is, the national committees of full member countries – can vote to approve a new 

work item, and ultimately decide which standards are developed. To move forward, a work item 

must receive the approval of two-thirds of the country members participating in the relevant 

technical committee. Therefore, industry consortia and other stakeholders that participate as 

liaisons are limited to proposing new work items and contributing technical inputs during the 

drafting of standards. Category A liaisons, which have the highest level of participation, must be 

approved by two-thirds of IEC members to engage in the activities of a technical committee and 

are appointed for a period of two years. To be eligible, they must be not-for-profit legal entities 

with a broad regional or international membership base. In addition, they must demonstrate that 

they have relevant technical expertise, sufficient representativity in their area, and show 

commitment to consensus decision-making in their internal rules and processes.  

Once a work item is proposed, the project for a new standard moves to the preparatory 

stage. Licensing, patenting and conformance assessment issues are discussed at this stage. 

Participating national committees nominate technical expects to contribute to the working group 

that will draft the standard. Once a draft standard is ready, it is circulated for comment and subject 

to voting by national committees that are members of the parent technical committee. This stage 

is optional as the draft standard can also move directly to the enquiry stage. This opens up the draft 

standard to commenting by member countries and stakeholders for a 12-week period and 

concludes with a vote by all IEC country members. For a draft standard to be released, it must 

receive the approval of two thirds of the members of its parent technical committee and no more 

than one fourth of negative votes by all members. If technical changes are requested, the technical 
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committee revises the text of the standard and the final draft international standard is subject to 

another vote before being published.  Finally, after the end of the voting period, the technical 

committee must prepare a report in which it responds to all comments received. Throughout this 

process, representatives from the private sector can therefore be appointed as technical experts 

either by national committees or liaisons to contribute inputs and participate in the work of a 

working group, committee or sub-committee, or as observers who may comment on the draft 

standard.  Voting, however, remains the prerogative of national committees24.  

Standard-setting in national-level standardization organizations  

Standards can originate in international standard setting organization (SSOs), regional 

SSOs, national-level SSOs and smaller/less formal SSOs. It is often the case that standards 

developed by a national-level standardization body are later adopted by an international SSO and 

vice-versa (Baron and Spulber, 2018, p.489). To identify smart grid standards, we use lists that 

include, for the most part, international standards and find all associated country-level 

accreditations. When national-level standardization bodies adopt an international standard, they 

must indicate the level of correspondence. They may endorse the standard or reprint it with or 

without identical translation, in which case the country-level standard is considered identical to 

the original international standard. Country standardization bodies may also republish the standard 

with technical deviations. When those technical deviations are clearly identified and explained, 

the national standard is considered a modified version of the international standard. When those 

technical deviations are not clearly identified, it is labeled as not equivalent. National 

standardization bodies must identify the degree of correspondence with the international standard 

 
24 https://storage-iecwebsite-prd-iec-ch.s3.eu-west-1.amazonaws.com/2021-07/isoiecdir1%7Bed17.0%7Den.pdf, 
consulted on 9 September 2022 

https://storage-iecwebsite-prd-iec-ch.s3.eu-west-1.amazonaws.com/2021-07/isoiecdir1%7Bed17.0%7Den.pdf
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when they release a standard document. In our sample, the vast majority of country-level 

accreditations are declared identical.  

National standardization bodies have consensus-building processes that mirror those of 

international standard-setting organizations (SSOs). For example, the Standards Council of 

Canada (SCC) has a parallel process in which it releases a notice of intent when an international 

SSO makes a decision to develop a new standard. During the drafting process, the SCC provides 

inputs to international standard development25. Once the draft international standard is circulated, 

the SCC launches a two-month public review, providing an opportunity to feedback comments 

from Canadian stakeholders to the international standard-setting process. Once the final draft 

international standard is circulated, the SCC might develop Canadian technical deviations, where 

applicable, before releasing the standard domestically. Adoption of an international standard at the 

national level therefore accomplishes various functions. Through this multi-layered process of 

consensus-building, the standard diffuses geographically (Baron and Spulber, 2018, p.492). This 

may contribute to giving it standing and showing widespread acceptability of the endorsed 

technology. Furthermore, local adoption enhances accessibility through the publication of the 

standard document in the reference library of the domestic SSO, often translated into local 

language, and sometimes through a commitment by the domestic SSO to oversee conformance 

testing.  

 

 

 

 

 
25 https://www.scc.ca/sites/default/files/publications/SIRB_RG_Adoptions_v0.1_2017-04-24.pdf, consulted on 9 
September 2022 

https://www.scc.ca/sites/default/files/publications/SIRB_RG_Adoptions_v0.1_2017-04-24.pdf
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Table A4. Geographical diffusion of sample standards  

Number of country 

accreditations 

Frequency Number of country 

accreditations 

Frequency 

1 24 8 5 

2 11 9 3 

3 16 10 16 

4 17 11 53 

5 13 12 18 

6 8 13 1 

7 5 14 6 

 

 

Country-level variation in standard counts in our sample come from two sources. First, 

there is differential timing of adoption of the same standard across countries. This is coherent with 

the overall trend that Baron and Spulber observe Searle Center’s data on technology standards 

(2018). They observe that while it is typical for national-level SSOs to adopt a standard within 18 

months of the release of an international standard, it may take up to 10 years for some countries to 

adopt (Baron and Spulber, 2018, p.490). Cross-country variation in standard counts in our sample 

also come from countries adopting different combinations of standards.  There is sizeable variation 

in the amplitude of geographical diffusion across our sample of standards, with 24 standards being 

harmonized only in one of our sample countries, and 6 standards being harmonized in 14 of our 

19 sample countries. There is a group of 11 mostly European countries that tend to adopt standards 

as a block. Table A3 shows descriptive statistics on geographical diffusion. The column number 

of country accreditations shows the number of countries that have adopted a given standard, and 

the column frequency indicates the number of standards with a given level of geographic diffusion. 
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Appendix A4. List of largest smart grid innovators 

Firms that innovate in the smart grid space are diverse in terms of age, size and background. The 

group of biggest smart grid innovators is comprised of large diversified conglomerates, auto 

makers, electronics companies and large electricity sector players.   

Panasonic 409 International Business Machines 175 

Mitsubishi 404 Toyota 158 

General Electric 393 Kyocera Corporation 155 

Toshiba 372 Schneider Electric 151 

Siemens 354 Samsung 145 

Hitachi 313 Sony 129 

Asea Brown Boveri 283 Itron 117 

Chugoku Electric Power 197 Korea Electric Power Corporation 113 

LG 181 LS Electric (LSIS) 104 

Nippon Electric Corporation 179 Fujitsu 102 
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Appendix A5: Counting standard parts  

 

 Standard documents are composed of multiple parts, which are added overtime as new 

technological challenges surface. Because of this, in many instances not all parts of a standard are 

directly relevant to smart grids. Also, the year of the initial release of a standard may not accurately 

represent when specific attempts at coordinating over smart grid interoperability occurred since 

many of the parts that concern smart grids were added subsequently. Since we are interested in 

only including parts that are relevant to the smart grid, we count standards at the part level. This 

also allows us to capture the years in which standard parts concerning smart grids were adopted to 

more accurately measure when coordination efforts in this specific area occurred.  

 To illustrate this, standard IEC 61400: Wind energy generation systems is described below. 

The table below shows examples of different components that are part of this standard, with the 

years these new parts were first released by the international standard-setting body. In this 

example, we kept in our sample of standards only the parts 25-1 to 25-6 which are directly relevant 

to smart grids.  The variation we leverage in our regression analysis comes from differential timing 

of adoption of standard parts at the country-level. For various reasons, countries choose to adopt 

international standards at different times, with delays between the international release and country 

adoption that range from zero to 10 years across various technologies (Baron and Spulber, 2018, 

p.490).   We observe similar variation in our sample of smart grid standards. For example, 

Germany accredited standard part IEC 61400-25-2 in 2006 whereas Switzerland accredited it in 

2007. 
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Standard part First 

release 

Part 1: Design Requirements 1994 

Part 2: Small wind turbines 1996 

Part 3-1: Design requirements for fixed offshore wind turbines 2019 

…  

Part 25-1 Communications for monitoring and control of wind power plants – 

Overall description of principles and models 

2006 

Part 25-2 Communications for monitoring and control of wind power plants - 

Information models 

2006 

Part 25-3 Communications for monitoring and control of wind power plants - 

Information exchange models 

2006 

Part 25-4 Communications for monitoring and control of wind power plants – 

Mapping to communication profile 

2008 

Part 25-5 Communications for monitoring and control of wind power plants - 

Compliance testing 

2006 

Part 25-6 Communications for monitoring and control of wind power plants – 

Logical node classes and data classes for condition monitoring 

2010 
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APPENDIX B: DATA CONSTRUCTION 

 

Appendix B1: Definition of smart grids technologies included in sample, policy weights and 

knowledge stocks  

 

1. Patent classes included in smart grid sample  

Technology Patent class from the Cooperative Patent Classification 

Systems integration 

and efficiency 

Y02E 40/70: Smart grids as climate change mitigation technology 

in the energy generation sector. 
 

Y04S 10/00: Systems supporting electrical power generation, 

transmission or distribution (and all its subclasses: 10/12, 10/123, 

10/126, 10/14, 10/16, 10/18, 10/20, 10/22, 10/30, 10/40, 10/50, 

10/52) 

Smart grids in 

buildings 

Y02B 70/30: Systems integrating technologies related to power 

network operation and communication or information technologies 

for improving the carbon footprint of the management of 

residential or tertiary loads, i.e. smart grids as climate change 

mitigation technology in the buildings sector(…) (and all of its 

subclasses: 70/3225, 70/34) 
 

Y02B 90/20: Smart grids as enabling technology in the buildings 

sector.(This category overlaps with Y04 S 20*) 

ICTs applications to 

smart grids  

Y04S 40/00: Systems for electrical power generation, 

transmission, distribution or end-user application management 

characterised by the use of communication or information 

technologies, or communication or information technology 

specific aspects supporting them (and all of its subclasses: 40/12, 

40/121, 40/124, 40/126, 40/128, 20/18, 40/20).  
 

Y04S 50/00: Market activities related to the operation of systems 

integrating technologies related to power network operation and 

communication or information technologies (and all of its 

subclasses: 50/10, 50/12, 50/14, 60/16). 

End-user 

applications 

Y04S 20/00: Systems supporting the management or operation of 

end-user stationary applications, including also the last stages of 

power distribution and the control, monitoring or operation of 

management systems at the local level (and all of its subclasses: 

20/12, 20/14, 20/20, 20/221, 20/222, 20/242, 20/244, 20/246, 

20/248, 20/30).   
 Note: these definitions are from the European Patent Office’s Cooperative Patent Classification. A patent can be 

tagged under multiple categories. The full definitions of the CPC scheme may be found here: 

https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table 

 

 

 

 

 

 

https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table
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2. Patent classes used when building policy weights 

 

 To identify each firm’s relevant markets, we consider its granted patents in a 

broader set of relevant patent classes. Smart grids is a new sector of technology with little 

patenting activity in the pre-sample period. Considering only smart grid inventions would 

not allow us to build policy weights from pre-sample data. For this reason, we consider 

related technologies because they are likely to be marketed the same markets as firms’ 

smart grid inventions. 
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Technology field Corresponding patent classes 

Electricity Cooperative patent classification (CPC): H (and all subclasses) 

Green innovation Cooperative patent classification (CPC): Y (and all its subclasses 

with the exception of Y10) 

Information and 

communication 

technologies 

J-tag, taxonomy of ICT technologies based on the International 

Patent Classification (IPC). Select patent classes26: G06, G01S, 

G02F, G08B, G08G, G09G, G10L, G11B, G11C, H01P, H01Q, 

H01P, H01Q, H03B, H03C, H03D, H03F, H03G, H03H, H03J, 

H03K, H03L, H03M, H04H, H04J, H04K, H04L, H04N, H04Q, 

H04R, H04S, H04W, G01V3, G01V8, G02B6, G09B5, G09B7, 

G09B9, H01L2, H01L3, H01L4, H01S5, H04B1, H04B5, H04B7, 

H04M1, H04M3, B82Y10, G01V15, H01B11, H04M15, 

H04M17, G07F7/08, G07F7/09, G07F7/10, G07F7/11, 

G07F7/12, B81B7/02, G07G 1/12, G07G 1/14. 

Other27 B60: Vehicles in general (and all its subclasses) 

F02C: Gas-turbine plants; air intakes for jet-propulsion plants; 

controlling fuel supply in air-breathing jet-propulsion plants (and 

all its subclasses) 

F02B: Internal-combustion piston engines; combustion engines in 

general (and all its subclasses) 

F16D: Couplings for transmitting rotation; clutches; brakes (and 

all its subclasses) 

F25B: Refrigeration machines, plants or systems; combined 

heating and refrigeration systems; heat pump systems (and all its 

subclasses) 

F25D: Refrigerators; cold rooms; ice-boxes; cooling or freezing 

apparatus not otherwise provided for (and all its subclasses) 

G05: Controlling; regulating (and all its subclasses) 

F21: Lighting (and all its subclasses) 

B62D: Motor vehicles; Trailers (and all its subclasses) 

 

 

 

 

 

 

 

 

 

 

 
26 The full taxonomy is available in Inaba, Takashi and Mariagrazia Squicciarini (2017). From the J-tax taxonomy, we 
selected technology areas that have applications in the electricity sector. 
27 These were added to account for additional patent classes in which the largest smart grid innovators have 
experience. We used data on all the patents held by the 30 largest smart grid innovators and collated the most 
frequent patent classes that were not already covered by the three previous categories (electricity, green innovation 
and ICTs).  
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3. Patent classes used to build internal and external knowledge stocks  

 

Knowledge stocks  Corresponding patent classes  

Smart grids Cooperative patent classification (CPC): Y02B 70/30, Y02B 

90/20, Y02E 40/70, Y04S 10, Y04S 20, Y04S 40, Y04S 50 

(and all their subclasses). 

Green technology Cooperative patent classification (CPC): Y02, Y04 (and all 

their subclasses, excluding smart grid classes above) 

Electricity  Cooperative patent classification (CPC): H, F21, F02C, F2B 

Information and communication 

technologies 

International Patent Classification (IPC): G06, G01S, G02F, 

G08B, G08G, G09G, G10L, G11B, G11C, H01P, H01Q, 

H01P, H01Q, H03B, H03C, H03D, H03F, H03G, H03H, 

H03J, H03K, H03L, H03M, H04H, H04J, H04K, H04L, 

H04N, H04Q, H04R, H04S, H04W, G01V3, G01V8, 

G02B6, G09B5, G09B7, G09B9, H01L2, H01L3, H01L4, 

H01S5, H04B1, H04B5, H04B7, H04M1, H04M3, 

B82Y10, G01V15, H01B11, H04M15, H04M17, 

G07F7/08, G07F7/09, G07F7/10, G07F7/11, G07F7/12, 

B81B7/02, G07G 1/12, G07G 1/14 
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Appendix B2: Building knowledge stocks  

Internal knowledge stocks 

To obtain internal knowledge stocks for the sample firms, we collect patents for these firms 

going back to 1977.  As smart grids technology may draw on multiple disciplines, we construct 

four knowledge stocks: smart grids, renewable energy, electricity generation, and information 

technology (IT). 28 For each of these areas of technology, we aggregate patent filings from each 

year into an internal stock of knowledge for each firm. These stocks represent the firm’s past 

patenting history and are the internal knowledge upon which future innovation can build.  Defining 

d as the depreciation rate of knowledge and Pijt as the successful patent applications in technology 

j filed by firm i in year t, the internal knowledge stock, KINT is: 

𝐾𝑖𝑗𝑡
𝐼𝑁𝑇 = (1 − 𝛿)𝐾𝑖𝑗𝑡−1

𝐼𝑁𝑇 + 𝑃𝑖𝑗𝑡 

 

We use a 15% depreciation rate (𝛿) as our base case.  When taking logs, we add one to all 

knowledge stocks and include four dummy variables indicating when each knowledge stock equals 

zero. 

External knowledge stocks 

External knowledge stocks capture the potential for spillovers from innovations external to 

the firm. Following Aghion et al. (2016), the external spillovers to which each firm is exposed 

depends on the countries where its inventors are located.  Multinational companies have scientists 

working in multiple locations in multiple countries.  The inventor address on the patent reveals 

where the inventive activity took place. Using all of a firm’s patents in our relevant technology 

categories, we calculate weights for each country using a time-invariant share of the number of 

 
28 Given the interdisciplinary nature of smart grid innovation, there is overlap between these categories. Patents 
are typically tagged under several different CPC classes, and may appear in more than one of our 4 categories.  In 
these cases, we count the patent as an invention in each of the categories.   
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inventors on firm i’s patents located in country c, 𝑤𝑖𝑐
𝐾.  This gives us the stock of external 

knowledge: 

𝐾𝑖𝑗𝑡
𝐸𝑋𝑇 = ∑ 𝑤𝑖𝑐

𝐾𝐾𝑖𝑐𝑗𝑡
𝐸𝑋𝑇

𝑐

 , 

where  

𝐾𝑖𝑐𝑗𝑡
𝐸𝑋𝑇 = (1 − 𝛿)𝐾𝑖𝑐𝑗𝑡−1

𝐸𝑋𝑇 + 𝑃𝑐𝑗𝑡 − 𝑃𝑖𝑐𝑗𝑡 

 

represents a stock of knowledge that includes patents granted to other inventors in country c at 

time t.  Thus, the external knowledge stock assumes that firms are exposed to spillovers in each of 

the countries where they have inventive activity, and places the greatest weight on spillovers from 

countries where they do most of their inventive activity. To build these stocks, we considered all 

the countries in which our sample firms have inventive activities and not just our 19 sample 

countries.  

Note that Pcjt includes all patents granted in the relevant patent classes for technology j in 

country c at time t, not just those assigned to the firms in our sample.  This includes patents that 

may be assigned to public sector organizations such as universities or government laboratories.  

We include spillovers from multiple technologies since smart grid innovations may arise in 

multiple sectors.  This set-up allows for spillovers from all innovations in relevant fields.  For 

example, spillovers from relevant IT knowledge need not only come from IT firms that actively 

patent in smart grids. Our external knowledge stock allows for this possibility.
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Appendix B3: Control variables 

Share of electricity generation from renewable sources. Greater renewables integration 

may further exacerbate grid pressures and generate demand for smart grid technologies, thereby 

inducing innovation. This variable also proxies for policies that encourage renewables adoption.  

The deployment of renewable energy technologies across the markets we study would not have 

happened without policy. OECD data on the stringency of green energy policies such as feed-in-

tariffs, emissions taxes and emissions trading schemes are unavailable for the years 2013-2016. 

We therefore cannot include those variables in our main model. Given this, we use data from the 

International Energy Agency’s World Energy Balances Highlights on electricity generation from 

renewable sources as a share of total electricity generation. This includes energy generated from 

hydro, geothermal, solar, wind, tide/wave/ocean, biofuels and renewable waste.  

Growth in electricity consumption. We include this variable to also control for grid 

pressures that are potentially exacerbated by growth in the demand for electricity. We use net 

electricity consumption in billion kilowatt-hours from the Energy Information Administration’s 

World Statistics and compute the yearly percent change in consumption. 

Household electricity prices. Changes in electricity prices may induce innovation through 

their effect on the demand for end-user smart grid technologies. These technologies can help utility 

consumers manage their electricity consumption. Demand for these products may grow with 

electricity prices. We use household electricity price data from the International Energy Agency, 

that we deflated and adjusted for purchasing power parity. Prices are in 2015 US dollars.   

GDP per capita. We also control for GDP per capita because the income where a firm 

operates also affects demand for its products and its level of investment in research and 

development activities.  Gross domestic product and population data used to compute GDP per 
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capita are from the Organisation for Economic Co-operation and Development. We deflated and 

adjusted for purchasing power parity. Prices are in 2015 US dollars.  

Government incentives to R&D in grid-related technologies. We control for other public 

policies that target innovation in grid technologies. We use data on Energy Technology RD&D 

Budgets from the International Energy Agency, which tracks government spending by energy 

technologies at the country-level. We select technologies at the two-digit level because more 

granular categories have many missing values. We select the following categories as being relevant 

to grid modernization technologies: 62 Electricity transmission and distribution, 63 Energy 

storage, 69 Unallocated other power and storage techs, and 71 Energy system analysis. We 

interpolate missing values. We adjust for power purchasing parity and inflation. Values are 

expressed in 2015 US dollars.   

Government incentives to R&D in renewable energy technologies. We control for other 

public policies that target innovation in renewable energy technologies as those may affect 

innovation in smart grids due to spillovers or tradeoffs. We use data on Energy Technology RD&D 

Budgets from the International Energy Agency. For this variable we use spending in technology 

Group 3: Renewable energy sources. We interpolate missing values and adjust for power 

purchasing parity and inflation. Values are expressed in 2015 US dollars. 
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Appendix B4: Cleaning firm names and retrieving firms’ knowledge stocks  

We assume that internal knowledge can be accessed by all inventors within the same firm, 

including within multinational corporations whose inventors are located in different countries. A 

firm’s internal knowledge stocks reflect its accumulated experience innovating in relevant areas, 

upon which all its inventors can further build when conducting R&D. Patents proxy for firms’ 

accumulated knowledge. Assuming that knowledge stocks are shared across a firm’s inventors 

requires counting all the patents held by the firms’ various geographic branches, divisions, 

licensing units, etc.  

However, identifying those patents is a challenge in the PATSTAT database. The same 

firm can be associated with more than one person identifier because there is no centralized system 

to track person identifiers for patents filed in various national patent offices, by different branches 

or even the same branches but overtime because assignees are not required to file under a 

standardized name or identifier every time they file a new patent application. The name listed in 

the database is what appears on the patent at the time of its publication (Arora et al., 2021). The 

same assignee may be associated with different names for various reasons: a change in the name 

of the company overtime (e.g., Minnesota Mining and Manufacturing and 3M), listing a subsidiary 

rather than the parent company (e.g., Google and Alphabet), listing a geographic branch, a 

licensing unit or a specific division instead of the parent company (Arora et al., 2021). Different 

spellings and typos also occur. Examples include Alcatel USA and Alcatel Canada; Philips 

electronics North America corporation and Philips lighting North America corporation, ABB 

Research and ABB Patent; GM and General Motors; Siemen power transmission & distribution 

(sic) and Siemens power transmission and distribution. We consider these to be the same firms.  
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To overcome these challenges, we cleaned firm names using a combination of keyword 

matching and manual verification. To select and clean our sample of firms, we use the variables 

psn_name and psn_id in PATSTAT. These names and identifiers have previously been partially 

cleaned using the University of Leuven harmonization procedure29. We use the variable psn_sector 

to select assignees that are companies. For assignees whose psn_sector is unknown, we first keep 

only those whose name is different from the name of the inventor to filter out individuals. We then 

conduct further manual cleaning to remove any remaining individuals, universities, non-profits, 

etc.  

We then group the various assignee names that belong to the same company. We assume 

that different subsidiaries, country offices, and divisions of a same parent company share 

knowledge stocks and therefore assign them a common identifier. To do so we do keyword 

matching after removing words that commonly occur in our sample such as energy, automation, 

superconductor, electric, windpower, etc. We also include on the stop list mentions of companies’ 

legal entity types such as ltd, limited, llc, s.p.a., ghmb, holding, inc, corp, and other frequently 

occurring geographic and division designations such as Korea, China, America, national, regional, 

global, corporate, technology, innovation, etc. We manually verify each match and confirm 

ambiguous ones using online searches.  

To collect data on firms’ internal knowledge stocks, the two challenges we seek to 

overcome when cleaning firm names are 1) including irrelevant company names and therefore 

irrelevant knowledge stocks, and 2) omitting relevant company names and failing to include 

 
29 This initiative harmonizes person identifiers using manual and automated cleaning. Details about this 

harmonization procedure may be found in the PATSTAT Data Catalogue 

((https://documents.epo.org/projects/babylon/eponot.nsf/0/9440099DEF5C9067C125884600546C48/$File/patstat_d

ata_catalog_global_5_19_en.pdf, p.295-297) and in WIPO documentation on name standardization efforts 

(https://www.wipo.int/edocs/mdocs/classifications/en/wipo_ip_cws_ns_ge_19/wipo_ip_cws_ns_part_1_callaert.pdf)  

https://documents.epo.org/projects/babylon/eponot.nsf/0/9440099DEF5C9067C125884600546C48/$File/patstat_data_catalog_global_5_19_en.pdf
https://documents.epo.org/projects/babylon/eponot.nsf/0/9440099DEF5C9067C125884600546C48/$File/patstat_data_catalog_global_5_19_en.pdf
https://www.wipo.int/edocs/mdocs/classifications/en/wipo_ip_cws_ns_ge_19/wipo_ip_cws_ns_part_1_callaert.pdf
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relevant knowledge stocks. To overcome this challenge, we further search for person identifiers 

that do not appear in our sample of smart grid patents. We do this to ensure that we do not overlook 

assignees that belong to the parent companies in our sample and have patents in CPC classes 

relevant for building the knowledge stocks variables and policy weights and would be missing 

from the sample if we only use applicant identifiers related to smart grid patents. We use wildcards 

to search the PATSTAT database for the brand name of the largest 325 companies in our sample. 

We limit our search to companies that have 5 or more smart grids patents because the likelihood 

that small firms have multiple identifiers is low. These searches sometimes return dozens and even 

hundreds of identifiers for large conglomerates such as Mitsubishi. Japanese and Korean 

conglomerates typically have a more decentralized corporate governance structure than European 

and North American conglomerates. For example, the different divisions of Mitsubishi operate as 

independent legal entities. For these, we further clean the search results to include only the ones 

containing keyword mentioned in the original sample of smart grid innovators. For example, we 

include Mitsubishi electric, Mitsubishi heavy industries and Mitsubishi semiconductors, but 

exclude patents by Mitsubishi metals and Mitsubishi materials from Mitsubishi’s internal 

knowledge stocks.
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Appendix B5: Assigning home country to firms  

We need to assign a home country to each firm in our sample for two reasons: 1) our sample 

consists of firms that own granted patents in 19 OECD countries and whose home country is also 

in-sample, and 2) in robustness check 2.1, we also use information on firms’ home countries to 

assign policy weights to new firms for which there is no pre-sample patents. To assign a country 

to a firm, we use information on the country of the applicant for the patents associated with that 

firm.  We consider all the patents we collected in the period 1965-2020.  These include patents in 

the cooperative patent classification sub-classes H (electricity), Y (environmental innovation), 

B60, F02C, F02B, F16D, F25B, F25D, G05, F21, B62D, and patents in the J-tag (ICTs) of the 

International Patent Classification. Fewer than a quarter of firms have more than one assignee 

country listed on their patents. For these, we use the country most frequently mentioned. In the 

case of a tie or when the applicant country is missing, we use information about priority patents to 

infer the missing values. We assume that the country where the firms’ priority patents are filed is 

the home country.
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Appendix B6: Firms in sample countries  

We use countries where firms obtained patents as an indication of where their markets are 

located. Applying for patents is a costly process and it is reasonable to expect that firms only file 

in countries where they intent to sell their products (Aghion et al., 2016). When considering firms’ 

markets, we are limited to 19 OECD countries for which we have complete data for our 

explanatory variables. However, many firms operate in markets beyond these 19 countries and 

might therefore be influenced by economic and policy conditions in markets for which we do not 

have data. To avoid spurious associations, it is important that we only include firms that have high 

exposure to explanatory variables in our sample countries and are therefore less likely to be 

influenced by conditions in out-of-sample countries.  

Given this, we built the policy weights using information on all countries where firms have 

granted patents in relevant patent classes. In our main specification, we use the following 

Cooperative Patent Classification sub-classes: H (electricity), Y (environmental innovation), B60, 

F02C, F02B, F16D, F25B, F25D, G05, F21, B62D, and the J-tag (ICTs) of the International Patent 

Classification. To ensure sufficient exposure to the policies included in the explanatory variables, 

in the sample we only include firms located in these 19 countries.  With this strategy, the sample 

is composed of firms who conduct a large share of their business in the 19 countries for which we 

have complete policy data. Using this strategy, 90% of the sample firms have at least 93% of their 

granted patents in those 19 countries. Table 2 shows further descriptive statistics about the 

coverage of the policy weights.  
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Table B6. Market coverage of sample countries for sample firms  

Percentile Sum of weights Percentile Sum of Weights 

1% 0.5865056 75% 0.987733 

5% 0.6550884 90% 0.9896584   

10% 0.935672   95% 0.9946694 

25% 0.9611475 99% 1 

50% 0.9764343     

Min: 0.3174534 Mean: 0.953985 Max: 1 
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Appendix B7: Assigning country to patent family  

To build external knowledge stocks, we assign countries to patents. To identify where a patent 

originated, we use information on the location of its inventor(s). This implies that what matters for 

invention are spillover in the countries where the firm’s R&D activities take place. However, the 

person country is often missing for inventors in PATSTAT (for methods to infer missing values, 

see: Pasimeni, 2019; Rassenfosse and Seliger, 2021). To infer those missing values, we use the 

following strategy:   

- For patents that always have inventor country available, but for which this information is 

inconsistent within the patent family, we assign the inventor country that is most frequently 

listed. When there are ties, we use information contained in the most recent publication of 

the patent family.  

- For patents that are sometimes missing inventor country data, we use the inventor country 

listed in the publication that contains complete information.  

- When inventor information is always incomplete, we retrieve inventor country information 

from other patents that have the same inventor(s). This assumes that inventors are not 

mobile. When there are multiple countries, we assign the most frequently listed on other 

patents.  

- In the case of patents for which we cannot infer inventor country information using the 

steps above, we assign the country of the applicant.
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Appendix B8: Summary statistics  

 

Table B8. Summary statistics           

  Count Mean SD Min Max 

Country-level variables            

Standards 323 4.07 7.07 0.00 97 

Standards (cumulative) 323 37.70 37.81 0.00 215 

RD&D renewables 323 6,928.16 27,038.30 0.46 187,898 

RD&D grid 323 3,129.54 12,999.40 0.00 87,114 

Household electricity prices 323 204.62 114.03 76.76 1,228.07 

Renewables share 323 0.30 0.26 0.01 1 

GDP per capita 323 41,386.57 10,043.86 11,891.63 68,787.47 

Growth electricity consumption 323 1.19 3.26 -6.85 22.41 

Firm-level variables           

Patent count 30628 1.74 12.16 0.00 650.00 

Internal stocks - smart grids 30628 1.65 8.51 0.00 234.47 

Internal stocks - green tech 30628 43.35 294.52 0.00 10,104.26 

Internal stocks - electricity 30628 168.16 1,065.04 0.00 34,488.09 

Internal stocks - ICTs 30628 281.41 1,723.34 0.00 41,705.38 

Pre-sample mean of patents 30628 31.13 197.94 0.00 3,310.04 

Country-level variables, weighted at the firm-level  

Standards 30628 5.72 3.92 0.00 33.97 

Standards (cumulative) 30628 48.77 30.23 0.00 141.96 

RD&D renewables 30628 16,974.02 28,507.93 13.13 187,898 

RD&D grid 30628 7,248.33 13,591.65 0.00 87,114 

Household electricity prices 30628 169.36 35.59 106.20 379.33 

Renewables share 30628 0.16 0.07 0.01 0.77 

GDP per capita 30628 45,841.91 4,741.09 24,860.99 57,459.40 

Growth electricity consumption 30628 0.79 2.32 -6.85 22.41 

External stocks - smart grids 30628 810.91 724.55 0.00 2,537.94 

External stocks - green tech 30628 32,160.91 22,099.83 27.79 86,991.48 

External stocks - electricity 30628 106,588.7 59,810.06 76.55 206,606.6 

External stocks - ICTs 30628 167,952.7 104,892 120.54 327,427.2 

 

 



 

 xlii 

APPENDIX C: ROBUSTNESS CHECKS AND OTHER RESULTS 

 

Appendix C1: Full results for main model 

 
Table C1. Regression results from Zero-Inflated Poisson regressions (full results) 
Variables Intensive margin Extensive margin 

      

Standards -0.038*** 0.016* 

  (0.012) (0.008) 

RD&D smart grid 0.116 0.019 

  (0.074) (0.039) 

RD&D renewables -0.197** -0.033 

  (0.091) (0.050) 

Int. knowledge stocks - smart grids 0.598*** -1.436*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.075** -0.180*** 

  (0.032) (0.022) 

Int. knowledge stocks - electricity 0.137*** -0.147*** 

  (0.034) (0.029) 

Int. knowledge stocks - ICTs -0.165*** -0.012 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.454** -0.414*** 

  (0.185) (0.098) 

Ext. knowledge stocks - green tech -0.565*** 0.078 

  (0.151) (0.096) 

Ext. knowledge stocks - electricity -0.010 0.013 

  (0.177) (0.094) 

Ext. knowledge stocks - ICTs 0.108 0.290*** 

  (0.151) (0.101) 

Renewables share -1.077 -1.146** 

  (0.887) (0.564) 

Elect. consumption growth 0.018 0.016 

  (0.028) (0.016) 

Household elect. prices 0.530 0.280 

  (0.418) (0.304) 

GDP per capita 0.857 1.083** 

  (0.593) (0.453) 

Average patents /year in pre-sample 0.000*** -0.001*** 

  (0.000) (0.000) 

New firm -0.054 -0.060 

  (0.104) (0.049) 

Zero stock - smart grids 0.192** -2.013*** 

  (0.092) (0.065) 

Zero stock - green tech 0.225** -0.195*** 

  (0.102) (0.051) 

Zero stock - electricity -0.015 -0.693*** 

  (0.100) (0.054) 

Zero stock - ICTs 0.051 -0.437*** 

  (0.093) (0.050) 

  
  

Marginal effect, standards (combined) -0.076*** 

  (0.021) 

  
  

Observations 30,628 30,628 

Log-likelihood -47022 -47022 

Note:  Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix C2: Robustness checks  

 

We verify that our results are robust to making different research decisions and 

assumptions concerning 1) the home markets of firms with no pre-sample patent data, 2) the patent 

classes used to build the policy weights, 3) the rate at which knowledge stocks depreciate,  4) GDP 

weighting to account for market size in the policy weights, 5) the number of lagged periods it takes 

for standards to have an effect on patents, and 6) the choice of measure for the standards variable. 

We find that our results are robust to making these different research decisions.  

The robustness checks presented below all use our main specification: an unbalanced zero-

inflated Poisson model, with the average pre-sample mean of patents, a dummy variable that 

identifies firms with no pre-sample data, and year dummies.  

C2.1 Policy weights, assumptions for new firms 

We constructed policy weights using information on the countries where firms obtained 

patents during the pre-sample period.  Applying for patents is costly, and firms seek intellectual 

property protection only in markets where they intend to sell their products (Aghion et al., 2016).  

We use this information as an indication of where their relevant markets are located. Because smart 

grids are an emerging area of technology with few patents in the pre-sample period, we use firms’ 

patents in green innovation, electricity, and information technologies more broadly to construct 

those weights. It is also a feature of this sector that several firms are too new to have patents prior 

to 2000. For these firms, in the main specification we weight their exposure to international 

markets using the average market share of all other companies from the same home country for 

which we have pre-sample data. In this robustness check, we instead assume that those firms 

conduct all their business in their home country, and therefore, that only the policies and economic 

conditions in their home country are relevant. In other words, we assign a weight of one to these 
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companies’ home country. Table C2.1 shows results for this robustness check. We lose 

significance on the standards and the renewables share variables at the extensive margin, and the 

smart grid external knowledge stocks at the intensive margin. Other key results remain unchanged 

with coefficients of similar magnitude and significance.  

Table C.2.1.2 shows results for this robustness checks for large and small firms. As noted 

in the text, assuming that firms without any pre-sample data only operate domestically is more 

likely to hold for small firms. In this table, the key finding that the negative effect of standards is 

driven by large firms and that small firms are more responsive to government R&D support 

remains unchanged. However, government R&D support to smart grids has the effect of reducing 

the inventive activities of large firms at the extensive margin. Some of the results for the external 

knowledge stocks are also sensitive to assigning these different policy weights to new firms, as 

this robustness check changes firms’ exposure to these variables. For small firms, we lose 

significance for the green and electricity external knowledge stocks at the intensive margin, but 

external smart grids stocks matter at both margins for these firms.  For these firms, higher 

renewables share now dampen patenting at the extensive margin rather than the intensive margin. 

For large firm, external knowledge stocks in electricity now encourage entry, but external smart 

grids stocks do not. Other key results remain unchanged. 
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Table C2.1.1 Alternative weights for firms with no pre-sample patents – main model 

Variables Intensive margin Extensive margin 

      

Standards -0.023*** 0.004 

  (0.007) (0.004) 

RD&D smart grid 0.055 -0.002 

  (0.047) (0.019) 

RD&D renewables -0.125** 0.016 

  (0.053) (0.025) 

Int. knowledge stocks - smart grids 0.603*** -1.450*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.071** -0.188*** 

  (0.032) (0.022) 

Int. knowledge stocks - electricity 0.134*** -0.138*** 

  (0.033) (0.028) 

Int. knowledge stocks - ICTs -0.163*** -0.011 

  (0.030) (0.024) 

Ext. knowledge stocks - smart grids 0.271 -0.278*** 

  (0.205) (0.098) 

Ext. knowledge stocks - green tech -0.446*** -0.044 

  (0.163) (0.099) 

Ext. knowledge stocks - electricity 0.127 -0.004 

  (0.192) (0.095) 

Ext. knowledge stocks - ICTs 0.056 0.304*** 

  (0.148) (0.102) 

Renewables share -0.432 0.240 

  (0.290) (0.185) 

    
Marginal effect, standards (combined)     -0.042*** 

  (0.012) 

    
Observations 30,628 30,628 

Log-likelihood -47022 -47022 

Note: In this model, firms with no pre-sample patents and for which it is not possible to build weights are assigned 

their home country as their main market. Robust standard errors are included in parentheses. *** p<0.01, ** 

p<0.05, * p<0.1 
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Table C.2.1.2 Alternative weights for firms with no pre-sample patents - heterogeneity 

  Large firms Small firms 

Variables Intensive m. Extensive m. Intensive m. Extensive m. 

          

Standards -0.048*** 0.021* -0.005 0.002 

  (0.012) (0.012) (0.007) (0.005) 

RD&D smart grid 0.023 0.074** 0.083** -0.013 

  (0.119) (0.036) (0.040) (0.023) 

RD&D renewables 0.002 -0.015 -0.190*** 0.014 

  (0.127) (0.054) (0.051) (0.031) 

Int. knowledge stocks - smart grids 0.638*** -1.246*** 0.399** -1.533*** 

  (0.033) (0.056) (0.188) (0.095) 

Int. knowledge stocks - green tech 0.072* -0.156*** -0.205 -0.068 

  (0.037) (0.025) (0.150) (0.061) 

Int. knowledge stocks - electricity 0.218*** 0.013 0.007 -0.290*** 

  (0.044) (0.035) (0.063) (0.052) 

Int. knowledge stocks - ICTs -0.210*** -0.078** -0.099 -0.008 

  (0.036) (0.031) (0.069) (0.049) 

Ext. knowledge stocks - smart grids 0.396 -0.086 0.335* -0.215* 

  (0.362) (0.179) (0.192) (0.122) 

Ext. knowledge stocks - green tech -0.685*** 0.115 -0.241 -0.161 

  (0.231) (0.156) (0.214) (0.133) 

Ext. knowledge stocks - electricity 0.344 -0.367* -0.203 0.059 

  (0.301) (0.188) (0.165) (0.115) 

Ext. knowledge stocks - ICTs 0.012 0.286 0.166 0.309** 

  (0.211) (0.190) (0.191) (0.126) 

Renewables share 0.281 -0.620 -0.322 0.429** 

  (0.983) (0.647) (0.284) (0.207) 

          

Marginal effect, standards (combined) -0.205*** -0.005  

  (0.050)  (0.005) 

          

Number of firms 597 597 2,154 2,154 

Observations 9,523 9,523 21,105 21,105 

Log-likelihood -23751 -23751 -21315 -21315 

Note: In this model, firms with no pre-sample patents and for which it is not possible to build weights are 

assigned their home country as their main market. Robust standard errors are included in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1 
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C2.2 Knowledge stocks depreciation rate 

Another research decision pertains to the choice of the depreciation rate applied to the 

external and internal knowledge stocks variables (see Appendix B2, which details how these stocks 

were constructed). In our main specification, we use a 15% depreciation rate. In Table C2.2, we 

allow knowledge stocks to depreciate faster, at a rate of 20%. Both rates are commonly used in the 

literature, and using one or the other does not substantively alter our results.  

Table C2.2 20% depreciation rate for knowledge stocks 

Variables Extensive margin Intensive margin 

    
Standards, collapse(mean) -0.037*** 0.017* 

  (0.012) (0.008) 

RD&D smart grid, collapse(mean) 0.116 0.022 

  (0.074) (0.039) 

RD&D renewables, collapse(mean) -0.201** -0.034 

  (0.091) (0.050) 

Int. knowledge stocks - green tech 0.075** -0.185*** 

  (0.032) (0.022) 

Int. knowledge stocks - electricity 0.139*** -0.152*** 

  (0.034) (0.029) 

Int. knowledge stocks - ICTs -0.164*** -0.013 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.417** -0.410*** 

  (0.181) (0.095) 

Ext. knowledge stocks - green tech -0.563*** 0.080 

  (0.146) (0.093) 

Ext. knowledge stocks - electricity -0.009 0.023 

  (0.180) (0.094) 

Ext. knowledge stocks - ICTs 0.138 0.275*** 

  (0.153) (0.101) 

Renewables share -0.959 -1.221** 

  (0.876) (0.561) 

    
Marginal effect, standards (combined)     -0.076*** 

  (0.020) 

    
Observations 30,628 30,628 

Log-likelihood -46971 -46971 

Note: This model uses the same specification and control variables as our main model with the exception that the 

knowledge stocks variables depreciate 20% annually instead of 15%. Robust standard errors are in included in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1  

 



 

 xlviii 

C2.3 GDP weighting  

In our main specification we weight our policy weights by GDP to the power of 0.35, based 

on Dechezlepretre et al.’s (2021) suggestion that this value fits estimates of the elasticity of exports 

to GDP of the home country found by Eaton, Kortum, and Kramarz (2011). In Table C2.3, we 

weight by simple GDP (e.g.,using an exponent of 1), as in Aghion et al. (2016).  This alternative 

GDP weight places more importance on the size of each market. The effect of standards at the 

extensive margin is estimated less precisely and becomes insignificant, but the effect of 

government support to R&D in grid-related technologies becomes significant at the intensive 

margin. Other key results are unchanged. 

C2.4 Lagged variables 

We also check the effects of standards on patents using different lags, as it is unclear how 

many years it takes for standards to affect patenting levels.  Table C2.4.1 shows results from 

regressions that use different lags in separate models. For each of these models we lag all the time-

varying explanatory and control variables by 1 year, 2 years (main model), 3 years and 4 years 

respectively.  Results for the standards variable are generally robust, with the exception of the 

effect of standards at the extensive margin which is only significant in the short run.  Across all 

models, the combined marginal effect of standards is of similar magnitude and significance. Given 

this, we chose the model with the second lag as our preferred specification because it has a better 

goodness of fit than the models that include the 3rd and 4th lags. The model with the first lag has 

better goodness of fit but does not leave enough time for government R&D support to take effect. 

Government R&D only start becoming significant after two years have passed and becomes 

stronger and more significant thereafter.  Choosing the model with the second lag as our main 

specification allows to balance the effect of standards acting quickly than government R&D.
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Table C2.3 Alternative GDP weighting of the policy weights 

Variables Intensive margin Extensive margin 

      

Standards, collapse(mean) -0.056*** 0.013 

  (0.016) (0.011) 

RD&D smart grid, collapse(mean) 0.177* 0.042 

  (0.092) (0.049) 

RD&D renewables, collapse(mean) -0.285** -0.082 

  (0.126) (0.066) 

Int. knowledge stocks - smart grids 0.600*** -1.442*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.072** -0.174*** 

  (0.032) (0.022) 

Int. knowledge stocks - electricity 0.146*** -0.159*** 

  (0.037) (0.029) 

Int. knowledge stocks - ICTs -0.171*** -0.004 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.515*** -0.451*** 

  (0.164) (0.079) 

Ext. knowledge stocks - green tech -0.508*** 0.175* 

  (0.153) (0.092) 

Ext. knowledge stocks - electricity -0.142 -0.054 

  (0.177) (0.090) 

Ext. knowledge stocks - ICTs 0.100 0.323*** 

  (0.158) (0.104) 

Renewables share -3.576* -0.210 

  (1.912) (1.105) 

    
Marginal effect, standards (combined)     -0.106***  
  (0.029)  
    
Observations 30,628 30,628 

Log-likelihood -46934 -46934 

Note: This model uses the same specification and control variables as our main model with the exception that the 

policy weights are weighted by GDP instead of GDP to the power of 0.35.       *** p<0.01, ** p<0.05, * p<0.1 
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Table C2.4.1 Regression results for alternative lags 
  1 year lag 2 year lag 3 year lag 4 year lag 

Variables Intensive m. Extensive m. Intensive m. Extensive m. Intensive m. Extensive m. Intensive m. Extensive m. 

  
        

Standards -0.030** 0.039*** -0.038*** 0.016* -0.037** -0.002 -0.049*** -0.003 

  (0.013) (0.009) (0.012) (0.008) (0.015) (0.009) (0.013) (0.009) 

RD&D smart grid 0.061 -0.042 0.116 0.019 0.172** 0.004 0.184*** 0.006 

  (0.070) (0.045) (0.074) (0.039) (0.074) (0.038) (0.065) (0.034) 

RD&D renewables -0.098 0.042 -0.197** -0.033 -0.267*** -0.021 -0.260*** -0.035 

  (0.098) (0.059) (0.091) (0.050) (0.087) (0.047) (0.074) (0.044) 

Int. knowledge stocks - smart grids 0.652*** -1.596*** 0.598*** -1.436*** 0.566*** -1.333*** 0.561*** -1.250*** 

  (0.031) (0.051) (0.032) (0.050) (0.033) (0.051) (0.036) (0.053) 

Int. knowledge stocks - green tech 0.048 -0.168*** 0.075** -0.180*** 0.102*** -0.196*** 0.113*** -0.206*** 

  (0.031) (0.022) (0.032) (0.022) (0.032) (0.021) (0.033) (0.021) 

Int. knowledge stocks - electricity 0.140*** -0.177*** 0.137*** -0.147*** 0.122*** -0.127*** 0.136*** -0.127*** 

  (0.034) (0.029) (0.034) (0.029) (0.036) (0.029) (0.039) (0.029) 

Int. knowledge stocks - ICTs -0.167*** -0.007 -0.165*** -0.012 -0.162*** -0.023 -0.171*** -0.018 

  (0.029) (0.025) (0.029) (0.025) (0.030) (0.025) (0.030) (0.025) 

Ext. knowledge stocks - smart grids 0.525*** -0.590*** 0.454** -0.414*** 0.503*** -0.370*** 0.587*** -0.344*** 

  (0.165) (0.103) (0.185) (0.098) (0.176) (0.095) (0.159) (0.092) 

Ext. knowledge stocks - green tech -0.621*** 0.065 -0.565*** 0.078 -0.521*** 0.098 -0.461*** 0.131 

  (0.152) (0.099) (0.151) (0.096) (0.152) (0.094) (0.156) (0.094) 

Ext. knowledge stocks - electricity -0.015 0.068 -0.010 0.013 0.028 0.022 0.106 -0.023 

  (0.154) (0.098) (0.177) (0.094) (0.167) (0.091) (0.147) (0.090) 

Ext. knowledge stocks - ICTs 0.080 0.429*** 0.108 0.290*** 0.004 0.206** -0.193 0.187* 

  (0.162) (0.104) (0.151) (0.101) (0.143) (0.099) (0.152) (0.098) 

Share of renewables -0.596 -1.289** -1.077 -1.146** -1.435* -1.225** -1.091 -1.691*** 

  (0.946) (0.574) (0.887) (0.564) (0.872) (0.556) (0.901) (0.536) 

  
        

Marginal effect, standards (comb.) -0.076*** 
 

-0.076*** 
 

-0.062** 
 

-0.082*** 
 

  (0.022) 
 

(0.021) 
 

(0.025) 
 

(0.229) 
 

  
        

Observations 30,628 30,628 30,628 30,628 30,623 30,623 30,618 30,618 

Log-likelihood -45292 -45292 -47022 -47022 -47918 -47918 -48430 -48430 

AIC 90735 90735 94195 94195 95988 95988 97011 97011 

Note: These regressions include the same control variables as the main model. Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table C2.4.2 Short and long run effects of standards 
Variables Intensive margin Extensive margin 

  
  

Standards (1 year lag) -0.012 0.029*** 

  (0.013) (0.008) 

Standards (2 year lag) -0.023* 0.014* 

  (0.012) (0.008) 

Standards (3 year lag) -0.027** -0.004 

  (0.013) (0.008) 

Standards (4 year lag) -0.047*** -0.002 

  (0.012) (0.008) 

Joint significance  -0.110*** 0.037** 

  (0.024) (0.015) 

  
  

RD&D smart grid (1 year lag) -0.145 -0.024 

  (0.116) (0.071) 

RD&D smart grid (2 year lag) -0.003 0.049 

  (0.139) (0.078) 

RD&D smart grid (3 year lag) 0.088 0.028 

  (0.120) (0.080) 

RD&D smart grid (4 year lag) 0.129 -0.034 

  (0.088) (0.063) 

Joint significance 0.068 0.019 

  (0.075) (0.043) 

  
  

RD&D renewables (1 year lag) 0.105 0.163 

  (0.211) (0.117) 

RD&D renewables (2 year lag) -0.011 -0.066 

  (0.257) (0.142) 

RD&D renewables (3 year lag) -0.335 0.139 

  (0.225) (0.136) 

RD&D renewables (4 year lag) 0.039 -0.236** 

  (0.175) (0.106) 

Joint significance -0.202** 0.001 

  (0.095) (0.057) 

  
  

Observations 30,618 30,618 
Log-likelihood -48118 -48118 

Note: This regression adds the first, third and fourth lags to the main model. The internal and external knowledge 

stocks variables and zero stock dummies are lagged by 4 periods instead of two. The variables share of 

renewables, electricity consumption growth, household electricity prices and GDP per capita are lagged by two 

periods, as in the main model. Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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We also investigate the short and long-run effects of standards by including these 4 lags in 

a single model, and testing whether the effect of standards over the four years that follow the 

introduction of a standard is jointly significant. Result from this model, included in Table C2.4.2, 

show that the effect of standards at the intensive margin becomes stronger and more significant 

overtime and that the effect for the four years is jointly significant at both the extensive and 

intensive margins.  

 

C2.5 Cumulative stock of patents 

We also conduct robustness checks using an alternative measure of the standards variable, 

as it is unclear which measure is most appropriate. In our main model, we use a simple count of 

patents. Results using this variable can be interpreted as an event-study approach – how does the 

accreditation of a new standard in a firm’s market affect innovation. In these robustness checks, 

we use a cumulative count of all smart grids standards that have been accredited in country c up 

to and including year t. This count can be interpreted as a proxy for the overall level of 

standardization each firm is exposed to in its markets.  Tables C2.5.1, C2.5.2 and C2.5.3 replicates 

our main results tables (Tables 1, 2 and 3) using this cumulative count of standards as the main 

explanatory variable.  Overall, using this measure allows to estimate the effects of the RD&D 

variables more precisely, and our results on the standards variables are generally robust at the 

intensive margin. 
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Table C2.5.1 Main model on cumulative count of standards 

Variables Intensive margin Extensive margin 

      

Standards -0.021*** -0.002 

  (0.004) (0.003) 

RD&D smart grid 0.124* 0.009 

  (0.071) (0.039) 

RD&D renewables -0.325*** -0.053 

  (0.084) (0.053) 

Int. knowledge stocks - smart grids 0.596*** -1.433*** 

  (0.032) (0.050) 

Int. knowledge stocks - green tech 0.078** -0.179*** 

  (0.032) (0.022) 

Int. knowledge stocks - electricity 0.149*** -0.144*** 

  (0.035) (0.029) 

Int. knowledge stocks - ICTs -0.171*** -0.014 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.233 -0.438*** 

  (0.180) (0.099) 

Ext. knowledge stocks - green tech -0.327** 0.096 

  (0.155) (0.099) 

Ext. knowledge stocks - electricity 0.149 0.049 

  (0.175) (0.096) 

Ext. knowledge stocks - ICTs -0.059 0.261** 

  (0.153) (0.104) 

Renewables share -0.947 -1.143** 

  (0.854) (0.567) 

      

Marginal effect, standards (combined)    -0.034*** 

  (0.007) 

      

Observations 30,628 30,628 

Log-likelihood -46771 -46771 

Note: This model uses the same specification and control variables as our main model with the exception that the 

main explanatory variable is a cumulative count of standards. Robust standard errors are included in parentheses.                                  

*** p<0.01, ** p<0.05, * p<0.1 

 

 

In Table C2.5.1 using the cumulative count of standards slightly attenuates the effect of 

standards at the intensive margin, and the coefficient is estimated with less precision at the 

extensive margin. Conversely, it makes the results on the RD&D variables stronger and more 

significant at the intensive margin. The results for the knowledge stocks variables remain 
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generally unchanged, with the exception of the smart grids external knowledge stocks, which is 

estimated less precisely at the intensive margin.  

 

Table C2.5.2 Regression results by firm size using cumulative count of patents 

  Large firms Small firms 

Variables Intensive m. Extensive m. Intensive m. Extensive m. 

      
Standards -0.031*** -0.001 -0.001 -0.004 

  (0.005) (0.004) (0.005) (0.004) 

RD&D smart grid 0.013 0.062 0.233*** 0.061 

  (0.111) (0.068) (0.082) (0.050) 

RD&D renewables -0.202* -0.001 -0.449*** -0.134* 

  (0.116) (0.086) (0.100) (0.072) 

Int. knowledge stocks - smart grids 0.640*** -1.219*** 0.389** -1.536*** 

  (0.033) (0.056) (0.190) (0.095) 

Int. knowledge stocks - green tech 0.076** -0.145*** -0.197 -0.067 

  (0.037) (0.025) (0.154) (0.062) 

Int. knowledge stocks - electricity 0.231*** 0.020 -0.017 -0.300*** 

  (0.048) (0.036) (0.064) (0.052) 

Int. knowledge stocks - ICTs -0.211*** -0.089*** -0.089 -0.005 

  (0.036) (0.032) (0.072) (0.049) 

Ext. knowledge stocks - smart grids -0.115 -0.411** 0.335 -0.263** 

  (0.347) (0.202) (0.208) (0.121) 

Ext. knowledge stocks - green tech -0.220 0.249 -0.345* -0.065 

  (0.249) (0.164) (0.198) (0.128) 

Ext. knowledge stocks - electricity 0.619** -0.145 -0.281* 0.055 

  (0.305) (0.195) (0.171) (0.121) 

Ext. knowledge stocks - ICTs -0.216 0.210 0.306 0.260** 

  (0.212) (0.197) (0.186) (0.128) 

Renewables share 0.873 -1.391* -2.244** 0.230 

  (1.032) (0.816) (1.014) (0.903) 

      
Marginal effect, standards      -0.119*** 0.001 

  (0.021) (0.004) 

      
Observations 9,523 9,523 21,105 21,105 

Log-likelihood -23413 -23413 -21227 -21227 

Note: These regressions use the same specification and control variables as the main model. Large firms are defined 

as firms that had more than 100 patents in the ICT, electricity and green innovation patent classes durin the period 

1977-2016. Small firms are defined as firms that 100 or fewer patents in the same patents class and period.  Robust 

standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table C2.5.3  Effect on new entrants using cumulative count of standards 
Variables Intensive margin Extensive margin 

      

Standards -0.022*** 0.015*** 

  (0.004) (0.003) 

Interaction standards and zero stock dummy 0.004 -0.034*** 

  (0.003) (0.002) 

RD&D smart grid 0.132* -0.019 

  (0.071) (0.041) 

RD&D renewables -0.336*** 0.020 

  (0.084) (0.055) 

Int. knowledge stocks - smart grids 0.603*** -1.436*** 

  (0.032) (0.049) 

Int. knowledge stocks - green tech 0.079** -0.174*** 

  (0.032) (0.021) 

Int. knowledge stocks - electricity 0.153*** -0.147*** 

  (0.035) (0.028) 

Int. knowledge stocks - ICTs -0.175*** 0.002 

  (0.029) (0.025) 

Ext. knowledge stocks - smart grids 0.230 -0.260** 

  (0.181) (0.101) 

Ext. knowledge stocks - green tech -0.331** 0.076 

  (0.156) (0.102) 

Ext. knowledge stocks - electricity 0.172 -0.074 

  (0.180) (0.100) 

Ext. knowledge stocks - ICTs -0.073 0.218** 

  (0.154) (0.106) 

Renewables share -0.984 -0.991* 

  (0.858) (0.571) 

      

Joint significance -0.018*** -0.019*** 

  (0.004) (0.003) 

      

Observations 30,628 30,628 

Log-likelihood -46493 -46493 

Note: This regression uses the same specification and control variables as the main model. This model interacts the 

standards variables with a dummy variable that indicates whether the firm had any internal knowledge stocks in 

past periods. As with other variables, we use the second lag. Robust standard errors are included in parentheses. 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 
Our results for large firms, shown in table C.2.5.2 are more sensitive to using the 

cumulative count of patents than the results for small firms. This being said, key results remain 

robust to using this alternative measure. For large firms, the coefficients on the standard variables 

and the combined marginal effect is smaller, which is consistent with one new standard being a 

smaller percentage increase in the cumulative count.  , Moreover, the effect of standards on large 

firms loses significance at the extensive margin. Conversely, the RD&D renewables variable 
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becomes significant at the extensive margin. The external knowledge stocks are more sensitive to 

changing our measure of the standard variable with the green stocks losing significance and the 

electricity stocks gaining significance. Our results are substantively unchanged for small firms 

with the exception that the external ICT knowledge stocks variables is estimated less precisely at 

the intensive margin. 

Finally, table C.2.5.3 shows again that using a cumulative count attenuates the effect of 

standards, but the sign and significance of these coefficient corroborate our main findings. Again, 

the effects of the RD&D variables are estimated with greater precision and other key results remain 

unchanged.  

C2.6 Alternative cut-off years 

We also verify that the cutoff year we use for building the policy weights is not driving the 

results. In the main specification, we build policy weights using firms’ patents in the years 1977-

1999 and begin the regression analysis in 2000. In Table 14, we use patent data for the years 1977-

2004 to build the policy weights and begin the regression analysis in 2005. While the effects of 

external knowledge are somewhat sensitive to when the stocks are constructed, our main results 

on standards and R&D are not affected by changing the years of the sample. 
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Table C2.6 Alternative cut-off year for building policy weights (1977-2004) 

Variables Intensive margin Extensive margin 

      

Standards -0.035*** 0.016* 

  (0.012) (0.009) 

RD&D smart grid 0.091 0.051 

  (0.122) (0.075) 

RD&D renewables -0.254* 0.045 

  (0.136) (0.084) 

Int. knowledge stocks - smart grids 0.601*** -1.417*** 

  (0.035) (0.054) 

Int. knowledge stocks - green tech 0.061* -0.191*** 

  (0.033) (0.024) 

Int. knowledge stocks - electricity 0.101*** -0.105*** 

  (0.035) (0.032) 

Int. knowledge stocks - ICTs -0.127*** -0.040 

  (0.031) (0.027) 

Ext. knowledge stocks - smart grids 0.149 -0.557*** 

  (0.211) (0.112) 

Ext. knowledge stocks - green tech -0.580*** 0.179* 

  (0.159) (0.107) 

Ext. knowledge stocks - electricity -0.037 0.190* 

  (0.208) (0.110) 

Ext. knowledge stocks - ICTs 0.443*** 0.137 

  (0.157) (0.121) 

Renewables share -1.380 -0.293 

  (1.030) (0.662) 

    
Marginal effect, standards (combined) -0.077*** 

  (0.023) 

    
Observations 24,798 24,798 

Log-likelihood -39949 -39949 

Note: This model uses the same specification and control variables as our main model with the exception that the 

policy weights were constructed using firms patents in the 1977-2004 period. Regression starts in 2005 and ends in 

2016. Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1  
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Appendix C3: Fixed effects Poisson model  

To control for a firm’s overall propensity to patent, our preferred specification uses the 

average number of patents each firm had during pre-sample years, combined with a dummy that 

identifies new firms. This way of de-meaning to control for unobserved firm heterogenenity 

presents the advantage of producing consistent estimates under weak exogenenity, which is not 

possible with a fixed effects Poisson model, because the latter requires strict exogenenity. Strict 

exogenenit requires that these variables be orthogonal to error terms in all past, present and future 

periods. The strict exogeneity assumption is violated by our smart grid knowledge stocks variables, 

which by constrution are correlatd with past error terms since they carry forward patent counts 

from previous years. For these variables, weak exogenity only requires that shocks in period t are 

not correlated with lagged knowledge stocks, which is a more reasonable assumption.   

To demonstrate this bias, Table C3 presents results from a fixed effect Poisson model, as 

well as a Poisson model using the pre-sample mean estimator for comparison. Table C3 clearly 

shows that the coefficients in the fixed effects Poisson model are biased, especially for the smart 

grid knowledge stocks variables, whose direction, magnitude and significance are diametrically 

different from the coefficients from the Pre-sample mean Poisson model. This model also 

estimates the effect of standards and RD&D variables imprecisely. The Pre-sample mean Poisson 

model included in Table C3 produces results that are much more similar to the coefficients from 

our main Zero-Inflated Poisson (ZIP) model since both address the biases of the Fixed Effects 

Poisson model. While the pre-sample mean estimator provides similar resutls to the ZIP model, 

we focus on the ZIP model in the main text as it better handles the high number of zeros in our 

data by rescaling the estimates in the second stage of the model to account for the probability of 

having any patents.  
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Table C3. Regression results from pre-sample mean estimator and fixed-effects Poisson 

Variable Pre-sample mean Poisson Fixed Effects Poisson 

      

Standards -0.045*** -0.019 

  (0.012) (0.013) 

RD&D smart grid 0.094 0.015 

  (0.064) (0.093) 

RD&D renewables -0.198** -0.029 

  (0.080) (0.180) 

Int. knowledge stocks - smart grids 0.938*** -0.324*** 

  (0.041) (0.114) 

Int. knowledge stocks - green tech 0.130*** 0.213 

  (0.033) (0.139) 

Int. knowledge stocks - electricity 0.261*** 0.440*** 

  (0.034) (0.117) 

Int. knowledge stocks - ICTs -0.122*** 0.070 

  (0.030) (0.098) 

Ext. knowledge stocks - smart grids 0.646*** 0.248 

  (0.172) (0.375) 

Ext. knowledge stocks - green tech -0.538*** -1.637*** 

  (0.156) (0.563) 

Ext. knowledge stocks - electricity -0.268 3.885*** 

  (0.170) (0.818) 

Ext. knowledge stocks - ICTs 0.216 -1.517 

  (0.163) (0.937) 

Renewables share 1.330* -4.336 

  (0.757) (4.101) 

      

Observations 30,628 30,426 

Pseudo R-squared 0.492   

Log-likelihood   -50701 
Note: The pre-sample mean estimator model includes firms' average yearly patents in the pre-sample period and a 

complete set of year dummies. The fixed effect Poisson model includes firm and year fixed effects. Both include the 

same control variables as the Zero-Inflated Poisson regression (main model). Robust standard errors are included in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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