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Abstract

We study long-run environmental impacts of trade liberalization on US manufacturing and the
underlying mechanism by exploiting a plausibly exogenous reduction in US trade policy uncertainty:
the conferral of Permanent Normal Trade Relations (PNTR) to China. Using detailed data on
establishment-level pollution emissions and business characteristics—including trade activities and
global subsidiary information—from 1997 to 2017, we show that establishments reduce toxic emissions
in response to a reduction in trade policy uncertainty. Emission abatement is mainly driven by a
decline in pollution emission intensity, and not by establishment exits or a reduction in production
scale. Emission reduction is more pronounced for (i) establishments with foreign sourcing networks,
(ii) those under more stringent environmental regulations, (iii) those operating in more upstream
industries, and (iv) those that belong to a multi-sector firm. We provide comprehensive evidence that
supports the pollution offshoring hypothesis: US manufacturers, especially those that emit pollutants

more intensely, begin to source from abroad and establish more subsidiaries in China after PNTR.
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1 Introduction

One of the most salient features of global environmental issues since the late 20th century has been
the two divergent paths for manufacturing pollution emissions between developed and developing
countries. Toxic manufacturing emissions have declined in many developed countries, while they have
increased in the industrializing middle- and low-income countries (Copeland et al., 2022). Over the
same time period, there has been a spectacular integration of the global economy, especially through
offshoring (Feenstra, 1998; Hummels et al., 2001). The pollution offshoring hypothesis—a version
of the pollution haven hypothesis that emphasizes the role of offshoring mechanism—provides a
compelling explanation for the tale of the two global trends, which posits that progress toward trade
liberalization induced firms in developed countries to relocate high-polluting activities to developing
countries with laxer environmental regulations (Copeland and Taylor, 2004; Cherniwchan et al., 2017;
Copeland et al., 2022). Despite active discussions in the policy arena and the plausibility of the
mechanism, however, the empirical evidence on whether and how trade liberalization causally drives
such global relocation of pollution-intensive tasks still remains elusive.’

An important factor that has been often overlooked in the discussion of the pollution haven
or offshoring hypothesis is that, as with any form of investment, foreign direct investment (FDI)
or offshoring activity to relocate dirty production entails a significant investment cost—which is
magnified in the presence of political and economic uncertainty (Dixit and Pindyck, 1994). Cross-
country differences in environmental regulations and trade barriers are critical factors that firms
consider but may not form a sufficient condition for the pollution offshoring hypothesis to hold. Given
the importance of uncertainty in determining investment decisions made by firms (Aizenman and
Marion, 2004; Bloom et al., 2007; Handley and Limao, 2015), we argue that a comprehensive analysis
of the hypothesis requires incorporating how these relocation incentives are shaped by uncertainty.
In particular, the degree of uncertainty surrounding international trade barriers—or trade policy
uncertainty—that firms in developed countries encounter could critically influence these investment
decisions, as forging business relationships to contract on inputs and organizing supply chains is
predicated on stable business environments across borders.

In this paper, we draw on arguably the most significant trade liberalization episode that reduced
trade policy uncertainty in early 2000s—the US granting permanent normal trade relations (PNTR)
status to China—and present new causal evidence on the long-run environmental impacts of trade
liberalization. A priori, it is unclear whether a reduction of trade policy uncertainty will increase or

decrease US establishments’ toxic emissions. For example, the surge of imports from China could

'As Copeland and Taylor (2004), and more recently, Copeland et al. (2022) noted, despite ample theoretical and
empirical support on causal linkages between an environmental regulation change and cross-regional movement of
pollution-intensive tasks, whether a reduction of trade barrier triggers such a movement has relatively received scant
support. Importantly, the existing literature has largely overlooked the role of offshoring activities within a firm as an
explanation of such global trends, which we fill the gap.



lead US manufacturers to increase emissions by saving costs associated with environment-friendly
practices in order to cope with increasing competitive pressure from Chinese firms, whereas the
same competitive pressure can lead to a reduction of production scale or establishments exits, which
may reduce toxic emissions. Aside from increased competitive pressure, as aforementioned, it could
facilitate the offshoring of pollution-intensive tasks and lead to a decrease in toxic emissions by US
establishments.

To identify the causal impact, we adopt a generalized difference-in-differences identification
strategy in Pierce and Schott (2016) in the context of pollution emissions for US manufacturing
establishments. By exploiting rich longitudinal data from the Toxics Release Inventory (TRI), together
with the National Establishment Time Series (NETS) database, we estimate the long-run effects of
the reduction in trade policy uncertainty on establishment-level pollution outcomes over the two
decades between 1997 and 2017. We find that US establishments reduce toxic emissions in response
to a reduction in trade policy uncertainty. We then explore potential mechanisms behind the effect of
trade policy uncertainty on pollution emissions and reveal that offshoring, not competitive pressure,
played a pivotal role, thereby supporting the pollution offshoring hypothesis in US manufacturing.

We first present three stylized facts of US manufacturing pollution emissions over the sample
period from 1997 to 2017 at the establishment level. First, US manufacturing exhibits a decline in
aggregate levels of pollution emissions with increased effort in waste management. Second, adopting
the decomposition exercise as in Melitz and Polanec (2015), we find that the aggregate decline in
manufacturing toxic emissions is primarily driven by within-industry adjustments through surviving
establishments. Third, within-establishment decreases in pollution emissions are more pronounced in
industries comprising establishments that engaged intensively in imports, but not in exports.

We then use our main empirical strategy to estimate the causal effects of the conferral of PNTR
on reductions in pollution emissions among US manufacturers. The conferral of PNTR to China
offers a quasi-experimental setting to study the long-run environmental impacts of trade liberalization
and the pollution offshoring hypothesis. Prior to 2000, the US Congress had voted annually on
whether to raise the low normal trade relations (NTR) tariff rates applied to Chinese imported goods
back to the higher non-NTR rates assigned to non-market economies, which acted as the main source
of trade policy uncertainty between the two countries.? In October 2000, the US Congress granted
China PNTR status that eliminated such uncertainty by permanently setting US duties on imported
goods from China at low NTR tariff rates. Following Pierce and Schott (2016), we use the NTR gap
to measure the unexpected reduction in trade policy uncertainty.?

Our estimates are both economically and statistically significant: Moving an establishment from

2The non-NTR rates assigned to non-market economies, including China, were set by the Smoot-Hawley Tariff Act
of 1930.

3The NTR gap is defined as the difference between the non-NTR tariff rates to which tariffs would have risen had
annual renewal failed and the low NTR tariff rates. This measure of uncertainty presents substantial variation across
industries.



an NTR gap at the tenth (0.138) to the ninetieth percentile (0.424) of the observed distribution
increases the implied relative reduction of pollutant emissions within an establishment by 34 percent.
We find that the change in US trade policy had a prolonged effect on pollution emission reductions
in US manufacturing over nearly two decades. Our results are not driven by pre-existing trends and
are robust to a host of robustness checks such as different sample periods, controlling for NAFTA |
excluding entry and exit, dropping outliers, and allowing various weighting schemes. We also confirm
that establishments’ exits or simple reductions of the production scale do not explain the reduction
in pollution emissions, but instead, the results are primarily driven by a decline in pollution emission
intensity within an establishment.

By further exploiting a triple difference-in-differences framework, we estimate heterogeneous
treatment effects depending on various initial characteristics of US manufacturing establishments.
The reductions in pollution emissions are more substantial for US establishments that were more
able and willing to offshore production to China. That is, US manufacturers—(i) having existing
foreign business relationships, (ii) having more incentives to move away from stricter environmental
regulations (i.e., located in nonattainment counties), (iii) operating in upstream industries along the
supply chains, and (iv) belonging to a multi-sector firm—indeed reduced pollution emissions more.

Motivated by the suggestive evidence supporting the offshoring mechanism, we next directly
assess the importance of (i) global sourcing and (ii) FDI, in turn, as channels through which US
establishments adjust and reduce domestic pollutant emissions. Our first approach uses time-varying
importing status at the establishment level from the NETS database to proxy for global sourcing
activities, and test whether PNTR induced US manufacturers to source from abroad. We find that US
establishments initially associated with high-polluting tasks—(i) those that were located in counties
with more stringent environmental regulations (i.e., nonattainment counties) and (ii) those that
initially had higher pollution intensity—engage more in importing activities than other establishments
after PNTR. Our second approach involves merging the Wharton Research Data Services (WRDS)
Company Subsidiary Data with our primary dataset to examine the foreign subsidiary information
of US firms to which US establishments belong. We find that PNTR induced US manufacturing
establishments to begin sourcing from abroad and to establish more foreign subsidiaries in China, but
not in other countries. Moreover, such impacts of sourcing and outward FDI into China are mostly
driven by establishments with high-polluting activities, thereby suggesting that US establishments
sent high-polluting tasks to China and consequently reduced domestic pollution emissions.

Finally, we directly assess whether US manufacturers increased imports of dirtier products from
China. Our conjecture is that If US manufacturers shifted high-polluting activities to China after the
conferral of PNTR, and such a shift was driven by the offshoring mechanism, we would expect that
US manufacturers will increase dirty product imports from China relative to other countries. We

test this hypothesis using HS 10-digit product-by-year-level data from the UN Comtrade database



and find that, in response to the conferral of PNTR to China, the share of US imports from China

increased, particularly for products produced by high-polluting industries.

Contributions to the Literature

To the best of our knowledge, our paper is the first to study the impact of trade liberalization
on long-term, nearly two decades of post-2000, US manufacturing toxic emissions using detailed
establishment-level data. By doing so, we provide direct and comprehensive evidence of the pollution
offshoring hypothesis. The paper contributes to the literature in environmental economics and
international trade in several dimensions.

First, we contribute to the literature in environmental economics regarding the mechanisms
driving the reduction in pollution emissions in US manufacturing. Previous research dates back at
least to Copeland and Taylor (1994) and Grossman and Krueger (1995). In these papers, they describe
three channels (i.e., the scale, composition, and technique effects) through which macroeconomic
changes including international trade may affect the environment.* More recent studies find that
the reductions in pollution emissions are mostly attributed to the within-industry technique effect
(e.g., Levinson, 2009; Shapiro and Walker, 2018; Holladay and LaPlue III, 2021). Equipped with a
granular dataset at an establishment level from 1997 to 2017, we conduct a decomposition analysis.
We confirm the previous finding that US manufacturing emission reductions are primarily driven
by the within-industry component and further identify that surviving establishments, not the entry
and exit of establishments, account for the majority of the within-industry technique effect. Our
paper contributes to the literature by showing that the within-industry technique effect, which is
primarily driven by surviving establishments’ reduction of pollution emission intensity, is at least in
part driven by trade-related activities (i.e., offshoring).

By adopting the identification strategy in Pierce and Schott (2016) and thus providing a causal
link between international trade and pollution emission reduction, we emphasize the role of trade as
a driving mechanism of the industry-level technique effect in US manufacturing’s pollution emission
dynamics. Our finding provides a new perspective on the role of trade on the environment, which is
different from what economists have typically considered—i.e., international trade simply changes
the composition of clean and dirty industries. Less attention has been paid to the role of trade
in US manufacturing emission reductions because offshoring dirty industries has been considered
to be associated with the between-industry composition effect at the industry level, while most of

the decline in manufacturing emissions was explained by the within-industry effect.> Unlike the

4The scale effect refers to increases in a country’s total production raising pollution emissions; the composition
effect indicates that changing the share of output from cleaner to dirtier industries can affect pollution emissions; and
the technique effect indicates that pollution emissions per unit of output can change within an industry.

SInstead of international trade, previous studies have regarded advances in production or abatement processes
(Levinson, 2009) and changes in environmental regulation (Greenstone, 2002; Shapiro and Walker, 2018) as the main
economic forces behind the decline in pollution emissions in US manufacturing.



conventional view, we show that international trade can be an important driver of the within-industry
emission adjustments, especially through the reduction in emission intensity within an establishment.

By doing so, we also contribute to the literature that links international trade to environmental
outcomes.® A few recent papers use firm-level or establishment-level data to look for a causal effect
of international trade on emissions in India (Martin, 2011; Barrows and Ollivier, 2021), the United
States (Holladay, 2016; Cherniwchan, 2017), European countries (Akerman et al., 2021; Dussaux
et al., 2023; Leisner et al., 2023), Mexico (Gutiérrez and Teshima, 2018), and China (Bombardini
and Li, 2020; Rodrigue et al., 2022). Our paper contributes to the literature by adopting a clean
causal identification strategy and providing direct and comprehensive establishment-level evidence
of offshoring as an emission reduction mechanism.” Most of the aforementioned research does not
explore offshoring as an emission reduction mechanism, and a few recent papers (Cherniwchan, 2017;
Dussaux et al., 2023; Leisner et al., 2023) that (partly) focus on offshoring either rely on indirect
measures to infer about offshoring activities or rely on shift-share type of shocks using trade flow
data to proxy exogenous shifts in offshoring.® Instead, we exploit a plausibly exogenous shift in
trade policy uncertainty as a quasi-natural experiment and directly show how such a shock results in
establishment-level adjustments in offshoring activities—which leads to emission reduction.

By providing establishment-level evidence supporting the pollution offshoring hypothesis, our
paper also contributes to the literature that studies the pollution haven hypothesis or pollution
haven effects.” To date, empirical evidence in this literature has been mixed. When we focus

on studies in the US, some support pollution haven effects (e.g., Greenstone, 2002; List et al.,

SWhile decomposition studies are useful for understanding the role of international trade in affecting the environment,
the decomposition analysis alone cannot identify causality. It simply gauges changes in manufacturing emissions from
different channels over time and thus does not shed much light on what has driven these changes—especially regarding
the role of international trade.

"The version of NETS database—the extended package—that we use is much more comprehensive than the
version used in the previous literature, which allows us to better assess the offshoring mechanism. For example, we
have establishment-year-level information on import and export status, which plays a key role in the mechanism
identification. Also, we augment the NETS data with other data including global subsidiary information, which permits
us to perform comprehensive analyses regarding offshoring activities.

8For example, Cherniwchan (2017) partly attributes the reduction in US manufacturing emission intensity in
mid-1990s to offshoring by leveraging US tariffs preferences on dirty inputs, but does not show directly whether
establishments adjusted their offshoring activities during the process. Dussaux et al. (2023) and Leisner et al. (2023)
use shift-share type of measures to proxy exogenous shift in offshoring in the context of Europe. Some of these
contemporaneous papers arrive at rather mixed conclusion on the role of offshoring (e.g., Akerman et al., 2021; Dussaux
et al., 2023).

9 Although previous studies have often used the two terms interchangeably, Copeland and Taylor (2004) formally
distinguish the pollution haven hypothesis from pollution haven effects. The pollution haven hypothesis asserts that a
reduction in trade barriers will lead to a shifting of pollution-intensive industry from countries with stringent regulations
to countries with weaker regulations. The pollution haven effect states that a tightening of pollution requlation will
influence plant location decisions and trade flows, which is also referred to as “carbon leakage” in the context of
greenhouse gas emissions. Copeland and Taylor (2004), and more recently Cherniwchan et al. (2017) and Copeland et
al. (2022), noted that the pollution haven hypothesis has relatively less theoretical and empirical support than the
pollution haven effect because many other factors—in addition to environmental policy—can affect trade flows. As we
study the impact of trade liberalization (driven by a decline in trade policy uncertainty), our paper is in line with the
studies of the pollution haven hypothesis, and more specifically, the pollution offshoring hypothesis.



2003; Levinson and Taylor, 2008; Tanaka et al., 2022; Bartram et al., 2022), whereas others are
broadly consistent with weak pollution haven effects (e.g., Eskeland and Harrison, 2003; Hanna,
2010).19 Unlike previous studies, we leverage an episode of trade policy uncertainty reduction, neither
variations in environmental regulations nor actual changes in tariffs, to study the pollution offshoring
hypothesis. To our knowledge, our paper is the first to provide comprehensive evidence of the pollution
offshoring hypothesis by directly investigating offshoring-related activities by establishments—using
various establishment-, firm-, and county-level measures and linking them to global parent-subsidiary
information—and by assessing dirty product imports from China to US using product-level data.

This paper contributes to the growing notion that trade policy uncertainty, even in the absence
of actual changes in tariffs and other barriers, can have significant impacts on the economy (see, e.g.,
Handley and Limao, 2015; Handley and Limao, 2017, 2021; Caliendo and Parro, 2021). However,
the literature devoted little attention to its impact on environmental outcomes. We contribute
to the literature by filling this gap. Moreover, by emphasizing the notion of uncertainty in trade
liberalization and investment decisions, we enrich the discussion on the pollution haven hypothesis
and contribute by providing support for it.

Finally, we contribute to the literature on the China trade shock, which has significant impacts
on labor market outcomes (Autor et al., 2013; Pierce and Schott, 2016; Choi and Xu, 2020; Kim,
2022), innovation (Bloom et al., 2016; Autor et al., 2020a), political outcomes (Che et al., 2016;
Autor et al., 2020b), health (Pierce and Schott, 2020), product scope adjustment (Choi et al., 2022b),
and internal migration (Greenland et al., 2019), among many others. Despite the vast literature on
this topic, our paper is the first to formally explore US establishment-level environmental outcomes
in response to the China trade shock. This is an important gap in the literature in light of the heated
public and academic debates concerning the environmental impacts of globalization. This is also
a curious gap in this vast literature since it is plausible that the labor and health outcomes of the
China shock listed above can have environmental causes and consequences. !

The remainder of the paper is organized as follows. Section 2 provides the institutional
background on the TRI program. Section 3 describes the data used for estimation. Section 4 presents
some stylized facts on US manufacturing emission patterns. Section 5 details the empirical strategy.
Section 6 presents our main estimation results and the heterogeneous effect analyses. Section 7

reports results on mechanisms, supporting the offshoring channel. Section 8 concludes the paper.

Tn related studies, Chung (2014) and Cole et al. (2014) find supporting evidence for pollution haven effects in
Korea and Japan, respectively. Also, Kahn (2003) uses three decades of historical bilateral US trade data to study
trends in dirty and clean trade to characterize US pollution havens.

UEor example, our findings provide a novel perspective on the finding in Pierce and Schott (2020) that the US
regions hit more by the PNTR shock experienced larger declines in the rate of heart attacks. They suggest that safety
in the workplace might have led to fewer heart attacks. Given the scientific findings that airborne toxic chemicals lead
to heart attacks (Kim et al., 2015), however, our findings suggest that PNTR-induced environmental improvements are
likely to have resulted in better heart-related health outcomes among the residents in US counties that experienced a
greater decline in manufacturing toxic emissions.



2 Institutional Background: Toxics Release Inventory Program

In December 1984, a cloud of methyl isocyanate gas leaked from the Union Carbide India Limited
(UCIL) pesticide plant at Bhopal, India, causing thousands of casualties and severe health effects in
subsequent years. A few months after what is considered to be the worst industrial disaster in history,
a similar accident involving toxic chemical leaks (aldicarb oxime and others) occurred in the US at
another Union Carbide facility in West Virginia. Consequently, public concerns were raised about
the importance of maintaining accurate information on how local facilities manage toxic chemicals
and are prepared for any related emergencies.

In 1986, the US Congress passed the Emergency Planning and Community Right-to-Know
Act (EPCRA). The Toxics Release Inventory (TRI) program was initiated under Section 313 of
the EPCRA, which requires US facilities to report their annual releases of toxic chemicals. Under
the Pollution Prevention Act of 1990, the reporting facilities must also include descriptions of the
measures taken to prevent pollution, such as reducing pollutants at the source (e.g., substituting
materials, modifying production methods), and managing waste in an environment-friendly manner
(recycling, treating, combusting for energy recovery). The reports submitted by these facilities are
compiled and archived as the TRI, which is maintained and publicly shared by the US Environmental
Protection Agency (EPA).

The program is mandatory for facilities that meet the TRI reporting criteria. That is, a facility
must report by July 1 of each year if it (i) operates in a TRI-covered sector (manufacturing, mining,
electric utilities, and waste management) or is a federal facility; (ii) employs at least ten full-time
workers; (iii) manufactures, processes, or otherwise uses more than the specified threshold amount of
TRI-listed chemicals per year.!? Facilities that are noncompliant are subject to further investigation
and possible enforcement actions by the EPA.!3 The structure of the TRI program, designed to
provide the public with accurate and timely information about the management of toxic chemicals,

in turn, encourages facilities to move toward adopting environment-friendly and safer practices.

3 Data

We combine various data sources to assess the effect of the US trade policy change on establishment-
level releases of pollutants. In this section, we describe the sources, data structure, and sample

construction.

12 According to the EPA, "facilities" refers to "all buildings, structures, and other stationary items which are located
on a single site or on contiguous or adjacent sites and which are owned or operated by the same person (or by any person
which controls, is controlled by, or under common control with, such person)", and "full-time employees" includes "all
persons employed by a facility regardless of function (e.g., operational staff, administrative staff, contractors, etc.)."

13The following link provides press releases on TRI-related enforcement actions: https://www.epa.gov /toxics-release-
inventory-tri-program/tri-compliance-and-enforcement
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3.1 Data Sources

Toxics Release Inventory (TRI) We obtain facility-chemical-level releases of toxic materials
(1987-2020) provided through the EPA’s TRI database. For each reporting facility, we observe
detailed information on the chemical (including chemical name, acuteness in human health effects,
carcinogenicity, and the severity of environmental effects) and the chemical-specific amount of
production waste generated on-site and transferred to off-site locations. The data add breakdowns of
how each facility manages this chemical waste. One is the amount “released” (or emitted) to the air,
water, (or placed into) land, which directly affects the environment. The other is the amount recycled,
treated, or combusted for energy recovery, which speaks to facility-level effort in effectively managing
waste. In addition, we also have information on the various types of pollution prevention (P2)
activities that facilities conduct to reduce waste at the source. Detailed descriptions on such activities
are available, which are categorized into the following broad groups: (i) material substitutions and
modifications; (ii) product modifications, process, and equipment modifications; (iii) inventory and
material management; and (iv) operating practices and training.'*

The granularity of the data, along with the unique identifiers for facilities and chemicals, allows
us to track changes in the amount of chemical-specific waste produced over time. However, it is
important to note that the EPA has made a number of changes to the TRI program over the years:
(i) expansion of the scope of TRI-covered sectors, chemicals, and geographic areas and (ii) changes
in reporting criteria.'® These updates were intended to better provide data on exposures to toxic
chemicals and the environmental performances of US facilities. From an empirical perspective, the
increasing list of TRI-covered chemicals, a subset of which face lower thresholds, can mechanically
increase the reported amount after these policy changes. Therefore, our analyses carefully address
these issues in the sample construction, and we conduct a series of robustness checks, which we describe
in later sections. After restricting to a list of chemicals of interest, we apply a crosswalk obtained
from the National Emissions Inventory (NEI) to map relevant chemicals to PM1q.'% Throughout our
analyses, we collapse the data and focus on facility-level waste production of this major pollutant.

It is worth discussing the reason behind our decision to use TRI as our main data source for
establishment-level toxic emissions over other potentially available data sources, such as the National
Emissions Inventory (NEI). The primary reason for this choice is that TRI provides a common
establishment identifier (DUNS number) that is readily linkable to the near-universe of the US
establishment panel dataset—the NETS data—and that the emission information is at the yearly

frequency. In addition, the transparency of TRI data in providing chemical-level details on reporting

4Tn 1990, Congress passed the Pollution Prevention Act (P2 Act), which stipulates that the EPA must establish a
source reduction program that collects and disseminates information.

5The following link provides a full list of policy changes in the TRI program: https://www.epa.gov/toxics-release-
inventory-tri-program /history-toxics-release-inventory-tri-program

16The crosswalk is available in Table 12 of the 2008 NEI Technical Support Document available at this link:
https://www.epa.gov /sites/default /files /2015-07 /documents /2008 neiv3 tsd draft.pdf
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criteria, release media, and amount, which aligns with its primary purpose to inform the public
and policymakers about toxic emissions, facilitates a rigorous and consistent tracking of changes in
emissions over a long time horizon.'” To the best of our knowledge, TRI-NETS dataset is the only
available data combination that provides the yearly frequency of establishment-chemical-level toxic
emissions, together with a vast set of establishment and firm-level business characteristics.'® Note
that this is a critical data requirement for the purpose of our paper—identifying a reduced-form
causality by adopting a difference-in-differences-type research design—compared to other types of
exercises such as decomposition analyses or using data to calibrate or estimate a structural model.
Finally, although the raw TRI data may include some erroneous or implausible emission records, we
make sure that our results are not driven by any extreme observations (Table B.10) and clean the
data in a way that the final sample contains a consistent set of chemicals throughout the sample
period as discussed above (see Section 3.2 for detailed descriptions).!? Reassuring the quality of our
final sample, the aggregate patterns of toxic emissions from our sample are broadly consistent with

those documented in the literature (e.g., Shapiro and Walker, 2018).2

National Establishment Time Series (NETS) To understand establishment-level responses
in waste production relative to size (employment and sales) as well as various heterogeneity in the
effects, we obtain establishment-specific characteristics from the NETS database, which is an annual
panel of a near universe of US establishments (1990-2020). In NETS, we observe establishment-level
industry codes (SIC and NAICS codes),?! employment, sales, exporter and importer status, address,
and headquarters identifier. Each establishment in the NETS database is assigned a unique identifier,
thereby allowing us to track establishments consistently over time.

The source data for NETS are created by Dun & Bradstreet, which is among the largest credit

rating companies in the world, and thus, it has a strong incentive and capacity to collect accurate

" Furthermore, TRI has several institutional features to optimize and maintain the quality of data, for example,
through “built-in data quality alerts,” “data quality call processes (ad hoc data quality calls),” and enforcement actions.
See https://www.epa.gov/toxics-release-inventory-tri-program/tri-data-quality for further details.

18 Although NEI could provide more accurate toxic emission information per se, it is only available at the triennial
frequency and does not share a common establishment identifier with other establishment-level datasets (e.g., Annual
Survey of Manufactures (ASM), Longitudinal Business Database (LBD), or NETS), which contrasts with the TRI-NETS
dataset. Therefore, linking NEI to other business data, which requires algorithm-matching techniques, could introduce
some additional measurement errors.

19 Additionally, in Appendix C, we show that employment responses to the PNTR shock are fundamentally different
between establishments with positive initial emissions and those with zero or negligible emissions, conditional on
satisfying TRI-reporting criteria. We also document that the most important industries in terms of toxic emissions are
very different from those in terms of employment (see Figure A.2). These exercises further support that our results are
not spuriously driven by the restriction of sample induced by TRI-reporting criteria.

29Another advantage of the TRI-NETS data is that, since NETS independently maintains establishment-firm
records and manually cross-checks the quality of linkage between TRI and NETS using various available information
(e.g., name, address, etc.), the TRI-NETS merged data are much immune to the often raised issue on the quality of
establishment-firm records in TRI (e.g., Khanna, 2019).

2!The SIC and NAICS industry codes have been consistently maintained over time in NETS, so we do not need to
perform any imputations of industry codes.
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data through various records.?> A number of studies have demonstrated the accuracy of information
in NETS data (Neumark et al., 2006, 2011; Barnatchez et al., 2017).23 Importantly, our version of
the NETS database provides a match between the NETS establishment identifier (DUNS number)
and the facility identifier in the TRI database. The matching process relies on company names and
addresses and further involves eyes-on-the-records search efforts. Among the 61,907 unique facilities
that are included in the TRI Database between 1987 and 2020, 91% (56,468 facilities) are matched
with NETS’ establishment identifiers. We focus on the one-to-one matches and use establishment

(instead of a facility) as our unit of analysis.?*

Wharton Research Data Services (WRDS) Company Subsidiary Data ~ WRDS Company
Subsidiary Data contain the parent company and its subsidiary information for companies filing with
the US Securities and Exchange Commission (1995-2019). For a given parent company, the data
allow us to identify the number of subsidiaries located in each country in a given year.?> In our
empirical analyses, we focus on parent companies located in the US. Thus, we track the number of
subsidiaries in China (or other countries) at a yearly frequency to identify US companies’ subsidiaries

in China (or other countries).

U.S. Historical Tariff Rates = We obtain NTR and non-NTR tariff rates provided by Pierce and
Schott (2016), which sources data from Feenstra et al. (2002). We map the HS-level tariff rates to

4-digit-SIC industries using Pierce and Schott (2009) and use industry-level tariff rates in 1999 as in
Pierce and Schott (2016).

22To maintain its quality, Dun & Bradstreet conducts an extensive array of analyses. For example, their analysts
make phone calls to reliable sources such as the firms’ legal personnel, CFOs, and CIOs. They also make use of publicly
available government registries, legal filings, yellow pages, news, annual reports, company websites, and so forth. Note
that the US government requires companies to report their information based on their DUNS number for procurement
purposes. This also provides incentives for firms to report accurate information to Dun & Bradstreet.

#Tor example, Barnatchez et al. (2017) find that the county-level correlation between NETS and the Census
Bureau’s County Business Patterns (CBP) is above 0.99 regarding both employment counts and establishment counts,
and Neumark et al. (2011) document the accuracy of entry and exit information of establishments. For recent studies
that use the NETS database, see, e.g., Gray et al. (2015); Asquith et al. (2019); Rossi-Hansberg et al. (2021); Behrens
et al. (2022); Hyun and Kim (2022); Choi et al. (2022a); Oberfield et al. (2022).

24A small share of the data is not one-to-one matches. In particular, 144 TRI facilities are matched to multiple
NETS establishments, and 2,180 NETS establishments are matched with multiple TRI facilities. These one-to-many
matches most likely come from slightly different definitions of "establishment" in NETS and "facility" in EPA. The
concept of an establishment in NETS is defined as a line of business that has a fixed address so that there can be
multiple NETS "establishments" at a single address under a single firm. On the other hand, a facility in EPA refers to
"all buildings, equipment, structures, and other stationary items which are located on a single site or on contiguous or
adjacent sites and which are owned or operated by the same person (or by any person which controls, is controlled by,
or under common control with, such person)."

25We linked parent companies in WRDS Subsidiary data with headquarters companies in NETS data by using a
probabilistic record linkage algorithm. We exploited company name and address information in the two datasets to
perform record linking. We used the Stata command RECLINK2 to link the two datasets, where we exploited both
the company name and address information. Then, we manually verified the quality of the linkage.
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3.2 Sample Construction

The matching of the TRI-NETS data between 1987 and 2020 results in 2,809,810 observations with
chemical-specific establishment-level release amounts for 54,224 establishments covering 660 chemicals,
27 of which are mapped to PM1g. We describe the detailed steps through which we trim the data and
construct our baseline sample. First, we focus on 24 chemicals mapped to PMig that have continued
to exist since 1995. As discussed above, the EPA has (i) expanded the list of TRI-covered chemicals
and (ii) changed the reporting criteria over time. In its continued efforts to include chemicals with
adverse effects on human health and the environment, roughly 38 percent of the current list of
chemicals (286 out of 750) were added in November 1994 and required in the reports beginning
with the 1995 calendar year. Therefore, we exclude chemicals—Persistent Bioaccumulative and
Toxic (PBT) chemicals, 1-Bromopropane, and chemicals in the Hexabromocyclododecane (HBCD)
category—introduced in the subsequent years.?6

We note that the reporting criteria applied to both PBT and non-PBT chemicals were relaxed
during the period 2007-2009. The TRI Burden Reduction Rule (2006) expanded the use of reporting
through Form A (a simpler form without quantity details on the produced waste); however, the
Omnibus Appropriations Act in 2009 reverted the requirements to those that were effective before
2006. Given the value of understanding the long-run environmental consequences, we choose to keep
these years in our sample but conduct robustness checks on whether our analysis is sensitive to the
exclusion of these years. The final relevant component of the changes to the TRI program is the
expansion in the geographic coverage to increase participation of Native Americans in 2012. To
maintain consistency on this end, we keep establishments that are not located in Indian country.?”

We exclude periods with prevailing impacts of major events that might have confounded the
effects of our treatment. We do not include the years after 2018 due to the US-China Trade
War and the pandemic, which substantially reshaped global trade flows and domestic production,
thereby affecting manufacturing pollutant emissions. We also exclude a few years after the North
American Free Trade Agreement (NAFTA) agreement (1994), given its impact on the reductions of
establishment-level pollutant emissions (Cherniwchan, 2017). Hence, we restrict our sample period
to years between 1997 and 2017. Note that including a few years (i.e., 1997, 1998, 1999, and 2000)
before the US trade policy change in 2001 allows us to examine the pre-existing trends in our analysis.
We address any remaining concerns related to the lagged responses of NAFTA by directly controlling
for changes in the US tariffs on Mexican imports following Hakobyan and McLaren (2016). Lastly, we
focus on manufacturing establishments that had positive emissions of chemicals of interest mapped
to PMig at least once during the sample period. Thus, our final sample is an unbalanced panel

of establishment-year-level observations with positive PM1y Emissions. The final sample contains

26A11 additions to and deletions from the TRI chemical list can be found in the following link:
https://www.epa.gov/system /files/documents/2022-03 /tri-chemical-list-changes-03-07-2022.pdf
2T Appendix Table B.1 provides further details related to these policy changes.
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46,753 establishment-year-level observations with 4,946 unique manufacturing establishments.

4 Stylized Facts

Fact 1. US Manufacturing demonstrates a decline in aggregate levels of PM;j emissions

with increased efforts in waste management.

Figure 1: Aggregate Levels of PM;g Emissions and Non-Disposal Shares, 1997 - 2017
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Notes: The solid line shows the aggregate levels of PM;o waste released or emitted to the air. The long dashed line
shows the non-disposal share, which is the total PMio waste recycled, treated, or combusted for energy recovery
(therefore, not released or emitted to the air or water) relative to total PM1o waste. The short dashed line shows the
recycled share, which is the total PM;o waste recycled relative to total PMio waste.

We begin by checking whether the clean-up of manufacturing found in previous studies (e.g.,
Levinson, 2009; Shapiro and Walker, 2018; Najjar and Cherniwchan, 2021) is also present in our
data. The solid line in Figure 1 shows the time series of the aggregate levels of PM;y waste released
or emitted into the air from 1997 to 2017, where we find a 30 percent drop. Appendix Figure A.1
reveals that most of these aggregate changes are largely driven by establishments in 2-digit-SICs 28
and 33, which are Chemicals and Allied Products and Primary Metal Industries, respectively.?® In

fact, these two industry categories represent a predominant share of the initial PM;y emissions from

28 Appendix Table B.2 shows that the top 5 industries in PM;o emissions all belong to 2-digit-SICs 28 and 33.
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manufacturing establishments.?? However, we also note that there is also an overall decline in PM
emissions in other industries.

The detailed breakdown of waste management in TRI allows us to understand the clean-up
process from an alternative perspective: the extent to which establishments transition toward more
environment-friendly waste management practices. The long dashed line in Figure 1 shows that the
non-disposal share, which is the total PM;g waste recycled, treated, or combusted for energy recovery
(therefore, not released or emitted into the air) relative to total PMy waste, increases from 71 to 83
percent.>’ The EPA notes that the most sustainable and environmentally preferred management
practice is to reduce waste at the source; however, for waste that has already been generated, recycling
is the next best option (followed by combustion for energy recovery and treatment).! In sum, Figure
1 reveals that the aggregate emissions from manufacturing establishments declined during the past
two decades, while the share of non-disposal (predominantly through recycling), which captures
waste management efforts, steadily increased over time. In Section 7.1, we explore how the conferral
of PNTR to China interacts with various initial characteristics and affects establishments’ waste

management efforts and PM;q emissions.??

Fact 2. The aggregate decline in PMj emissions from manufacturing establishments is

primarily driven by within-industry adjustments through surviving establishments.

Next, we further quantify the extent to which the changes in aggregate PM1y emissions are due
to (i) changes in the size of the manufacturing sector (scale), (ii) changes in the mix of manufacturing
industries (composition), and (iii) changes in the production technology employed within-industry
(technique). The analysis below combines the approaches in Levinson (2009) and Melitz and Polanec
(2015). Aggregate PMjg emissions in the manufacturing sector in year ¢, P; equal the sum of PMjq
emissions from each of the (SIC 4-digit) manufacturing industries, p;+. Defining industry shares
using industry sales (6, = v;,;/V;) and emission efficiency z;; as the emission amount per dollar
value of sales (p;+/v;+), we express the total PMg emissions in a given year as the scale of the sector

(V4) times the weighted-average emission efficiency (>, 6 ¢2i ).

P, = Zpi,t = Z VitZip = Vi Z 0i12it (4.1)

29 Appendix Figure A.2 provides the industry distribution of our data using employment and total PM;o emissions.

30By construction, the share of PM;o waste released decreases from 29 to 17 percent.

31Further details on the non-hazardous materials and waste management hierarchy developed by EPA can be
found at this link: https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-
management-hierarchy

32We explore whether the main effects we find are entirely driven by establishments in SIC-2-digit 28 and 33 given
their importance in our sample. Appendix Table B.5 shows that, while the effects are stronger in these industries, we
also estimate a significant impact for other industries.

13


https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy
https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy

Figure 2: Decomposition of Aggregate Manufacturing PMy Emissions, 1997 - 2017
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Notes: The graph illustrates changes in the aggregate manufacturing PM;o Emissions using equations (4.2) and (4.5).
Line (1) shows the magnitude of the scale factor. The distances between lines (1) and (2), (2) and (4) show the
magnitude of the composition and technique factors, respectively. The distances between lines (2) and (3), (3) and (4)
capture the magnitude of the within-industry intensive and extensive margins, respectively.

The last part of Equation (4.1) can be represented in vector notation, P = V§'z, which we totally
differentiate and obtain
dP = 0'zdV + Vz'd§ + V¢ dz. (4.2)

Leveraging our establishment-level data, we further decompose the within-industry channel to
examine the magnitude of the intensive and extensive margins following the methods in Melitz and
Polanec (2015). That is, the extent to which within-industry changes are explained by changes in the
way surviving establishments produce goods and emit PMyy pollutants and those that are attributed
to the entry and exit of establishments. This part of the exercise requires identifying establishments
that survive (s), enter (n), and exit (x) between the baseline year to and year ¢.33 Thus, the average

emission efficiency of industry ¢ in the baseline year and in year ¢ are given as follows:

Zity = Os,to2s,to + 0,10 2210 (4.3)

Zit = Ost2st + Ont2nt (4.4)

33We categorize firms that enter and exit between year to and year ¢ in the exit group.
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where 04, is the share of survivors in year to; and 0,4, is the share of exiters in year to.>* Finally,

changes in the average emission efficiency for industry ¢ between year to and year t is

Az =2t — zitg = 2st — Zsto + Ont(2nt — 2st) + uto (25,0 — 2a.to) (4.5)

~~

surviving entry and exit

where zg+ = > (0pt/0G+) X zps is the average efficiency for each group (G = s,n, z) of establish-

peG

ments and g = > 0y, is the aggregate market share of group G. As discussed in Melitz and

cG
Polanec (2015), one (I:)an further decompose the surviving firm channel into the within-establishment
and reallocation across surviving establishments by applying the decomposition methods of Olley
and Pakes (1996). As our focus is to compare the magnitude of the extensive and intensive margins
of adjustments, we conduct our analysis based on Equation (4.5).

Figure 2 shows the decomposition results tracking changes in total manufacturing emissions of
PM;g relative to 1997 for 20 years and the contribution of each channel. The aggregate change, which
exhibits a downward trend in total manufacturing emissions of PMqy over time, is captured using line
(4). Line (1) isolates the change attributed to the scale factor. Line (2) adds the composition factor
to the first factor. The sum of these two channels makes limited contributions in the downward
aggregate trend in PM1y Emissions we observe in Figure 1. The remaining two lines add the technique
factor, which explains most of the decline in PMjy emissions over time. Consistent with previous
studies (e.g., Levinson, 2009; Holladay and LaPlue III, 2021), the magnitude of change due to the
adjustments that occur through surviving establishments (intensive margin) is larger than those
caused by the entry and exit of establishments (extensive margin). According to our calculations,

roughly two-thirds of the 30 percent decline in 2017 relative to 1997 is due to surviving establishments.

Fact 3. Within-establishment decreases in PM; emissions are more pronounced in

industries with establishments that actively engaged in imports, not exports.

To understand the clean-up of manufacturing establishments in the context of globalization,
we examine how the initial trade status relates to changes in PM;(y emissions. Figure 3 plots the
industry-level average growth of PM;y emissions against measures of industry-level import intensity
(left panel) versus export intensity (right panel). Specifically, from the establishment-year-level
data, we calculate for each industry (i) the growth in the average PM;jy emissions between 1997
and 2017; (ii) the average initial within-firm employment share of importing establishments (import
intensity); and (iii) the average initial within-firm employment share of exporting establishment
(export intensity). We observe a stark asymmetry between import-intensive and export-intensive

industries on their PM1y emission dynamics. That is, we find a clear negative correlation between

34By construction, 0s ¢, + 02,:0 = 1 and 0t + 0, = 1 hold.
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Figure 3: Correlations between Changes in Average PM1g Emissions and Initial Trade Status
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Notes: The graph on the left (right) illustrates the correlations between the industry-level averages of changes in the
within-establishment log(emissions) of PMio from 1997 to 2017 and the industry-level averages of import (export)
intensity in 1997. Import (export) intensity is defined as an employment share of importing (exporting) establishments
within a firm. The sizes of the circles are proportional to the industry-level log(employment) in 1997.

the changes in average PMig emissions and the measure of import intensity, while such a correlation
does not exist for the measure of export intensity.®> A possible interpretation of such asymmetry is
that offshoring of manufacturing associated with importing activities led to emission declines. We

revisit such relationships in a formal regression setting in Section 7.1.

5 Empirical Strategy and Descriptive Statistics

5.1 Empirical Strategy

Our empirical approach builds on the pioneering work of Pierce and Schott (2016), which exploits
a sudden US trade policy change—PNTR to China in October 2000—to investigate the impact
of trade liberalization on US manufacturing employment. The conferral of PNTR to China (i)
eliminated uncertainty associated with the tariff rates faced by Chinese exporters and (ii) allowed
China guaranteed access to NTR tariffs, which were primarily applied to World Trade Organization
(WTO) members. Prior to 2000, Chinese firms received NTR tariff rates based on the US president
granting NTR (US Trade Act of 1974), which also required annual renewals by the US Congress.

35 Appendix Figure A.3 robustly demonstrates a similar asymmetry between import-intensive and export-intensive
industries by using industry-level import-to-value-added and export-to-value-added ratios as measures of import and
export intensities.
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The outcomes of these reviews were sensitive to political tensions between the two countries and,
therefore, highly uncertain. In the event of unsuccessful outcomes, which potentially resulted in
the withdrawal of China’s Most Favored Nations (MFN) status, Chinese imports were subject to
non-NTR rates—substantially higher rates applied to nonmarket economies. The policy uncertainty
also imposed challenges for US firms doing business with China because they faced an excessively
risky environment for trade and investment.3¢

The change in China’s PNTR status generated heterogeneous implications across different
manufacturing industries: Those that experienced a larger expected drop in the tariff rates also
benefited more from a reduction in trade policy uncertainty. As in Pierce and Schott (2016), we

define NT' R Gap, the magnitude of the trade policy shock faced by industry ¢, using the difference
between the observed NTR rates and the potential non-NTR rates for each industry ¢ in 1999,

NTR Gap; = Non NTR Rate; — NTR Rate;. (5.1)

As summarized in Panel (B) of Appendix Table B.3, we observe sufficient variation in industry-level
NTR Gap in our sample.?” Note that the differences in the tariff rates faced by Chinese firms due
to the policy change are mainly driven by the initial rates set under the Smoot-Hawley Tariff Act of
1930. We thus mitigate endogeneity concerns related to the NT R Gap responding to the rate at
which establishment-level emissions changed across industries during the period 1997-2017.

We leverage industry-level variations in NTR Gap’s to examine the impact of the trade
policy shock on establishment-level PMyy emissions in a difference-in-differences research design.
Conceptually, the first difference compares establishments in high-NT R Gap industries versus low-
NTR Gap industries. The second difference compares years before and after 2001 when Congress
passed the bill that granted China’s PNTR status and the change in US trade policy became effective.

Figure 4 visualizes our identification strategy where we demonstrate trends in the log of average

5th 5th

establishment-level PMjo emissions for industries in the 75" percentile (solid line) and the 2
percentile (dashed line) of NTR Gap. We show that the high-exposure industries exhibit a larger
decline in their PM7y emissions compared to the low-exposure industries. The differences between
the two groups substantially increase after the policy change relative to the observed differences in
the pre-shock period.

We now formally estimate the impact of the US trade policy change on establishment-level

PMi9 Emissions using the following empirical specification:
Vpt = Bo+ BiNTR Gap; x Posty + 6Z; X Posty +yXit + np + Net + €pts (5.2)

where the dependent variable is the log of PMjg emissions from establishment p in industry ¢ in year

36See Pierce and Schott (2016, 2020) for a comprehensive description of the policy background.
37The average is 0.329 and the standard deviation is 0.142.
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Figure 4: Research Design: Difference-in-Differences
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Notes: The graph illustrates the trends in the log of average establishment-level PMiy emissions for industries in the
25"™ (dashed line) and 75" percentile (solid line) of NTR Gap’s. The vertical line indicates the timing of the shock,
October 2000, which is when Congress passed the bill that granted PNTR status to China.

t.33The second term interacts our measure of the shock NTR Gap; with Post;, an indicator for the
post-PNTR period (years from 2001 forward). The third term is an interaction of time-invariant
industry-level characteristics (Z;) with the post-PNTR period. As in Pierce and Schott (2016, 2020),
these variables include Chinese policy variables—exposure to changes in Chinese import tariffs
from 1996 to 2005 and exposure to changes in Chinese domestic production subsidies from 1998 to
2005—and initial industry characteristics, including capital intensity (capital-to-labor ratio) and skill
intensity (the proportion of non-production workers in total employment) in 1997. The fourth term
controls for time-varying industry characteristics (X; ;)—the phasing out of Multi-Fiber Arrangement
(MFA) quotas and the US import tariff rates. We also include establishment fixed effects (n,) to
control for time-invariant establishment characteristics. We add county-by-year fixed effects (1),
which are the most flexible way of controlling for any time-varying (and time-invariant) observed and
unobserved common component at the county level. These fixed effects absorb any time-varying local

environmental regulatory conditions and any common variation within a county-by-year pair that

38 Appendix Table B.6 also considers emissions of sulfur dioxide (SO2) and volatile organic compounds (VOC).
We find a negative impact of PNTR on these emissions. However, note that we lack sufficient observations in the
sample for SOz, which limits the power of our estimates. Similarly, for VOC, there is insufficient variation in our shock
measure, resulting in imprecise estimates.
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is due to a time-varying regional shock—e.g., local demand and supply shocks, local labor market
shocks, regional housing market shocks—regardless of whether the shock is county-year-specific or
correlated with shocks in other regions. They also account for spillovers from one region to another,
e.g., due to price or other general equilibrium effects, as long as such spillovers generate common
impact across establishments within a county-by-year pair. We allow for arbitrary correlations in
the error term across establishments and years within the same 4-digit industry and county—thus,
standard errors are two-way clustered at the industry level and the county level. The coefficient
of interest is 81, which captures the within-establishment effects of the change in trade policy on
pollutant emissions.

Identification rests on the assumption that manufacturing industries that face a greater NT R Gap
do not show differential trends in PMig emissions in the pre-shock period. To check for parallel

trends, we estimate
Ypt = Bo+ Z Bil{year =t} x NTR Gap; + Z S l{year =t} X Z; + v Xt +np + Nt +€it, (5.3)
¢ t

where the second term now interacts NT R Gap with a full set of year dummies excluding 2000.
Therefore, each 5; coefficient estimates the effect in year ¢ relative to 2000. The full sequence of the
estimated parameters not only allows us to examine pre-existing trends but also to further examine
the dynamic effects and the persistence of trends in PM;( emissions caused by the trade policy shock.

As discussed above, our sample period overlaps with major events that possibly confound the
effects of the shock. We address this concern in the following way. First, we include county-by-year
fixed effects to control for lagged responses from the 1990 Clean Air Act Amendments (CAAA), the
stringency of the regulatory enforcement of which varied across counties and time.?? Second, we
mitigate concerns related to the confounding effects of NAFTA in two ways. One is to restrict our
sample to begin in 1997, dropping a few years that are immediately affected by the trade liberalization
with Canada and Mexico. Another is to directly control for the change in US import tariffs from
Mexico and check whether our main estimates are sensitive to the inclusion of this control. Finally,
we repeat our main specification using alternative sample periods to assess whether the estimated
effects are robust to a shorter sample period that excludes the financial crisis (2007-2009), which also

coincides with the period when the TRI reporting criteria temporarily changed.*’

5.2 Descriptive Statistics

Table 1 presents the summary statistics of the key variables used in our analyses at the establishment-

year level. The sample consists of 46,753 establishment-year-level observations, which include a total

39The EPA classifies US counties into attainment and nonattainment based on the ambient concentrations of
pollutants, and counties in the nonattainment category face stricter regulation (Hanna, 2010).
40Gection 6.2 includes results for the second and third points.
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of 4,946 unbalanced establishments and 3,666 unbalanced firms between 1997 and 2017. Subscripts £,
p, f, i, and ¢ indicate year, establishment, firm, SIC-4-digit industry, and county, respectively. For
the summary statistics at various aggregation levels (i.e., industry-year, industry, firm, establishment,

and county), see Appendix Table B.3.

Table 1: Summary Statistics

Establishment-Year Level

Variable Obs. Mean Std. Dev. P10 P50 P90
PM Emissions, ; (Ib) 46753 50838 450609 10 719 36605
NTR Gap; g9 46753 0.294 0.119 0.138 0.304 0.424
NTR;, 46753 2.480  2.037  0.000 2.342 5.162
MFA Exposure; ¢ 46753 0.098  1.493  0.000 0.000 0.000
NP; 95 /Emp; 95 46753 0.281  0.096  0.176 0.259 0.435
Ki,95/Emp; o5 46753 137 150 37 81 32
AChinese Tariff; 46753 -0.097  0.083 -0.175 -0.077 -0.029
AChinese Subsidies; 46753 -0.000  0.002 -0.002 -0.000 0.001
Import Intensity (Unconditional) g7 37763 0.135  0.203  0.000 0.028 0.404
Import Intensity g7 17373 0.250  0.218  0.034 0.196 0.514
Export Intensity (Unconditional) ¢ g7 37763 0.276  0.331  0.000 0.132 0.965
Export Intensity ¢ o7 28347 0.346 0.337 0.033 0.202 1.000
Firm Employment g7 37763 21655 76745 82 1870 41640
Num. Establishment g7 37763 164 472 1 19 402
Num. 4-digit Sectorsy g7 37763 24 37 1 8 73
Agepor 37763 57 42 9 52 110
PM Emissions,, 97 37763 59213 514114 0 254 38195
PM Emissions, o7/Sales, o7 (Ib/million dollar) |37763 31454 38071.1 0.0 51 960.4
I(Num. P2, 95_97>0) 37763 0.282  0.450 0 0 1
I(Num. P2 Clean-Techy, g5_97>>0) 37763 0.146 0.353 0 0 1
Establishment Employment,, 97 37763 477 1050 34 185 1000
Establishment Sales, g7 (million dollar) 37763 113 286 4 29 239
CAA Nonattainment, g5_g7 37763 0.118 0.323 0 0 1

Notes. This table presents the summary statistics of the key variables used in our analyses. The sample consists
of 46,753 establishment-year-level observations, which include a total of 4,946 unbalanced establishments and 3,666
unbalanced firms between 1997 and 2017. Subscripts ¢, p, f, ¢, and c¢ indicate year, establishment, firm, SIC-4-digit
industry, and county, respectively.
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A first notable feature is that there exists significant variation in PM;jy emissions across
manufacturing establishments and years. The average establishment-year-level emissions are 50,838
pounds with a standard deviation of 450,609 pounds. The emissions are highly skewed. The median
emissions are only 719 pounds, which implies that some establishments produce extreme amounts of
emissions.*! Another notable feature is that the NTR gap also has substantial variation—with an
average of 0.294 and a standard deviation of 0.119. This provides a source of variation that allows us
to identify the impact of the conferral of PNTR to China on environmental outcomes.

Turning to initial firm characteristics, the average unconditional import intensity in 1997 is 13.5
percent, which is measured as the within-firm employment share of establishments that engaged in
import activities in 1997.42 After conditioning on having at least one establishment that engaged in
import activities, the average conditional import-establishment share in 1997 is 25.0 percent. We
observe a slightly higher value for export activities within a firm, where the average unconditional
(conditional) export-establishment share in 1997 is 27.6 percent (34.6 percent).

Regarding the size of sample firms, consistent with the TRI’s reporting threshold of 10 or more
full-time employees, the sample firms are relatively large compared to the entire distribution (see
Appendix Table B.4 for the comparison of our final sample distribution with the manufacturing
sample distribution from the original NETS data).*3 For the establishment-year-level observations,
the average number of firm employees in 1997 is 21,655 with a median of 1,870, meaning that the

firm size distribution is also highly right-skewed.**

6 Main Results

6.1 Within-Establishment Emission Adjustment

Difference-in-Differences  Table 2 presents the estimates of Equation (5.2). Column (1) includes
the DID term and simple two-way fixed effects, i.e., establishment and year fixed effects. Columns (2)
through (4) replace year fixed effects with county-by-year fixed effects. Column (3) adds time-varying
industry characteristics. Column (4), which is our baseline specification, includes an interaction

between the post-PNTR dummy variable and time-invariant industry characteristics.

41 Appendix Table B.10 shows that our results are not driven by these extreme observations.

42This measure captures the importance of import activities within a firm. We cannot weight by import values
since the NETS provides information on whether an establishment engages in import activities (a dummy variable)
but not import values.

“3Based on Appendix Table B.4, the firm-level summary statistics of our final sample show that the mean and
median number of firm employees are 5,566 and 388, respectively, while those of the entire NETS manufacturing
sample are only 74 and 5, respectively.

4 A similar pattern holds for the establishment size distribution. The distribution is highly right-skewed. Based on
the establishment-level summary statistics in Appendix Table B.4, the mean and median numbers of establishment
employees are 410 and 160, respectively, whereas those of the entire NETS manufacturing sample are 31 and 5,
respectively. This is because NETS includes a near-universe of US establishments with no size threshold including
individual proprietors without any paid employee.
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Table 2: PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) 3) (4)
Log(PM Emissions)

Post; x NTR Gap; g0 -1.161°* -1.049** -1.031** -1.191***
(0.428)  (0.422) (0.425) (0.387)

NTR.., -0.019  -0.008
(0.034)  (0.036)

MFA Exposure; + -0.011 -0.009
(0.016)  (0.016)

Posty x Log(NPi,95/Emp¢,95) 0.305**
(0.118)
Post; x LOg(Ki’95 /Empi,%) 0.050
(0.054)
Post; x AChinese Tariff; -0.740
(0.459)
Post; x AChinese Subsidies; -33.097
(27.109)
Establishment FE v v v v
Year FE v - - -
County x Year FE - v v v
Observations 46753 46753 46753 46753

Notes. This table shows how the conferral of PNTR to China affected the establishment-year-level pollution emissions.
The dependent variable is the log of establishment-year PM1o Emissions (Log(PM Emissions)) and the independent
variable representing the effect of PN'TR is the interaction of a post-PNTR indicator and the NTR gap (Post:xNTR
Gapi,g9). Subscripts ¢ and ¢ indicate year and SIC-4-digit industry, respectively. Additional controls include time-
varying variables—NTR, tariff rates (NTR;:), MFA exposure (MFA Exposure;:)—as well as interactions of the
post-PNTR indicator with time-invariant controls including the industry-level log of 1995 skill and capital intensity
(Log(NP;,95/Emp; 95) and Log(K;,95/Emp; 95), respectively), changes in Chinese import tariffs from 1996 to 2005
(AChinese Tariff;), and changes in Chinese production subsidies per total sales from 1999 to 2005 (AChinese Subsidies; ).
The sample period is from 1997 to 2017. Standard errors (in parentheses) are two-way clustered at the industry level
and county level. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Across all columns, we find negative coefficients with statistical significance at the 5 percent
(or 1 percent) level. The results suggest that the change in China’s PNTR status induced US
manufacturing establishments to reduce emissions of particulate matter (PMjo). Quantitatively, the
coefficients are highly stable across columns, ranging from -1.19 to -1.03. The baseline specification
in Column (4) indicates that moving an establishment from an NTR gap at the tenth (0.138) to the
ninetieth percentile (0.424) of the observed distribution increases the implied relative reduction of
emissions of particulate matter (PMjg) within an establishment by 0.341 (= -1.191 x (0.424 - 0.138))

log points—or 34 percent.
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In Column (4), while most control variables are statistically insignificant, the coefficient of the
interaction of the post-PNTR dummy variable and industries’ initial skill intensity (defined as the
ratio of non-production workers to total employment) is positive and statistically significant. This
indicates that less skill-intensive industries reduce relatively more emissions after 2000. The result
is somewhat related to the finding in Pierce and Schott (2016) such that skill-intensive industries
more in keeping with US comparative advantage perform relatively well in terms of employment after
2000. If less skill-intensive industries perform more poorly in terms of employment partly due to
offshoring and simultaneously those industries entail more emissions, then we would expect to see a

larger decline in pollution emissions in less skill-intensive industries as in Column (4).

Pre-Existing Trends and Dynamic Treatment Effects Figure 5 plots the coeflicient estimates,
along with their 95 confidence intervals, from the regression in Equation (5.3). We do not detect any
differential pretrends in that point estimates are statistically indistinguishable from zero leading up
to 2000. This pattern is in line with the parallel trends assumption, giving further credence to our

identification strategy.

Figure 5: Dynamic Treatment Effects at the Establishment Level
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Notes: This figure displays the estimated difference-in-differences (DID) dynamic coefficients with their 95 percent
confidence intervals, for interactions of year dummies with the NTR gap from Equation (5.3). The dashed vertical line
denotes October 2000, in which the conferral of PNTR status to China was passed by the US Congress. All controls in
Column (4) of Table 2 are included in the regression. Standard errors are two-way clustered by industry and county.
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The point estimate for 2001 is negative but statistically insignificant, but it becomes significant
from 2002 forward. Note that while Congress passed the bill in October 2000, the change in PNTR
status became effective in January 2002. The estimated coefficient declined by -0.983 log points in
2002 (the first year PNTR became effective) and remained stable until 2005. There is an overall
downward trend in the estimated coefficients for the subsequent years with an uptick from 2007 to
2009.%> The magnitude of estimates increased over time from -1.419 log points in 2010 to -2.541 log
points in 2017. Overall, the dynamic treatment effects indicate that trade policy had a prolonged

effect on the reductions of pollution emissions in US manufacturing establishments.

Figure 6: PNTR and Establishment Survival, 2001 - 2017
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Notes: This figure shows the cumulative effect of the imposition of PNTR on establishment survivals, conditional
on positive PMi¢ Emissions in 2000. Each point reflects an individual regression coefficient, g:, following Equation
(6.1). The estimated coefficients are displayed with their 95 percent confidence intervals. The dependent variable,
Yp,t, is an indicator variable that equals one if establishment p exists in year ¢t and 0 otherwise. Note that we restrict
the sample to establishments that had positive PM1¢o Emissions in 2000, so yp,2000 = 1 holds for all establishments.
The independent variable is the industry-level NTR Gap (NTRGap;). All regressions include county fixed effects and
control for the log of establishment employment in 2000, the log of firm employment in 2000, firm age in 2000, the
industry-level NTR tariff rates in 2000, the industry-level MFA exposure in 2000, the industry-level log of 1995 skill
and capital intensity, changes in Chinese import tariffs from 1996 to 2005, and changes in Chinese production subsidies
per total sales from 1999 to 2005. Standard errors are two-way clustered by industry and county.

45Please refer to Section 3 regarding the reporting criteria change during the years 2007-2009 for further details. We
cautiously interpret that the upticks shown in this period because they may be attributed to the change in reporting
chemicals or the global financial crisis. In the following, we further subject our empirical specification to an alternative
approach that excludes the years 2007, 2008, and 2009 to determine whether the results remain robust.
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Establishment Survival Pierce and Schott (2016) note that the change in trade policy may
induce Chinese producers to invest in entering or expanding into the US market, thereby increasing
competition for US manufacturers. If so, less competitive domestic manufacturers would be squeezed
out of the market by heightened import competition, meaning that pollution emissions would decrease
from the exit of establishments, in addition to the within-establishment emission adjustment. To
assess this possibility, we use the following empirical specification to compare the evolution of
establishment survival in industries facing large NTR gaps to those in industries facing smaller NTR
gaps:10

Vpt = BeNTRGap; + aVy, +vX; + 6Z; + ne + €p- (6.1)

The sample is restricted to establishments that release positive amounts of PMjg in 2000 (the
reference year in the analysis). We estimate this equation separately for each year t € [2001,2017].
The dependent variable, y, ¢, is an indicator variable that equals one if establishment p exists in year
t and 0 otherwise. B measures the cumulative effect of the imposition of PNTR on establishment
survival by year t. V), captures establishment- and firm-level initial characteristics (measured in 2000),
including the log of establishment employment, the log of firm employment, and firm age. X; and Z;
capture industry-level characteristics, which are analogous to X;; and Z;, respectively, in our main
difference-in-differences specification in Equation (5.2).47 7. is the county to which establishment
p belongs in 2000. As in Dix-Carneiro and Kovak (2017), each year’s /3; captures one point on the
empirical impulse response function describing the cumulative effects of the imposition of PNTR as
of each post-PNTR year.

Figure 6 plots the coefficients on NT RGap; for each year. The survival rates initially increased
in the early 2000s; showed a downward trend until the year 2008; rebounded during the period 2008-
2010; and then slightly declined thereafter. However, all the coefficients are statistically insignificant,
meaning that the imposition of PNTR did not induce US manufacturers that reported positive
amounts of PMyg in 2000 to exit the market. Therefore, establishment exits are not the primary
factor behind the reduction in pollution emissions in US manufacturing.*®

Note that this result does not necessarily mean that the imposition of PNTR did not induce
US manufacturers to leave the market in general. In Appendix C, we show that manufacturing

establishments that generate positive amounts of emissions are fundamentally different from those

“The empirical specification is similar to that of Dix-Carneiro and Kovak (2017) in which they study the evolution
of trade liberalization’s effects on Brazilian local labor markets.

4"These industry controls include the industry-level NTR tariff rates in 2000 (NTR,00), the industry-level MFA
exposure in 2000 (MFA Exposure; oo), the industry-level log of 1995 skill and capital intensity (Log(NP; ¢5/Emp; o5)
and Log(K;,95/Emp; g5), respectively), changes in Chinese import tariffs from 1996 to 2005 (AChinese Tariff;), and
changes in Chinese production subsidies per total sales from 1999 to 2005 (AChinese Subsidies;).

“8In Appendix Table B.14, we accommodate observations with zero reported emission using PPML regressions
and show that the estimated impact of PNTR on PM emissions are more or less stable across (i) accommodating
establishment entry and exit margins, (ii) restricting the analysis to surviving establishments but allowing zero emission,
and (iii) restricting the analysis to observations with positive emissions. This further shows that our results are not
particularly driven by the extensive margin of establishment exits.
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with zero or negligible emissions, and our result that attributes emission abatement to surviving estab-

lishments is not a spurious result driven by the restriction of sample induced by TRI-reporting criteria.

Emission Intensity Adjustment The emission reduction effects could be explained simply
by a scale effect within an establishment. In other words, the observed emission effects could be
interpreted as reductions in production, not abatements in emissions. To check for this possibility, we
construct an establishment-level emission intensity, which is defined as the ratio of PM7g Emissions

to sales. Using this new dependent variable, we repeat the baseline analysis in Table 2.

Table 3: PNTR and Establishment-level Pollution Emission Intensity, 1997 - 2017:
Log(PM Emissions/Sales)

(1) (2) 3) (4)
Log(PM Emissions/Sales)

Post; xNTR Gap; oo 17437 16217 -1.595%"* _1.635°*
(0.514)  (0.597)  (0.544)  (0.535)

NTR.,; 0.013  0.041
(0.042)  (0.045)

MFA Exposure; -0.010 -0.008
(0.018)  (0.018)

POStt XLOg(NPiygs/Empi$95) 0312**
(0.155)
POStt XLOg(Kz‘,95/Empi,95) 0.172%**
(0.062)
Post; x AChinese Tariff; -0.855
(0.572)
Post; x AChinese Subsidies; -74.688™"
(30.637)
Establishment FE v v v v
Year FE v - - _
County x Year FE - v v v
Observations 46751 46751 46751 46751

Notes. This table repeats the specifications in Columns (1)-(4) of Table 2, where we use a measure of establishment-
year-level pollution emission intensity—measured by log of PMio emissions-to-sales ratio—as a dependent variable. *,
** and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table 3 reports the estimation results. Across all columns, we find negative coefficients with
statistical significance at the 1 percent level. This means that establishments that are more exposed

to the change in trade policy reduce not only pollution but also pollution per unit of sales within
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an establishment. Quantitatively, the coeflicients range from -1.74 to -1.60. The magnitudes of
emission intensity reduction are much larger than those of emission reduction. This implies that the
results go against the scale effect channel within an establishment.*® Therefore, we can rule out the
hypothesis that trade liberalization simply drives down the scale of output and reduces pollution
emissions among surviving US manufacturers accordingly. Appendix Figure A.8 plots the dynamic
treatment effects using emission intensity as a dependent variable. Reassuringly, we do not detect
any differential pretrends. Furthermore, as in the emission variable, we also find a lingering effect
of the imposition of PNTR on emission intensity. Unlike Figure 5, in the case of emissions, we do
not detect any uptick during the period between 2007 and 2009:°° The emission intensity declines
substantially in 2002 and thereafter exhibits a smooth, downward trend until 2017.

Non-Disposal Activities As discussed in Section 3, production waste can be either disposed of or
managed through non-disposal activities. To understand whether the establishment-level adjustments
to reduce PM7( emissions are mechanically driven by increases in non-disposal activities, we use the
log amount of PMyg that is recycled, treated, or combusted for energy recovery as the dependent
variable and repeat the baseline analysis in Table 2. We separately construct the waste amount
transferred to off-site facilities and processed on-site. Note that recycling, which the EPA ranks
as the most environmentally preferred among the available non-disposal methods, accounts for the
vast majority of non-disposal shares in our sample: 99 percent of off-site and 64 percent of on-site
non-disposal. The first columns of Appendix Tables B.18 (off-site non-disposal) and B.19 (on-site
non-disposal) present the estimation results. Here, we do not find statistically significant effects of
PNTR on off-site or on-site non-disposal activities. That is, we find limited evidence that PNTR-led
within-establishment adjustments are mechanically driven by establishments increasingly resorting to
these waste-management methods. Instead, the results imply that establishments are responding by
potentially reducing waste production at the source through, for example, adopting green technology
or relocating high-polluting tasks abroad. We revisit this discussion in Section 7 where we study

mechanisms in detail.

49 Appendix Figure A.9 is generally consistent with this pattern such that sales within establishments increased after
PNTR but they are almost statistically indistinguishable from zero. While most of the coefficients are statistically
insignificant, sales within surviving establishments that release positive amounts of pollution emissions can actually
increase in response to PNTR at the intensive margin. One potential explanation for the increase in sales after
PNTR can be found in Pierce and Schott (2016), where they detected PNTR is associated with capital deepening for
continuing plants. They also provided anecdotal evidence supporting this mechanism such that US firms expanded
production capacity significantly more in order to compete with Chinese firms. Another reason for the mild increase of
scale after PNTR for surviving establishments can be explained in Appendix C. Here, we find that establishments that
release toxic emissions are fundamentally different from typical establishments, which suggests that sales response (at
the intensive margin) does not necessarily coincide with those two different groups.

0Tt appears that the TRI Burden Reduction Rule and the Great Recession may have differentially affected
US manufacturing establishments in terms of emissions and sales, respectively. However, we conjecture that the
normalization (i.e., pollution per unit of sales) may have addressed the differential impacts. This may be why we
observe a smooth, downward trend in Appendix Figure A.8.
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6.2 Robustness Checks

In this section, we conduct several robustness tests to corroborate our main difference-in-differences
results in Section 6.1: (i) alternative sample periods; (ii) controlling for NAFTA; (iii) excluding entry
and exit; (iv) dropping outliers; and (v) weighted regressions and toxicity-weighted emissions. At the
end of this section, we also briefly summarize additional robustness exercises that we conducted in

Appendix B.

Alternative Sample Periods  We alter the sample period beyond the baseline setting (from 1997
to 2017). First, we add two earlier years (i.e., 1995 and 1996). Initially, we excluded those two years
to avoid the potentially confounding effects of NAFTA, which came into force on January 1, 1994.
Column (1) of Appendix Table B.7 shows the estimated results using the sample period from 1995
to 2017. They are nearly indistinguishable from our baseline results. While the magnitude of the
coefficient increases, i.e., from -1.19 to -1.32, we continue to reject zero emission effects. Appendix
Figure A .4 illustrates corresponding dynamic treatment effects in the sample period from 1995 to
2017, confirming the robustness of the baseline results summarized in Figure 5: We again reject
differential pretrends in emissions; the long-term effects we find in the main results are robust to
including the two earlier years.

Next, we check the robustness of our results by excluding three years (2007, 2008, and 2009)
from our baseline sample. As discussed above, there was a major change in reporting criteria in 2007,
which was revoked in 2009.%" Another related concern about this period is the overlapping of our
sample with the Great Recession. If US manufacturing establishments were differentially affected by
the Great Recession, the observed emission effects could be ascribed to the Great Recession instead
of trade policy. For instance, this would be the case if unobserved demand or supply shocks caused
by the Great Recession are also correlated with our shock, which we might fail to address through
the set of control variables including the county-year fixed effects.

Column (2) of Appendix Table B.7 repeats the baseline analysis when dropping years from
2007 to 2017; Column (3) drops from 2007 to 2017 and adds two earlier years (1995 and 1996);
Column (4) drops from 2007 to 2009. The magnitude of coefficients remains quantitatively similar,
i.e., ranging from -1.22 to -0.98, further solidifying our baseline results. Appendix Figures A.5 and
A.6 present corresponding dynamic treatment effects for the sample periods (i) from 1995 to 2006 and
(i) from 1997 to 2006, respectively. Once again, the results confirm the robustness of the baseline
results summarized in Figure 5, verifying the validity of the parallel trends assumption. In addition,
the observed emission reductions are noticeable from 2002 onward, indicating that a structural
change may have happened between 2001 and 2002—the timing overlaps well with China becoming
a member of the WTO on December 11, 2001, and with PNTR, becoming effective on January 1, 2002.

51Gee Section 3 for further details regarding the TRI Burden Reduction Rule and the Omnibus Appropriations Act.
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Controlling for NAFTA A more direct way to address concerns related to the lagged responses
to NAFTA is to control for changes in US tariffs on imports from Mexico in our baseline regression.
In particular, we include an interaction term of industry-level changes in US tariffs on imports from
Mexico from 1990 to 2000 and the post-PNTR dummy variable.’? Appendix Table B.8 presents the
estimation results.>®> Column (1) of Appendix Table B.8 includes the interaction of the post-PNTR
indicator and the industry-level NAFTA tariff changes with US total imports as trade value weights,
whereas Column (2) uses US imports from Mexico as trade value weights. The estimated coefficients
remain negative and statistically significant but decrease slightly in magnitude in comparison with
the main DID coefficient in Column (4) of Table 2. Appendix Figure A.7 plots the dynamic treatment
effects after controlling for the NAFTA tariff changes. Again, we obtain quantitatively similar effects

to our main results presented in Section 6.1.

Excluding Entry and Exit Due to the entry and exit of establishments, our main empirical
specification in Equation (5.2) may not fully capture within-establishment emission adjustment. If
the observed emission effects are entirely driven by reallocations along the extensive margin, then the
imposition of PNTR should have no impacts on establishments that had operated throughout the
entire sample period (i.e., 1997 - 2017). To alleviate this concern, we restrict establishments that had
positive employment for the entire sample period from 1997 to 2017. Appendix Table B.9 presents
the estimation results using the restricted sample. The estimated coefficients are all negative with
statistical significance at the one percent level. In addition, the magnitudes of the coefficients become
even larger, ranging from -1.57 to -1.43. These results reject the hypothesis that the emission effects
are fully driven by the entry and exit of establishments, whereas they support the within-establishment

emission reductions as a consequence of the imposition of PNTR.

Dropping Outliers  As discussed in Section 5.2, the distribution of PMy emissions is highly
skewed such that there are a small number of establishments that produce extreme emissions. A
similar pattern holds for the firm size and establishment size distributions, which are also well-
documented in the literature (e.g., Gabaix 2011; Haltiwanger et al. 2013). To ensure that these
extreme observations are not driving our results, we perform a robustness check by dropping extreme
values. Specifically, in Columns (1)-(3) of Appendix Table B.10, we drop observations from the
top and the bottom 2.5 percent of the distribution of (i) PMjo emissions, (ii) firm size, and (iii)

52Following Hakobyan and McLaren (2016), we construct the industry-level tariff changes as follows: first, we
collect HS-8-digit-level US tariffs on imports from Mexico in 1990 and 2000; second, we obtain trade-value-weighted
(in 1990) average tariffs for each 4-digit-industry using within-industry product shares; and third, we then compute
the industry-level average US tariffs on imports from Mexico between 1990 and 2000. Note that the within-industry
product shares are constructed in two different ways: using trade flows between (i) the US and the rest of the world;
(ii) the US and Mexico.

53Note that all controls in Column (4) of Table 2, our baseline specification, are included in these regressions.
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establishment size, respectively. The results are barely affected by dropping those outliers.

Weighted Regressions and Toxicity-Weighted Emissions We also show that our results
are robust to allowing alternative weighting schemes. Column (1) of Appendix Table B.11 considers
a weighted regression weighted by the establishment’s initial PM;g emissions. In Column (2), we
instead weigh each observation by an establishment’s initial employment. Last, in Column (3), we use
the log of toxicity-weighted PMy emissions as a dependent variable and run a weighted regression

weighted by initial emissions.®* Our results are robust to the alternative specifications.

Additional Analyses In Appendix B, we additionally show that our main results are robust
to controlling for the indirect impact of PNTR through input-output linkages—i.e., upstream-
and downstream-specific NTR gaps (Table B.12), upstream-specific time trends (Table B.13), and

accommodating observations with zero reported emission using PPML regression (Table B.14).

6.3 Heterogeneous Adjustments Across Establishments

We extend Equation (5.2) to a triple difference-in-differences design to investigate heterogeneous
responses across establishment groups defined by their initial characteristics. We consider firm-level
import and export intensities (measured using the within-firm employment share of establishments
that engaged in import and export activities), counts of 4-digit sectors, counts of establishments, and
size. We also consider establishment-level exposure to environmental regulation stringency using the
county-specific nonattainment status designated through the 1990 Clean Air Act Amendments, age
of establishment, and establishment-level adoption of environment-friendly practices in production
and waste management (or green technology) using pollution prevention (P2) activities.® Finally,
we consider industry-level upstreamness (constructed using Input-Output tables on US production
linkages as in Antras et al. (2012)). Following Burchardi et al. (2019), we work with a binary indicator
that takes value one if the upstreamness index is larger than 2. Table 4 presents estimates of the
triple-difference estimator. Columns (1) through (9) separately examine the differential effects across
these initial characteristics, and Column (10) combines all eight of them.

There are four notable results in Table 4, which, for visibility, we placed in the first four columns

54We use toxicity weights that the EPA constructed using the Risk-Screening Environmental Indicators (RSEI)
Methodology. These measures are useful in terms of understanding our results with respect to potential long-term
health risks associated with the pollutants.

55Under the 1990 Clean Air Act Amendments, the EPA established a minimum level of air quality standard that all
US counties are required to meet for four pollutants: carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and
particulate matter (PM). Each year, if a county exceeds the minimum level for a specific pollutant, then it receives
a nonattainment designation for that pollutant. Otherwise, a county receives an attainment designation. In our
analysis, we define nonattainment counties designated specifically for particulate matter (PM). See Hanna (2010) for
comprehensive coverage of the institutional details.

56We consider the log of PM1o Emissions as a dependent variable in Table 4, but we find broadly consistent results
with the log of pollution emission intensity. See Appendix Table B.15.
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Table 4: Heterogeneous Treatment Effects:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017: Log(PM Emissions)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Log(PM Emissions)

Posty xNTR Gap;,g9 -0.221 -1.090*** 0.350 -2.392  -1.252** _1.588** -1.986 -1.274* -1.664*** 4.611

(0.969) (0.393) (0.887) (1.751) (0.629) (0.676) (1.340) (0.688) (0.421)  (5.360)
Post; xNTR Gap; g9 -4.452* -10.944***
xImport Intensity ¢ g7 (2.365) (3.081)
Posty xNTR Gap; g9 -2.316™** -3.995***
x Nonattainment. gs_g7 (0.772) (0.986)
Posty xNTR Gap; g9 -2.187** -3.172%*
x Upstream; g7 (0.959) (1.596)
Post; xNTR Gap;, o9 -0.105 -2.934**
x Log(Num. 4-digit Sectorsy o7) (0.486) (1.355)
Posty xNTR Gap;,g9 -0.454 -5.922
x Export Intensity s 97 (1.358) (4.367)
Post; xNTR Gap;,99 0.057 0.397
x Log(Num. Establishment g7) (0.179) (1.125)
Post; xNTR Gap; o9 0.076 0.786
x Log(Firm Employment ¢ g7) (0.170) (0.860)
Post; xXNTR Gap; o9 -0.002 0.007
x Agep o7 (0.009) (0.010)
Post; xNTR Gap;,o9 0.532 0.977
xI(Num. P2, g5_o7 > 0) (0.663)  (0.952)
Establishment FE v v v v v v v v v v
County x Year FE v v v v v v v v v v
Controls v v v v v v v v v v
Observations 17373 37763 37701 37763 28347 37763 37763 37763 37763 15611

Notes. This table shows how the conferral of PNTR to China heterogeneously affected the establishment-level pollution
emissions depending on various initial characteristics by including triple interactions of a post-PNTR indicator, the
NTR gap, and a given initial characteristic. Column (1) considers a firm’s initial import intensity—measured as a
within-firm employment share of establishments that engaged in import activities in 1997—conditional on the firm
being an importer (Import Intensitysg7>0) to capture the intensive margin of intensity. Column (2) considers a
county-level measure of strict regulatory oversight under the Clean Air Act Amendments (CAAA). Specifically, we
consider a nonattainment dummy variable that takes value one if a given county has a record of nonattainment during
1995-1997 to achieve the national standards for PM emissions under CAAA. Column (3) considers an industry-level
upstreamness dummy as in Burchardi et al. (2019), which takes value one if the upstreamness index (Antras et al.,
2012) is larger than 2. Column (4) considers the log of the initial number of SIC-4-digit sectors within a firm. Column
(5) considers a firm’s initial export intensity—measured as a within-firm employment share of establishments that
engaged in export activities in 1997—conditional on the firm being an exporter (Export Intensity f97>0) to capture
the intensive margin of intensity. Columns (6)-(8) consider the log of the initial number of establishments within a
firm, the log of initial firm employment, and the initial age of establishment. Column (9) considers a measure of an
establishment’s initial pollution prevention-related activities (P2), which equals one if there were at least one toxic
chemical between 1995-1997 that the establishment had taken any pollution prevention-related activities. Column
(10) includes all triple interactions simultaneously. All columns include interactions of the column-specific initial
characteristic(s) with (i) post-PNTR indicator and (ii) NTR gap, respectively. The rest of the specifications are
identical to those in Column (4) of Table 2: We include all set of controls and fixed effects as in Column (4) of Table 2.
The sample is restricted to establishments whose initial firm characteristics are well defined (i.e., establishments whose
parent firms existed in 1997), which results in 37,763 observations. *, ** and *** denote significance at the 10%, 5%,
and 1% levels, respectively.
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in the table (i.e., Columns (1)-(4) and (10)). First, the estimated coefficient for import intensity
(Import Intensity s g7) is negative and statistically significant while that of export intensity (Export
Intensity s g7) is also negative but lacks statistical precision. Consistent with Fact 3 of the stylized
facts in Section 4, establishments of firms that are initially more engaged in import activities have
substantially more reduced emissions than others.?” We have limited information on the nature
of these import (or export) activities since we do not observe the type of products establishments
import (or export) or their trading partners in the data. However, as long as manufacturing firms do
not purchase goods from abroad to resell to consumers, it is most likely that these imports consist
of intermediate goods (Hummels et al., 2014), thereby possibly capturing offshoring activities. In
this context, one plausible mechanism is that PNTR encourages establishments leveraging existing
foreign sourcing networks to import instead of produce intermediate goods that require high-polluting
activities and end up reducing pollutant emissions domestically.?®

Second, the estimated coefficient for the initial nonattainment status of the county in which
each establishment is located (Nonattainment, gs_97) is negative and statistically significant. That is,
in response to PNTR, establishments that were initially facing tougher environmental regulations
decreased emissions by a greater magnitude than others facing more lenient standards. In fact, Hanna
(2010) finds that strengthened US environmental regulations, proxied by nonattainment county status
of establishment locations, induce US-based multinationals to increase their FDI activities. Consistent
with this finding, a possible interpretation of our result is that establishments in nonattainment
counties, in search of ways to reduce abatement costs, leveraged the PNTR-induced opportunities for
FDI, including offshoring high-polluting tasks abroad.

Third, the estimated coefficient for upstream industries (Upstream; g7) is negative and statisti-
cally significant. In response to PNTR, establishments operating in industries that produce goods
considered as intermediate inputs in the final goods production process reduced emissions by a greater
amount than those operating in more downstream industries. Together with the first result using
import intensities, this result offers complementary evidence in support of the offshoring mechanism.
If PNTR facilitated firms with available sourcing networks to purchase inputs from abroad, then by

virtue of the same mechanism, establishments in upstream industries may reduce pollution-intensive

57In this exercise, we condition on firms being importers (i-e., Import Intensity f,97>0) to capture the intensive margin
of intensity. In Appendix Table B.16, we consider the unconditional import intensity that includes non-importers. We
obtain negative coefficients, but the estimate is less precise. The importance of intensive margin is consistent with
Martin et al. (2021), who find that products with higher relationship stickiness—in particular, industrial (specialty)
chemical and pharmaceutical products—have larger intrafirm trade and exhibit stronger trade dynamics in response to
uncertainty shock. In our data, we find that chemicals and allied products (SIC 2-digit 28), which include industrial
chemical and pharmaceutical products, are among industries with the highest emission share in the US (Figure A.2)
and exhibit strong response to PNTR shock (Table B.5).

58Note that we find qualitatively similar results when using the log amount of PM;o processed through off-site
non-disposal methods as the dependent variable (See Column (11) of Appendix Table B.18). While we did not find
any significance in the main effects, we report important complementarity between an establishment’s access to foreign
sourcing networks and off-site non-disposal activities. Appendix Table B.19 presents the results for on-site non-disposal,
where we do not find analogous patterns.
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production of intermediate goods as PNTR induces domestic firms to switch to Chinese suppliers.
For multi-establishment firms operating in both upstream and downstream industries, this speaks to
a scenario in which firms offshore dirty tasks previously performed through their own establishments
in upstream industries, thereby reducing emissions.

Finally, the estimated coefficient for multi-sector establishments (Num. 4-digit Sectorsy g7) is
negative and statistically significant, conditional on other interactions (Column (10)). Establishments
that belong to a multi-establishment firm operating in different sectors are more diversified and might
be more resilient to shocks through flexible reallocation of resources across establishments (Hyun et
al., 2022). Together with the third result, it is possible that such flexibility allows these multi-sector
firms to easily offshore upstream and dirty production and reallocate their resources toward cleaner

production, resulting in reduced pollution emissions.

7 Mechanisms

7.1 Pollution Offshoring Hypothesis

Motivated by the suggestive evidence in support of the offshoring mechanism in the heterogeneous
treatment effect analyses, we directly assess the importance of the offshoring channel—global sourcing
and FDI—in explaining our main findings on the PNTR~induced reductions in the PM;(y emissions
within US manufacturing. We further examine whether consistent patterns are shown when studying

the PNTR-induced US imports of high-polluting products from China.

Global Sourcing and FDI Activities Offshoring occurs when parts of the multi-stage production
process are performed abroad. Such offshoring activities involve sourcing foreign intermediate inputs
(Hummels et al., 2001), creating vertical production networks to perform offshored tasks, and
establishing foreign affiliates to serve the market of the host country or to export to other markets
outside the host country (Hanson et al., 2005; Garetto, 2013; Tintelnot, 2017). In the data, however, it
is challenging to construct a single measure that comprehensively captures these offshoring activities
(Monarch et al., 2017), let alone relocation of dirty tasks.

Our analysis relies on two separate proxies of offshoring, which leverage detailed data from NETS
and WRDS Company Subsidiary data, respectively.?® Specifically, we first use time-varying importing
status at the establishment level from the NETS database to capture US manufacturers’ purchasing
task outputs from China that are combined in the final goods production. Next, we use WRDS
Company Subsidiary data linked to our main dataset and count the number of foreign subsidiaries in

China (and other countries) to measure US multinationals’ FDI activities at the establishment-year

59While the coverage of the WRDS Company Subsidiary Data is confined to publicly listed companies, it is the best
available dataset that enables us to directly test the offshoring mechanism via FDI activities. Refer to Section 3.1 for
more detailed descriptions of WRDS Company Subsidiary Data.
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level. Using these two measures—importing status and FDI—as dependent variables, we estimate
the main equation (5.2). In each exercise, we use the triple difference-in-differences framework
to test whether such offshoring activities are more pronounced for establishments associated with
high-polluting tasks—measured as whether establishments were located in nonattainment counties or
whether establishments had higher initial pollution intensity. Note that establishments in counties
with a nonattainment designation are likely heavy emitters during the initial period, as this designation

is granted to counties with air pollution concentrations that exceed federal standards (Hanna, 2010).

Table 5: PNTR and Import Status, 1997 - 2017

M ®) ®
Import Import Import
Post; xNTR Gapi,g9 0.288** 0.154 1.183***
(0.119)  (0.115)  (0.444)
Post; XxNTR Gap;, 99 x Nonattainment 9597 0.731***
(0.278)
Posty xNTR Gap; 99 x Log(PM Emissions/Sales; o7) 0.090**
(0.040)
Establishment FE v v v
County x Year FE v v v
Controls v v v
Margin Intensive Intensive Intensive
Observations 13760 13760 9164

Notes. This table investigates the average and heterogeneous treatment effects of the conferral of PNTR to China
on establishment-level import status. The dependent variable, Import, is a dummy variable that equals to one if
establishment p engages in importing activities in year t. We focus on the intensive margin adjustment of importing
activities within a firm by restricting the sample to establishments that belonged to an importing firm in 1997
(i.e., Import Intensitys o7 > 0). Column (1) shows the average treatment effect. Columns (2) and (3) investigate
the heterogeneous treatment effects depending on (i) a county-level initial measure of strict regulatory oversight
under the Clean Air Act Amendments (CAAA) and (ii) a measure of the establishment’s initial pollution emission
intensity—measured by the log of PMio emissions-to-sales ratio. Specifically, we include triple interactions of a
post-PNTR indicator, the NTR gap, and a given initial characteristic. Columns (2)-(3) also include interactions of the
column-specific initial characteristic with (i) post-PNTR indicator and (ii) NTR gap, respectively. The rest of the
specifications in Columns (1)-(3) are identical to Column (4) of Table 2. *, ** and *** denote significance at the 10%,
5%, and 1% levels, respectively.

Table 5 reports the estimates for global sourcing activities. We begin by focusing on firms with
at least one foreign sourcing network (i.e., Import Intensity g7 > 0) because the emission reduction
effects were most pronounced at the intensive margin of importing activities in Table 4.0 Column
(1) of Table 5 indicates that non-importing establishments that belong to a firm with foreign sourcing
networks began to source from abroad after PNTR. Conversely, Column (1) of Appendix Table B.17
shows that PNTR had no such effect for establishments that did not initially belong to an importing

firm (i.e., Import Intensity g7 = 0). Both results suggest that establishments with existing foreign

59As noted in footnote 57, the importance of intensive margin of the relationship is broadly consistent with the
findings in Martin et al. (2021).
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Table 6: PNTR and FDI into China vs. Other Countries, 1997 - 2017

(1) (2) (3) (4)
7Z = Num. Subsid. in China
I(Z> 0) Log(Z)
Post: xNTR Gap;,99 0.265 0.188 1.073* 1.173
(0.260) (0.193) (0.611) (0.920)

Establishment FE v v v v
County FE v - v -
Year FE v - v -
County x Year FE - v - v
Controls v v v v
Observations 12608 8346 6384 3067

(5) (6) (7) (8)
7Z = Num. Subsid. in Other
1(Z> 0) Log(Z)

Post; xNTR Gapi g9  0.126 0.090 -0.124 -0.005
(0.215)  (0.148) (0.682) (0.654)

Establishment FE v v v v
County FE v - v -
Year FE N - v -
County x Year FE - v - v
Controls v v v v
Observations 12608 8346 11442 7298

Notes. This table investigates the effect of the conferral of PNTR to China on FDI activities. For each establishment-
year pair, we assign yearly measures of FDI activities by its parent firm as dependent variables. Specifically, columns
(1)-(2) consider a dummy variable that equals one if the establishment’s parent firm has at least one subsidiary in China
in year t (extensive margin). Columns (3)-(4) consider the log of the number of subsidiaries (of the establishment’s
parent firm) in China in year ¢ (intensive margin). Columns (5)-(8) repeat Columns (1)-(4), where we consider the
number of subsidiaries in other countries. Columns (1), (3), (5), and (7) separately include county fixed effects and
year fixed effects, and columns (2), (4), (6), (8) include county-by-year fixed effects. The rest of the specifications are
identical to those in Column (4) of Table 2: We include all controls and establishment fixed effects as in Column (4) of
Table 2. * ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.

networks, those who had already incurred the sunk investment costs, played a major role in global
sourcing activities following PNTR, underscoring the importance of intensive margin adjustment.5!
Columns (2) and (3) of Table 5 further show that establishments that are most likely to be involved
in high-polluting tasks engage more in importing activities than other establishments after PNTR.
Specifically, we find that establishments are more likely to engage in importing activities if they faced
stricter environmental regulation in the initial period under the Clean Air Act Amendments and for
those that had higher initial pollution emission intensity. The results collectively suggest that US
manufacturers sent (or sourced) a set of dirty tasks, thereby reducing toxic emissions.

Table 6 reports the estimates for FDI activities. In Columns (1)-(2) and (5)-(6), we consider a

61Similarly, we examine whether exporting activities respond to PNTR. Columns (2) and (3) of Appendix Table
B.17 reveal that PNTR does not cause new exporting activities at the establishment level.
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Table 7: Heterogeneous Treatment Effects:
PNTR and FDI into China, 1997 - 2017

1) 2)

7Z = Num. Subsid. in China

I(Z> 0) Log(Z)
Post: xNTR Gap; g9 0.161 0.735

(0.200) (0.871)
Post; xNTR Gap;,99 x Nonattainment. o597 0.440 5.169***

(0.461) (1.102)
Establishment FE v v
County x Year FE v v
Controls v v
Observations 8346 3067

3) (4)

7Z = Num. Subsid. in China

1(Z> 0) Log(Z)
Post: xNTR Gap; 99 0.872 12.871*%**

(0.940) (3.946)
Post: x NTR Gap;,99 X Log(PM Emissions/Salesy o7) 0.057 0.938***

(0.080) (0.323)
Establishment FE v v
County x Year FE v v
Controls v v
Observations 4399 1372

Notes. This table investigates the heterogeneous treatment effects of the conferral of PNTR to China on FDI decisions
in China. Specifically, Columns (1)-(2) and Columns (3)-(4) in this table, respectively, repeat the specifications in
Columns (2) and (4) of Table 6, where we include triple interactions of a post-PNTR indicator, the NTR gap, and a
given initial characteristic. Columns (1)-(2) consider a county-level measure of strict regulatory oversight under the
Clean Air Act Amendments (CAAA). Specifically, we consider a nonattainment dummy variable that takes value one if a
given county has a record of nonattainment during 1995-1997 to achieve the national standards for PM emissions under
CAAA. Columns (3)-(4) consider a measure of the establishment’s initial pollution emission intensity—measured by the
log of PM10 emissions-to-sales ratio. All columns also include interactions of the column-specific initial characteristic
with (i) post-PNTR indicator and (ii) NTR gap, respectively. *, ** and *** denote significance at the 10%, 5%, and
1% levels, respectively.

dummy variable that equals one if firm f has at least one subsidiary in China (or other countries)
in year ¢, thereby measuring the extensive margin; in Columns (3)-(4) and (7)-(8), we measure the
log of firm f’s number of subsidiaries in China (or other countries) in year ¢, thereby capturing the
intensive margin. We find that the PNTR induced US manufacturing establishments to set up more
subsidiaries, mainly at the intensive margin.®> We further conduct a placebo test in Columns (5)
through (8). As the change in PNTR status only concerns China, we do not expect the FDI effect to

be significant for other destination countries. Consistent with this conjecture, the coefficients are all

52Due to the reduced number of observations in Column (4), we lose statistical power; nevertheless, the p-value is
0.204 and thus is statistically significant at the 21 percent level.
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statistically insignificant and small in magnitude. In Table 7, we further find that establishments
that are most likely to engage in high-polluting tasks increase their subsidiaries in China more than
other establishments, an effect that mainly operated through the intensive margin (see Columns
(2) and (4)), not the extensive margin. That is, we find that the number of subsidiaries in China
increased more for establishments that faced stricter environmental regulation in the initial period

and for those that had higher initial pollution emission intensity.

Dirty Product Imports from China to US  We then test whether US manufacturers, in fact,
increased imports of dirty products from China. If US manufacturers shifted high-polluting activities
to China after the conferral of PNTR, and such a shift was driven by the offshoring mechanism, we
would anticipate that US manufacturers will increase dirty product imports from China relative to
other countries. To test this hypothesis, we use HS 10-digit product-by-year-level data from the
UN Comtrade database and examine whether the share of US imports from China increased to a
greater extent for products categorized under high-polluting industries using the same definition
(criteria) of dirtiness as in the previous exercises. Table 8 shows the result. Column (1) confirms that,
following the conferral of PNTR to China, the share of US imports from China increased. Column
(2) shows the heterogeneity across products in the dirtiness of products where the effects are more
pronounced for products that are produced by high-polluting industries. In Column (3), albeit only
with a p-value of 0.258, we find that the increase in the share of US imports from China is more

noticeable in upstream industries.

Discussion: Offshoring versus Import Competition The set of findings presented in this
section collectively provides direct evidence supporting the offshoring channel as an important
mechanism through which US manufacturers shifted high-polluting activities to China after the
conferral of PNTR to China, resulting in a reduction in domestic emissions. We note that our results
strongly indicate the pollution offshoring hypothesis in that progress toward trade liberalization induces
firms in developed countries to avoid stringent environmental regulations by locating production in
countries, typically developing countries, with laxer environmental standards.

Despite the extensive evidence supporting the offshoring mechanism, one may still argue that
our results are potentially confounded by the import competition channel.53 While we do not claim
that the offshoring channel was the only contributor in a dichotomous way, we emphasize that there
was ample evidence in favor of offshoring, but not import competition, as we illustrate below.

To reiterate, the conferral of PNTR to China is related to a reduction in trade policy uncertainty,
not actual tariffs. Hence, a conventional tariff reduction channel-—cheaper Chinese imported goods

replacing US products—is not directly applicable to our empirical specification. Note that we do

53Here, import competition specifically refers to US firms’ competition with Chinese firms that are unrelated to US
firms’ offshoring activities.
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Table 8: Dirty Industries and Heterogeneity in Product-level Response of
US Import Share from China, 1997 - 2017

0 © ®
Share of US Imports from China
Post: xNTR Gap;,99 0.092**  0.090** 0.048
(0.043)  (0.040) (0.052)
Post; x NTR Gap;,99 X Log(Emissions of PM/Sales; o7) 0.074**
(0.036)
Post; xNTR Gapng XUpstreami,m 0.078
(0.069)
Product FE v v v
Year FE v v v
Controls v v v
Observations 198716 170020 197905

Notes. This table investigates the heterogeneous treatment effects of the conferral of PNTR to China on product-level
US import share from China, depending on (i) initial PM emission intensity and (ii) upstreamness. Observations
are defined at HS 10-digit product-by-year level. The dependent variable is the share of imports from China to the
US relative to total US imports. Column (1) considers the interaction of (i) post-PNTR indicator and (ii) NTR gap.
Column (2) considers a triple interaction of (i) post-PNTR indicator, (ii) NTR gap, and (iii) log of initial PMig
emissions-to-sales ratio defined at the SIC 4-digit level, Log(PM Emissions/Sales;,97). Column (3) considers a triple
interaction of (i) post-PNTR indicator, (ii) NTR gap, and (iii) upstreamness dummy as in Column (3) of Table 4.
To facilitate coefficient interpretation, we standardized Log(PM Emissions/Sales; 97) so that the sample mean equals
zero and the sample standard deviation equals one. Columns (2)-(3) also include interactions of the column-specific
initial characteristic with (i) post-PNTR indicator and (ii) NTR gap, respectively. Additionally, all columns include
time-varying industry-by-year variables—NTR tariff rates (NTR;,1), MFA exposure (MFA Exposure; )—as well as
interactions of the post-PNTR indicator with time-invariant controls including the industry-level log of 1995 skill
and capital intensity (Log(NP; 05/Emp; 5) and Log(K; 05 /Emp; 95), respectively), changes in Chinese import tariffs
from 1996 to 2005 (AChinese Tariff;), and changes in Chinese production subsidies per total sales from 1999 to 2005
(AChinese Subsidies;). The sample period is from 1997 to 2017. Standard errors (in parentheses) are clustered at the
SIC 4-digit industry level. *, ¥* and *** denote significance at the 10%, 5%, and 1% levels, respectively.

control for the NTR tariff rate in Equation (5.2). Admittedly, the reduction in uncertainty may
induce Chinese firms to expand into the US market.®? If the surge in imports from China operated as
a competition mechanism, we would observe a reduction of production scale or establishment exits,
which may reduce toxic emissions. However, our empirical results do not indicate the competition
channel (see Figure 6, Table 3, and Figure A.9).

The offshoring channel, on the other hand, is strongly supported by the direct evidence shown
in this section together with all other pieces of evidence presented in previous sections of the paper.
Specifically, pollution emission reductions are more pronounced for establishments in upstream
industries (see Table 4). This implies that the US may have sourced intermediate inputs, relative to
final goods, from China, which resulted in the cleanup of US upstream industries relatively more.
On top of that, the emission reductions along with sourcing/FDI activities are more substantial

for establishments that already had foreign sourcing networks including China. As our analysis

54This channel is one of four potential mechanisms described in Pierce and Schott (2016).
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is focused on manufacturing, plant-level sourcing activities indicate offshoring (not competition),
thereby implying that US plants conduct more offshoring activities after PNTR. Furthermore, we
observe a weak, but statistically insignificant, increase in sales after PNTR among establishments
with positive emissions (see Figure A.9). This finding is again inconsistent with the competition
channel but instead supports the productivity effect of offshoring—the cost-saving nature of offshoring
allows firms to boost their productivity and increase sales (Grossman and Rossi-Hansberg, 2008).

From a measurement perspective, one may still argue that the NTR gap could capture both
output and input uncertainties within-establishment under a rather dichotomous assumption that
output uncertainty captures the competition channel and input uncertainty reflects the offshoring
channel. While plausible, we note that constructing separate within-establishment measures of output
and input uncertainties is infeasible in our study as plant-level data on input purchases are not
accessible. Typically, researchers have used an input-output table to infer plant-level production
and sourcing structure, which necessarily generates measurement errors. Despite the limitation,
as a robustness check, following Pierce and Schott (2016), we construct industry-level upstream-
and downstream-specific NTR gap measures, respectively, and repeat the analysis. Reassuringly,
in Appendix Table B.12, the main estimate of our interest, the first row, is still negative and
statistically significant. Moreover, Bernard et al. (2020) finds that, after offshoring to low-wage
countries, firms increase their imports of the same detailed six-digit HS goods that they continue
to produce domestically. Offshoring firms then reallocate their tasks toward producing high-quality
varieties within the same product category. This pattern contradicts the common assumption that
offshoring necessarily entails imports of inputs.5?

The remaining question is then how the cleanup of the US manufacturing has been possibly
achieved via offshoring within the same 4-digit SIC industry. Similar to the "produced-good im-
ports" and reallocation toward high-quality varieties through offshoring shown in Bernard et al.
(2020), Hombert and Matray (2018) find that the China trade shock induced US firms, especially
R&D-intensive firms, to increase product differentiation, and climb up the quality ladder. Just like
their arguments, because PNTR facilitated offshoring (or FDI) activities to China, multi-stage (or
multi-product) establishments, mostly producing differentiated steel or chemical products (see Fig-
ure A.2), may have differentiated their products (or production stages) by substituting high-polluting
activities with low-polluting ones within establishments. Given that we find stronger responses for
establishments located in upstream industries and owned by multisector firms (see Table 4), it is
possible that these establishments are intermediate goods producers that shifted their tasks from

dirty to clean activities and imported dirty products from China.

55Note that this is perfectly compatible with our findings that emphasize the role of establishments operating in
upstream industries in general input-output structure (Table 4). It implies that even for establishments operating in
upstream sectors, they tend to import back products sharing the same category as their own outputs instead of inputs.
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Discussion: Pollution Offshoring and China We also emphasize that our findings do not
necessarily imply that the level of pollution in China increased due to US manufacturers’ offshoring
activities. For example, it is possible that high-polluting tasks that the US offshored to China
are still less pollution-intensive compared to those in local Chinese firms. In this case, the toxic
emissions in both countries may as well decline.%¢ Also, Chinese exporters may adopt environment-
friendly technologies to comply with international environmental standards. In fact, there is mixed
documentation on whether the expansion of Chinese exports resulted in higher pollution in China. For
example, Bombardini and Li (2020) show that the rapid expansion of Chinese exports between 1990
and 2010 caused increases in local pollution and mortality in China, whereas Rodrigue et al. (2022)
find that Chinese exporters are significantly less emission-intensive compared to non-exporters and
that Chinese firms’ exporting reduces their emissions. Our results suggest that the conferral of PNTR
to China—followed by the offshoring of high-polluting tasks to China—resulted in increased reliance
on imports from China, especially for products that are produced by dirty industries according to
US standards.

7.2 Other Mechanisms: Clean Technology Adoption

We now examine the importance of the technology channel in understanding the PNTR-led reductions
in PMyg emissions. If US manufacturers adopted clean technologies in response to PNTR, then the
observed decline would reflect trade-induced advances in production or abatement processes rather
than offshoring activities. Levinson (2009) finds that the majority of the pollution emission reductions
in the US from 1987 to 2001 were attributable to technology adoption. Consequently, technology
adoption is indeed crucial for understanding the emission reductions in the US and furthermore may
be confounded with the offshoring channel.

To test for this possibility, we estimate Equation (5.2) using establishment-level pollution
prevention (P2) activities—covering any practice that “reduces, eliminates, or prevents pollution at
its source before it is created"—to construct outcome variables. Specifically, among the four broad
categories of pollution prevention (P2) activities— (i) material substitutions and modifications; (ii)
product modifications, process and equipment modifications; (iii) inventory and material management;
and (iv) operating practices and training, we focus on (i) and (ii) to proxy for clean technology
adoption. Appendix Table B.20 presents the estimated results. Column (1) uses an indicator variable

for whether any clean-technology-related P2 activity is reported in a given year, and column (2)

56This idea is reminiscent of Feenstra and Hanson (1996) where outsourcing by Northern multinationals toward the
South leads to an increase in South’s capital stock relative to that in the North, which may increase the relative wage
of skilled labor in both North and South simultaneously. In their model, the manufacturing activities outsourced to the
South are ones that rely more on unskilled labor from the North’s perspective, but are ones that rely more on skilled
labor from the South’s perspective, so that offshoring leads both countries to experience an increase in skilled labor
premium. Likewise, it may be the case that the activities outsourced to the South are ones that rely more on dirty
processes from the North’s perspective, but are ones that rely more on clean processes from the South’s perspective.
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considers the number of chemicals that are associated with these P2 activities.%” We find that neither
the extensive nor intensive margin of pollution prevention (P2) activities respond to PNTR. That is,
the trade liberalization associated with the conferral of PNTR have had a limited role in inducing
clean technology adoption in the post-2000s period.

It is important to note that this result does not necessarily contradict the existing literature
that highlights the role of technology (i.e., the technique effect shown in Section 4) in explaining the
cleaning-up of manufacturing. In particular, the null findings could be attributed to a situation in
which trade incentivizes establishments to adopt clean technologies, which to some extent serve as
substitutes to offshoring, similar to the way that general process innovation—intended to reduce
production costs—and offshoring were identified as substitutes in Bena and Simintzi (2022). Since
clean technology adoption can be considered a form of cost-reducing process innovation when
environmental regulations are present, the substitution channel might apply to our environmental

context to neutralize any potential positive impact of PNTR on clean technology adoption.

8 Conclusion

Using the conferral of PNTR status to China as a quasi-natural experiment, we investigate the
long-run environmental impacts of trade liberalization and provide support for the pollution offshoring
hypothesis in US manufacturing. Data from TRI and NETS give us a unique longitudinal perspective
over nearly two decades of the post-2000 period to observe how US manufacturers adjust pollution
emissions to a reduction in trade policy uncertainty. The main driver of the reductions in pollution
emissions was the abatement within an establishment, primarily a reduction in emission intensity. US
establishment that were more able and willing to offshore production to China—in terms of (i) having
existing foreign business relationships, (ii) moving away from stricter environmental regulations, (iii)
operating in more upstream industries, and (iv) belonging to a multi-sector firm—indeed reduced
pollution emissions more. We provide direct evidence that supports the pollution offshoring hypothesis.
Specifically, we show that US manufacturers, especially those that emit pollutants more intensely,
begin to source from abroad and establish more subsidiaries in China after PNTR.

The finding that reduced trade barriers induce US manufacturers to engage in offshoring
activities implies that the extent to which differential environmental regulation between developed
and developing countries creates a pollution haven depends on additional economic factors. In
other words, US manufacturers take many other business environments into consideration when they
decide to locate production facilities abroad. In our context, those were trade policy uncertainties
that US firms would have faced had they decided to invest in China. More broadly, it could be
institutional barriers that impede FDI, especially in developing countries. Thus, our work highlights

the importance of nontrivial interactions among trade policy uncertainty, environmental regulations,

67 Appendix Table B.21 shows that the results are similar using overall P2-related activity as a dependent variable.
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and offshoring in teasing out the pollution haven or offshoring hypothesis.

While our work exploits a specific trade liberalization episode between the US and China, it
could have broader implications for jointly explaining two salient global patterns since the late 20th
century, namely, (i) the divergent paths of pollution emissions between developed and developing
countries and (ii) offshoring production tasks from developed to developing countries. Our results
indicate that these two global trends could be interpreted as a cause-and-effect relationship such that
multinationals in developed countries relocated high-pollution production activities to low-income
destination countries across the globe.

Also, our work implies that in devising a trade policy, the environmental impact should not
be considered lightly given the recent studies that report significant adverse impacts of pollution
on health and productivity (Chang et al., 2016; Deryugina et al., 2019). Despite the importance of
adverse environmental consequences, however, the China trade shock literature has largely overlooked
its impact on environmental outcomes in the US, let alone on the global distribution of pollution.
This paper moves one step further in this direction and sheds light on the pros and cons of the effects
of the China trade shock and, more broadly, trade liberalization. Further work along this line will
deepen our understanding of the nexus between trade and the environment.

Lastly, our work has implications for the EU’s Carbon Border Adjustment Mechanism (CBAM)
which would mandate that imported goods face tariffs and requirements similar to those that would
be applied if produced domestically in the EU. CBAM aims to prevent "carbon leakage" when EU-
based firms shift carbon-intensive production abroad to countries with less stringent environmental
policies. Since CBAM reduces the differential environmental regulation between developed and
developing countries, we expect that it would counteract the offshoring of dirty production tasks from
developed to developing countries. From this perspective, it may alleviate concerns that offshoring
exacerbates environmental outcomes in developing countries. However, from another point of view,
if multinationals in developed countries shift dirty tasks abroad and at the same time those tasks
are still cleaner than the ones performed by local firms in developing countries, CBAM may hamper
offshoring activities along with technology transfer, which is a key ingredient to economic growth in
developing countries. Thus, our study lays out a more nuanced picture of the pros and cons of a

currently debated topic on the US Carbon Border Adjustment proposals.
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Appendix A Additional Figures

Figure A.1: PM;g Emissions Trends: 2-digit-SIC 28, 33 versus Other Industries
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Notes: This figure displays PMo emissions trends for (i) 2-digit-SIC 28 and 33 and (ii) all other industries for
1997-2017.
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Figure A.2: Employment and PM;g Emissions Shares by 2-digit-SIC Industry
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Notes: This figure displays employment (navy bars) and PMio emissions (red bars) shares in 1997 by 2-digit-SIC
industry. SIC 2-digit 28 indicates "Chemicals and Allied Products"; SIC 2-digit 33 indicates "Primary Metal Industries".
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Figure A.3: Correlations between Changes in Average PM1g Emissions and Initial Industry Trade
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Notes: The graph on the left (right) illustrates the correlations between the industry-level averages of changes in the
within-establishment log(emissions) of PMio from 1997 to 2017 and the industry-level import (export) intensity
constructed using the value of imports (exports) relative to value-added in 1997. The sizes of the circles are
proportional to the industry-level log(employment) in 1997.
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Figure A.4: Robustness: Dynamic Treatment Effects at the Establishment Level, 1995-2017
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Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we consider an extended sample period from 1995 to 2017. All other specifications are identical to
those in Equation (5.3).
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Figure A.5: Robustness: Dynamic Treatment Effects at the Establishment Level, 1995-2006
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Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we consider the sample period from 1995 to 2006. All other specifications are identical to those in
Equation (5.3).
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Figure A.6: Robustness: Dynamic Treatment Effects at the Establishment Level, 1997-2006
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Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we consider an extended sample period from 1997 to 2006. All other specifications are identical to
those in Equation (5.3).
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Figure A.7: Controlling for NAFTA: Dynamic Treatment Effects at the Establishment Level
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Notes: This figure displays the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we additionally control for the interaction of the post-PNTR indicator and the industry-level NAFTA
tariff changes. Blue dots use US total imports as trade value weights in measuring industry-level NAFTA tariffs; red
dots use US imports from Mexico as trade value weights. All other specifications are identical to those in Equation
(5.3).
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Figure A.8: Dynamic Treatment Effects of Pollution Emission Intensity at the Establishment Level
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Notes: This figure displays the estimated difference-in-differences (DID) coeflicients with their 95 percent confidence
intervals, where we use a measure of establishment-year-level pollution emission intensity—measured by log of PMio
emissions-to-sales ratio—as a dependent variable. All other specifications are identical to those in Equation (5.3).



Figure A.9: Dynamic Treatment Effects of Sales at the Establishment Level

1.5

Log(Sales)
1
1

5
1

To]

T T T T
&

T

Q
)
X P P

—
32
Q
P

Notes: This figure displays the estimated difference-in-differences (DID) coeflicients with their 95 percent confidence
intervals, where we use a measure of establishment-year-level sales—measured by log of sales—as a dependent variable.
All other specifications are identical to those in Equation (5.3).



Appendix B Additional Tables

Table B.1: Important Changes to TRI Program over Time

Time Changes
Dec 1993 21 Chemicals and 2 Chemical Categories added
Nov 1994 286 Chemicals added
May 1997 Seven Industry Sectors (metal and coal mining facilities, electric power

generators, commercial hazardous waste treatment operations, solvent
recovery facilities, petroleum bulk terminals, and wholesale chemical
distributors) added

Oct 1999 7 PBT Chemicals and 2 chemical categories added
Jan 2001 Lead and Lead Compounds designated as PBT chemicals
Dec 2006 TRI Burden Reduction Rule allowed the expansion of eligibility for

using Form A
May 2007 TRI Dioxin Toxic Equivalency Rule

April 2009 Omnibus Appropriations Act restored the TRI reporting requirements
that were effective before 2006

Nov 2010 National Toxicology Program Chemicals added
April 2012 Increasing Tribal Participation in the TRI Program
Nov 2015 1-Bromopropane added

Nov 2016 Hexabromocyclododecane (HBCD) Category added

Notes: The table mainly lists institutional changes that are relevant to our analysis. See the following link
for a comprehensive list of changes to the TRI program: https://www.epa.gov/toxics-release-inventory-tri-
program /history-toxics-release-inventory-tri-program
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Table B.2: Top and Bottom 5 Industries in PM;y Emissions

Top 5 Industries in PM19 Emissions

Bottom 5 Industries in PM;¢ Emissions

3313

3321

2816

2819

3312  Steel Works, Blast Furnaces, and Rolling Mills

Electrometallurgical Products, except Steel

Gray and Ductile Iron Foundries
Inorganic Pigments

Industrial Inorganic Chemicals, N.E.C.

2254

2591

2047

3489

2043

Knit Underwear and Nightwear Mills
Household Furniture, N.E.C.

Dog and Cat Food

Ordnance and Accessories, N.E.C.

Cereal Breakfast Foods

Notes: The table lists top and bottom five industries in PM;o emissions in 1997. Each industry title is preceded by the
corresponding 4-digit-SIC code
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Table B.3: Additional Summary Statistics

(A) Industry-Year Level

Variable Obs. Mean Std. Dev. P10 P50 P90
NTR Gap; g9 5008 0.319  0.131  0.138 0.336 0.450
NTR; ; 5008 2.457  2.658  0.000 2.122 5.067
MFA Exposure; ¢ 5008 0.432 3.349 0.000 0.000 0.000
(B) Industry Level
Variable Obs. Mean Std. Dev. P10 P50 P90
NTR Gap; g9 287 0.329  0.142 0.135 0.339 0.473
NP; 95 /Emp; g5 287 0.295 0.115  0.173 0.266 0.452
K, 95/Emp; g5 287 94 102 27 60 218
AChinese Tariff; 287 -0.122 0.105 -0.264 -0.092 -0.020
AChinese Subsidies; 287 -0.000 0.002 -0.002 -0.000 0.001
(C) Firm Level: A Total of 3666 Unbalanced Firms
Variable Obs. Mean Std. Dev. P10 P50 P90
Import Intensity (Unconditional)y g7 2294 0.096  0.211  0.000 0.000 0.346
Import Intensity ¢ 97 703 0.289  0.275  0.029 0.200 0.762
Export Intensity (Unconditional) g7 2294 0.337  0.387  0.000 0.144 1.000
Export Intensity s g7 1485 0.501 0.374  0.049 0.422 1.000
Firm Employment ¢ g7 2294 5566 70366 40 388 8636
Num. Establishment g7 2294 50 407 1 4 84
Num. 4-digit Sectorsy g7 2294 9 17 1 2 24
(D) Establishment Level: A Total of 4946 Unbalanced Establishments
Variable Obs. Mean Std. Dev. P10 P50 P90
PM Emissionsy g7 3858 41262 472714 0 15 17422
PM Emissions, g7/Sales;, 97 (Ib/million dollar) | 3858 2354.7 33172.9 0.0 0.6 577.9
I(Num. P2, 95_97>0) 3858 0.260  0.439 0 0 1
I(Num. P2 Clean-Tech,, g5_97>0) 3858 0.130 0.336 0 0 1
Establishment Employment,, 97 3858 410 916 28 160 900
Establishment Salesy, 97 3858 91 245 4 25 189
Age, o7 3858 55 42 50 109
(E) County Level

Variable Obs. Mean Std. Dev. P10 P50 P90
CAA Nonattainment, g5_g7 841 0.045 0.208 0 0 0

Notes. This table groups each variable based on its observation level and separately presents summary statistics
by each group. Panel (A) presents summary statistics of industry-year-level variables; panel (B) presents summary
statistics of industry-level variables; panel (C) presents summary statistics of firm-level variables; panel (D) presents
summary statistics of establishment-level variables; panel (E) presents summary statistics of county-level variables.

Subscripts t, p, f, i, and ¢ indicate year, establishment, firm, SIC-4-digit industry, and county, respectively.
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Table B.4: Summary Statistics: Compare Final Sample with NETS Manufacturing

(A) Establishment Level (1997)

‘ 1. Final Sample ‘ 2. NETS (Manufacturing)
Variable Obs. Mean Std. Dev. P50 | Obs. Mean Std. Dev. P50
Establishment Employment,, o7 3858 410 916 160 | 748519 31 174 )
Establishment Salesy, 97 3858 91 245 25 748519 5 47 0.4

(B) Firm Level (1997)

| 1. Final Sample | 2. NETS (Manufacturing)
Variable Obs. Mean Std. Dev. P50 | Obs. Mean Std. Dev. P50
Import Intensity (Unconditional)sg7|2294 0.096  0.211  0.000 |649439 0.008  0.086  0.000
Import Intensity ¢ 97 703 0.289 0.275 0.200| 8496 0.648  0.387  0.857
Export Intensity (Unconditional)so7|2294 0.337  0.387  0.144|649439 0.079  0.262  0.000
Export Intensity 7 1485 0.501  0.374 0.422]| 58484 0.874  0.261  1.000
Firm Employment ¢ g7 2294 5566 70366 388 649439 74 4551 5
Num. Establishmenty g7 2294 50 407 4 1649439 2 47 1
Num. 4-digit Sectorsy g7 2294 9 17 2 1649439 1 2 1

Notes. This table compares a snapshot of the 1997 distribution of establishment- and firm-level variables between
the final sample (the NETS+TRI with positive emissions) and the original NETS data. We restrict establishments
to those operating in manufacturing establishments (i.e., SIC-4-digit 2000-3999). Firm-level variables are calculated
by including all establishments (i.e., manufacturing and non-manufacturing) within each firm that has at least one
manufacturing establishment. Panel (A) presents summary statistics of establishment-level variables in 1997; panel
(B) presents summary statistics of firm-level variables in 1997. Subscripts p and f indicate establishment and firm,
respectively. P50 denotes 50th percentile (median).
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Table B.5: SIC-2-digit 28, 33 versus Others:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2)
Log(PM Emissions)
Post: xNTR Gap; g9 -3.379" -1.334***
(1.397) (0.441)
NTR; ¢ -0.099 -0.017
(0.146) (0.039)
MFA Exposure; 0.198 -0.019
(0.475) (0.015)
POSttXLOg(NPi’95/Empi,95) 0.576"** 0.116
(0.191) (0.150)
POS\}tXLOg(Ki’95/Empi,95) 0.161 0.010
(0.204) (0.066)
Post; x AChinese Tariff; -3.547* -0.448
(1.891) (0.557)
Post; x AChinese Subsidies; 45.575 -17.617
(196.566) (22.921)
Establishment FE v v
County x Year FE v v
Sample SIC2: 28,33 SIC2: Others
Observations 9882 31414

Notes. This table repeats the specification in Column (4) of Table 2, where we run separate regressions for two sample
groups. Column (1) considers establishments that operate in SIC-2-digit 28 or 33, whereas Column (2) considers the
rest of the manufacturing establishments. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.6: PNTR and Establishment-level Pollution Emissions, 1997 - 2017:
Other Chemicals - SO2 and VOC

1) @)
Log(SO2 Emissions) Log(VOC Emissions)
Post: xNTR Gap; g9 -0.388 -0.151
(0.580) (0.375)
NTR, ¢ 0.010 0.008
(0.025) (0.036)
MFA Exposure; ¢ 0.009 0.012
(0.028) (0.026)
POSttXLOg(NPi’95/Empiyg5) -0.278 0.282**
(0.187) (0.140)
Posts xLog(K;,05/Emp; o5) -0.061 0.087
(0.113) (0.061)
Post; x AChinese Tariff; 1.990 0.681
(1.221) (0.595)
Post; x AChinese Subsidies; 46.444 -3.514
(36.400) (18.700)
Establishment FE v v
County x Year FE v v
Observations 10567 22036

Notes. This table repeats the specification in Columns (4) of Table 2, where we consider emissions of SO2 and VOC,
respectively, as dependent variables. Column (1) uses the log of establishment-year-level emissions of SOz and Column
(2) considers the log of emissions of VOC. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.7: PNTR and Establishment-level Pollution Emissions, Alternative Sample Periods

(1) (2) (3) (4)
Log(Emissions of PM)
Post; xNTR Gapi,g9 -1.321%** -0.979*** -1.092*** -1.222%**
(0.375)  (0.339)  (0.343) (0.382)
NTR; + -0.012 -0.014 -0.017 -0.008
(0.030)  (0.033)  (0.030) (0.036)
MFA Exposure;,; -0.005 -0.005 -0.003 -0.009
(0.016)  (0.011)  (0.011) (0.016)
Post; xLog(NP; 95 /Emp;,95) 0.314* 0.087 0.064 0.306***
(0.110)  (0.121)  (0.116) (0.114)
POStt XLOg(Ki,gs/Empi,95) 0.043 0.027 0.023 0.043
(0.058)  (0.042)  (0.048) (0.052)
Post; x AChinese Tariff; -0.629 -0.552 -0.436 -0.756™
(0.476)  (0.428)  (0.449) (0.457)
Post; x AChinese Subsidies; -37.084 -10.981 -11.668 -29.125
(30.062) (22.370) (24.058) (27.151)
Establishment FE v v v v
County x Year FE v v v v
Period 95-17 97-06 95-06  97-17 (drop 07-09)
Observations 51187 23071 27498 39913

Notes. This table repeats the specification in Column (4) of Table 2, where we consider alternative sample periods.
Column (1) extends the pre-shock period and considers 1995-2017; Column (2) restricts the sample period after 2007
and considers 1997-2006, which allows us to exclude the Global Financial Crisis and the Great Trade Collapse period
as well as the relaxation in reporting criteria during 2007 and 2009; Column (3) considers 1995-2006 as a robustness
check; Column (4) considers 1997-2017, where we drop years corresponding to 2007, 2008, and 2009. *, ** and ***
denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.8: Controlling for NAFTA:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2)
Log(PM Emissions)
Post; xNTR Gap;,99 -1.016"** -1.024***

(0.356)  (0.379)

NTR., -0.027  -0.026
(0.036)  (0.035)

MFA Exposure; + -0.003 -0.005
(0.016)  (0.016)

Post; x Log(NP; 95 /Emp; 95) 0.235"*  0.266™"
(0.115)  (0.116)

Posty xLog(K;,95/Emp;.95) 0.080 0.073
(0.055)  (0.057)

Post; x AChinese Tariff; -0.995**  -0.883*
(0.469)  (0.463)

Post; x AChinese Subsidies; -31.365  -31.691
(27.075) (27.074)

Post; x ANAFTA Tariff; (Tot.Imp.Wt) 5.205"*

(2.537)
Post; x ANAFTA Tariff; (MEX.Imp.Wt) 3.074
(2.191)
Establishment FE v v
County x Year FE v v
Observations 46644 46644

Notes. This table repeats the specification in Column (4) of Table 2, where we additionally control for the interaction
of the post-PNTR indicator and the industry-level NAFTA tariff changes. Column (1) uses US total imports as trade
value weights in measuring industry-level NAFTA tariffs, and Column (2) uses US imports from Mexico as trade value

weights. *) ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.9: Excluding Establishment Entry and Exit:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) 3) (4)

Log(PM Emissions)
Post; xNTR Gap; g9 -1.430""* -1.478**" -1.440""*" -1.569"*"
(0.442)  (0.487)  (0.491)  (0.520)

NTR.,; -0.012  0.003
(0.041)  (0.044)

MFA Exposure; ¢ -0.017 -0.015
(0.019)  (0.019)

Post; XLOg(NPi795/Empi’g5) 0.196
(0.157)
Posty x Log(K;,95 /Emp; 95) 0.070
(0.067)
Post; x AChinese Tariff; -0.342
(0.574)
Post; x AChinese Subsidies; -49.783**
(25.214)
Establishment FE v v v v
Year FE v - - -
County x Year FE - v v v
Observations 29049 29049 29049 29049

Notes. This table repeats the specifications in Columns (1)-(4) of Table 2, where we exclude establishments that
entered or exited between 1997 and 2017. Therefore, the sample consists of establishments that existed throughout the
sample period. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.10: Dropping Outliers:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) (3)
Log(PM Emissions)
Post: xNTR Gaps,99 -1.152***  -1.044***  -1.102***

(0.371)  (0.400)  (0.401)

NTR; 0.012 0.008 -0.008
(0.033)  (0.036)  (0.036)

MFA Exposure;, -0.010 -0.009 -0.006
(0.014) (0.017) (0.017)

POSttXLOg(NPi’95/Empiyg5) 0.222* 0.359*** 0.294**
(0.116)  (0.128)  (0.128)

Posts xLog(K;,05/Emp; o5) 0.041 0.057 0.056
(0.053)  (0.058)  (0.058)

Post; x AChinese Tariff; -0.489 -0.705 -0.915
(0.498)  (0.584)  (0.573)

Post; x AChinese Subsidies; -45.713* -32.888 -34.000
(26.913)  (27.369) (26.585)

Establishment FE v v v
County x Year FE v v v
Drop Extreme Emissions Firm Size Estab. Size
Observations 43925 44012 44260

Notes. This table repeats the specification in Column (4) of Table 2, where we drop outliers. Columns (1)-(3) drop the
top and the bottom 2.5 percent of the distribution of (i) PMo emissions, (ii) firm size, and (iii) establishment size,
respectively. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.11: PNTR and Establishment-level Pollution Emissions, 1997 - 2017:
Allowing Various Weighting Schemes

(1) (2) (3)
Log(PM Emissions) Log(Toxic-Wt. PM)
Post: xNTR Gap; g9 -2.347%* -1.652*** -3.582**
(0.558) (0.589) (1.566)
NTR; ¢ -0.047 -0.009 0.259**
(0.063) (0.064) (0.105)
MFA Exposure; ¢ -0.054*** -0.012 -0.014
(0.011) (0.021) (0.018)
PosttXLog(NPi,%/Empng,) 0670** 0.232 0.049
(0.328) (0.172) (0.324)
PosttXLog(K¢,95/Emp¢795) 0.180* 0.064 0.197
(0.104) (0.081) (0.169)
Post; x AChinese Tariff; -1.293 -0.836 2.170
(1.135) (0.534) (2.025)
Post; x AChinese Subsidies; -99.705 -49.568 -134.935**
(79.902) (34.185) (63.394)
Establishment FE v v v
County x Year FE v v v
Weights Init. Release Init. Employment Init. Release
Observations 21783 37763 21573

Notes. This table repeats the specification in Columns (4) of Table 2, where we consider various weighting schemes in
the regression. In Columns (1)-(2), we run weighted regressions weighted by establishment’s initial PMio emissions
and initial employment, respectively. In Column (3), we consider as a dependent variable the log of establishment-
year-level tozicity-weighted PM Emissions1o (Log(Toxic-Wt. PM)), and further weight the regression using the initial
toxicity-weighted PMio emissions. *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.12: Controlling for the Indirect Impact through Input-Output Linkages:
Own, Upstream, and Downstream PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) (3)
Log(PM Emissions)

Post; xNTR Gap; oo 1.166% -1.2757% _1.236"*
(0.389)  (0.403)  (0.409)

Post; xNTR Gap, 5, -1.594 -1.137
(1.641) (1.710)
Post; xNTR Gap;gs™ 0.821 0.619

(0.748)  (0.774)

NTRs,. -0.006  -0.008  -0.007
(0.036)  (0.036)  (0.036)

MFA Exposure; + -0.009 -0.010 -0.010
(0.016)  (0.016)  (0.016)

POSttXLOg(NP¢795/Empi’95) 0.297**  0.324™** 0.313**
(0.117) (0.122) (0.122)

POSthLOg(K1795/Empi7g5) 0.019 0.019 0.005
(0.059)  (0.060)  (0.063)

Post; x AChinese Tariff; -0.859*  -0.862*  -0.917"
(0.491)  (0.467)  (0.490)

Post; x AChinese Subsidies; -32.346 -28.517 -29.104
(27.085) (27.004) (27.127)

Establishment FE v v v
County x Year FE v v v
Observations 46753 46753 46753

Notes. This table repeats the specifications in Column (4) of Table 2, where we additionally include upstream and
downstream measures of NTR gap. These measures are constructed by using the industry-level input-output table
following Pierce and Schott (2016). Upstream (downstream) NTR gap indicates the average NTR gap each SIC 4-digit
industry faces from the upstream (downstream) industries in input-output networks. *, ** and *** denote significance

at the 10%, 5%, and 1% levels, respectively.
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Table B.13: Controlling for Upstream-Specific Time Trends:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) 3) (4)

Log(PM Emissions)
Post: xNTR Gap; 99 -1.2327"* -1.245™** -1.221™*" -1.407"**
(0.431)  (0.437)  (0.439)  (0.395)

NTR; ¢ -0.025  -0.012
(0.035)  (0.036)

MFA Exposure; ¢ -0.015 -0.013
(0.017)  (0.017)

POSttXLOg(NPiyg5/Empiyg5) 0281**
(0.124)
Posty x Log(Ki,95/Emp¢,95) 0.051
(0.058)
Post; x AChinese Tariff; -0.600
(0.512)
Post; x AChinese Subsidies; -46.052*
(27.890)
Establishment FE v v v v
Year FE v - - -
County x Year FE - v v v
Upstream x Year FE v v v v
Observations 39219 37701 37701 37701

Notes. This table repeats the specifications in Columns (1)-(4) of Table 2, where we additionally include Upstream
Indicator-by-Year fixed effects. Following Burchardi et al. (2019), upstream indicator is a binary indicator that takes
value one if the upstreamness index (Antras et al., 2012) is larger than 2 and zero otherwise. Therefore, Upstream
Indicator-by-Year fixed effects control for any upstream-specific time trends in pollution emissions. *, ** and ***
denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.14: Accommodating Observations with Zero Emission by using PPML Regression:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1) (2) (3)
PM Emissions
Post: xNTR Gap;,99 -2.025** -2.319*** -2.080***
(0.830) (0.701) (0.753)
NTR;+ -0.317 -0.052 -0.029
(0.200) (0.049) (0.041)
MFA Exposure; ¢ -0.009 -0.012 -0.031**
(0.020) (0.010) (0.014)
Post; XLOg(NPi,gs/Emp¢,95) -0.677 -0.016 0.474*
(0.763) (0.236) (0.254)
Post; x Log(Ks,95 /Emp; 95) -0.105 0.048 0.024
(0.125) (0.090) (0.090)
Post; x AChinese Tariff; -1.993 -1.349 -1.590
(2.300) (1.344) (1.001)
Post; x AChinese Subsidies; -60.606 -64.132* -73.524***
(59.351) (33.692) (23.867)
Establishment FE v v v
County x Year FE v v v
Sample All Surviving Estab. Emission> 0
Observations 118258 94431 46753

Notes. This table repeats the specifications in Column (4) of Table 2, where we accommodate observations with zero
reported emission by using the Poisson Pseudo Maximum Likelihood (PPML) regression. Column (1) considers all
establishments accommodating observations with zero emission associated with establishment entry and exit; Column
(2) restricts the analysis to surviving establishments but accommodates zero emission cases; Column (3) restricts the
analysis to observations with positive emissions. *, ** and *** denote significance at the 10%, 5%, and 1% levels,
respectively.
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Table B.15: Heterogeneous Treatment Effects:
PNTR and Establishment-level Pollution Emission Intensity, 1997 - 2017,
Log(PM Emissions/Sales)

M
Log(PM Emissions/Sales)
Post: xNTR Gap;,g9 -0.895
(7.233)
Post; xNTR Gap;,99 xImport Intensity s o7 -14.448"**
(4.649)
Post xNTR Gap;, 99 x Nonattainment, 9597 -3.801**
(1.706)
Post: xNTR Gap;,g99 x Upstream; g7 -3.841*
(2.301)
Post; xNTR Gap;,99 X Log(Num. 4-digit Sectorsy o7) -2.801
(2.127)
Post: xNTR Gap;,99 x Export Intensity ¢ 97 -6.305
(5.472)
Post; xNTR Gap; 99 x Log(Num. Establishmenty g7) -1.289
(1.509)
Post; x NTR Gap;,99 X Log(Firm Employment f 97) 2.271"
(1.207)
POStt xNTR Gapi,g)g X Agep,m -0.001
(0.013)
Post: xNTR Gap;, g9 XI(Num. P2, 95_97 > 0) 2.434**
(1.162)
Establishment FE N
County x Year FE v
Controls v
Observations 15611

Notes. This table repeats the specification in Column (10) of Table 4, where we use an establishment-year-level
pollution emission intensity—measured by the log of PMjo emissions-to-sales ratio—as a dependent variable. *, **,
and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.16: Heterogeneous Treatment Effects and the Unconditional Import Intensity:
PNTR and Establishment-level Pollution Emissions, 1997 - 2017

(1)
Log(PM Emissions)
Post: xNTR Gap;,g9 -1.147*
(0.427)
Post; xNTR Gap;,99 xImport Intensity (Unconditional) g7 -1.732
(1.767)
Establishment FE v
County x Year FE v
Controls v
Observations 37763

Notes. This table repeats the specification in Column (1) of Table 4, where we consider unconditional import intensity
that incorporates non-importers. The regression includes all controls in Column (1) of Table 4, including the interactions
of import intensity with the post-PNTR indicator and the NTR gap (where, in fact, the latter is automatically dropped
due to a perfect multicollinearity). *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Table B.17: PNTR, Import Status, and Export Status, 1997 - 2017

(1) 2) 3)
Import Export Export
Post: xNTR Gap; 99 -0.027 -0.022 -0.028
(0.131) (0.170) (0.085)
Establishment FE v v v
County x Year FE v v v
Controls v v v
Margin Extensive Extensive Intensive
Observations 15525 8206 20189

Notes. This table investigates the effect of the conferral of PNTR to China on establishment-level import status
(extensive margin) and export status (extensive and intensive margins). The dependent variable, Import (Export), is a
dummy variable that equals to one if establishment p engages in importing (exporting) activities in year ¢. Column
(1) focuses on the extensive margin adjustment of importing activities within a firm by restricting the sample to
establishments that did not belong to importing firms in 1997 (i.e., Import Intensity 97 = 0). Column (2) focuses on
the extensive margin adjustment of exporting activities within a firm by restricting the sample to establishments that
did not belong to exporting firm in 1997 (i.e., Export Intensity 97 = 0). Column (3) focuses on the intensive margin
adjustment of exporting activities within a firm by restricting the sample to establishments that belonged to exporting
firm in 1997 (i.e., Export Intensitys o7 > 0). The rest of the specifications in Columns (1)-(3) are identical to Column
(4) of Table 2. * ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.20: PNTR and Establishment-level Number of Chemicals with
Clean Technology Adoption-Related Pollution Prevention (P2) Activities, 1997 - 2017

0 @)
Z = Num. P2 Clean-Tech
I(Z> 0) Log(Z)
Post; xNTR Gap; g9 -0.060 0.453
(0.071) (0.518)
NTR; ¢ -0.011** 0.002
(0.005) (0.019)
MFA Exposure; ¢ -0.000 -0.003
(0.004) (0.003)
Post; xLog(NP; 95 /Emp; 95)  -0.041** 0.078
(0.019) (0.188)
POStt xLog(Ki)95/Empi795) -0.020* 0.128*
(0.010) (0.066)
Post; x AChinese Tariff; 0.117* -0.026
(0.068) (0.881)
Post; x AChinese Subsidies;  -2.386 -17.978
(2.917) (36.547)
Establishment FE v v
County x Year FE v v
Observations 46753 605

Notes. This table investigates the effect of the conferral of PNTR to China on establishments’ clean technology
adoption-related pollution prevention (P2) activities. Specifically, the table repeats the specification in Column (4) of
Table 2, where we consider establishment-year-level measures of clean technology adoption-related P2 activities as
dependent variables. Column (1) uses a dummy variable that equals one if there is at least one toxic chemical in year ¢
that establishment p has taken any clean technology adoption-related P2 activities (extensive margin). Column (2) uses
the log of the number of toxic chemicals in year ¢ that establishment p has taken any clean technology adoption-related
P2 activities (intensive margin). *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.21: PNTR and Establishment-level Number of Chemicals with
Overall Pollution Prevention (P2) Activities, 1997 - 2017

(1) (2)
7Z = Num. P2
I(Z>0) Log(Z)
Post; xNTR Gap; g9 -0.118 -0.047

(0.080)  (0.481)

NTR,, 0.009  -0.014
(0.006)  (0.025)

MFA Exposure; ¢ 0.005**  0.027***
(0.002) (0.006)

POStt XLOg(NPZ‘,g5/EmpZ"95) -0.019 -0.138
(0.028)  (0.107)

Posty xLog(K; 95 /Emp; 95) -0.028** 0.005
(0.011)  (0.068)

Post; x AChinese Tariff; 0.069 0.103
(0.091) (0.768)

Post; x AChinese Subsidies; 1.033 -11.791
(4.241)  (21.659)

Establishment FE v v
County x Year FE v v
Observations 46753 2727

Notes. This table investigates the effect of the conferral of PNTR to China on establishments’ overall pollution
prevention (P2) activities. Specifically, the table repeats the specification in Column (4) of Table 2, where we consider
establishment-year-level measures of P2 activities as dependent variables. Column (1) uses a dummy variable that
equals one if there is at least one toxic chemical in year ¢ that establishment p has taken any P2 activities (extensive
margin). Column (2) uses the log of the number of toxic chemicals in year ¢ that establishment p has taken any P2
activities (intensive margin). *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table B.22: PNTR and Establishment-level Employment, 1997 - 2017

(1) (2)
Log(1+Employment)
Post; xNTR Gapi,g9 -0.608** -1.185*
(0.285) (0.628)
NTR; : -0.017 -0.029
(0.023)  (0.057)
MFA Exposure;,; -0.028"  -0.058™**
(0.015) (0.017)
POSttXLOg(NPi,gs/Empi795) 0410*** 0273
(0.104) (0.195)
Post; XLog(K¢795/Empi,g5) -0.170*** -0.165*
(0.047)  (0.092)
Post; x AChinese Tariff; 0.325 -0.253
(0.391) (0.844)
Post; x AChinese Subsidies; 19.986 18.957
(14.084)  (34.295)
Establishment FE v v
County x Year FE v v
Weights Unweighted Weighted
Observations 121149 121149

Notes. This table repeats the specification in Column (4) of Table 2, where we use log of one plus employment as
a dependent variable. The sample consists of establishment-year-level observations from NETS-TRI matched data,
where each establishment has at least one year of positive emissions reported to TRI during the sample period. We
restrict the sample to establishments that existed in 1997. Column (1) considers unweighted regression and Column
(2) considers weighted regression weighted by initial employment. *, ** and *** denote significance at the 10%, 5%,

and 1% levels, respectively.
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Appendix C PNTR and Employment Responses

Figure C.1: Dynamic Treatment Effects of Employment at the Establishment Level:
(i) Full NETS-TRI Matched Establishments (Left);
(ii) NETS-TRI Matched Establishments with Positive Initial Emissions (Right)
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Notes: These figures display the estimated difference-in-differences (DID) coefficients with their 95 percent confidence
intervals, where we use measures of establishment-year-level employment—measured by (i) log of one plus employment
(Left) and (ii) log of employment (Right)—as dependent variables. The sample consists of establishment-year-level
observations from NETS-TRI matched data, where each establishment has at least one year of positive emissions
reported to TRI. In the left panel, we restrict the sample to establishments that had ten or more workers during the
initial period (1995-2000). In the right panel, we further restrict the sample to those that had positive initial emissions.
All other specifications are identical to those in Equation (5.3).

The left panel of Figure C.1 shows the dynamic treatment effects of employment at the
establishment level using the full NETS-TRI matched establishments, where each establishment has
at least one year of positive emissions reported to TRI. To make sure that these establishments satisfy
the TRI-reporting criteria in terms of establishment size in the initial period, we restrict the sample to
establishments that had ten or more workers during 1995-2000. The key departure from our baseline
sample is that we include establishments with zero reported emission (conditional on survival) and
accommodate establishment exits. Given that these establishments have ten or more employees (and
thus satisfy the TRI-reporting criteria in terms of establishment size), zero emission implies that
they do not produce toxic PM chemicals or produce them but below the reporting threshold level
(i.e., negligible amount). We include establishment exit margin because it is well-documented in the
literature that employment impact of import competition from China is most significant at the exit
margin (e.g., Asquith et al., 2019).

With this extended sample, we find a significant decline of employment in response to the
reduction of trade policy uncertainty, a consistent result with Pierce and Schott (2016) and Asquith
et al. (2019). In particular, Asquith et al. (2019) find that PNTR led to manufacturing employment

declines and establishment exits using the entire NETS sample.
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The result exhibits a clear contrast with the right panel of Figure C.1, where we restrict the
sample to establishments that had positive initial emissions. Once we restrict the sample to those
with positive initial emissions, we find an insignificant response of employment. This is also consistent
with Figure A.9, where we observe a mild—but insignificant—increase of sales following the PNTR
when we focus on establishments with positive emissions.%®

These exercises suggest that our result that attributes within-establishment emission abatement
to surviving establishments is not a spurious result driven by the restriction of sample to those
that satisfy the TRI-reporting criteria (i.e., relatively larger establishments). Instead, it shows
that establishments that generate positive amounts of emissions are fundamentally different from
those with zero emission. This is also consistent with Figure A.2, which shows that the most
important industries in terms of toxic emissions—SIC 2-digit: 33 (Primary Metal Industries) and
28 (Chemicals and Applied Products)—are different from those in terms of employment—SIC 2-
digit: 37 (Transportation Equipment) and 35 (Industrial and Commercial Machinery and Computer
Equipment).

58This is, in fact, consistent with the literature because the previous studies suggest that the direction of sales and
employment response to the China shock may be heterogeneous across businesses with different characteristics. For
example, Bloom et al. (2016) find that the industry-level growth of import penetration from China has an insignificant
yet positive association with sales and employment of large US public firms, but has a negative association with sales
of small US public firms.
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