Sequences Ch 1

- a. Sequence is a list of numbers, often with a pattern
For example:

(2) $20,18,16,14,12,10$. Arithmetic
(3) ${\underset{x 2}{2}}_{4}^{4}, 8, \frac{16}{7}, \frac{32}{3}, 64, \ldots$. $\begin{gathered}\text { Geometric } \\ \text { Sequence }\end{gathered}$ $\times 2 \times 2 \times 2 \rightarrow$ Sequence \rightarrow mull by the same number
(4) ${\underset{T}{1}, 1,2,3}_{2}^{2}, \frac{8}{13} \quad \begin{gathered}\text { Fibonacci's } \\ \text { Sequence }\end{gathered}$
(5) $1,1,2,1,1,3,1,1,4,1,1,5$ Barker's Sequ!

Arithmetic Sequences \rightarrow

terms: $t_{1}, t_{2}, t_{3}, \ldots t_{n}$
Common difference: d (\#that we add In our example, the common difference was 3

Ex: $\quad-3,-1,1,3,5$,

$$
\begin{array}{ll}
t_{1}=-3 & t_{1}=-3 \\
d=2 & t_{2}=-3+1 \cdot 2=-1 \\
t_{3} & =-3+2 \cdot 2=1 \\
t_{4} & =-3+3 \cdot 2=3 \\
t_{5} & =-3+4 \cdot 2=5 \\
t_{6} & =-3+5 \cdot 2=7 \\
\vdots & \\
& t_{25}=-3+24 \cdot 2=45 \\
\vdots \\
& t_{100}=-3+699 \cdot 2=1395 \\
& t_{n}=t_{1}+(n-1) \cdot d
\end{array}
$$

$$
t_{n}=t_{1}+(n-1) \cdot d
$$

$$
t_{1}=7
$$

$$
d=2
$$

$$
t_{37}=
$$

