Arithmetic Series
Sequence: $1,2,3,4,5, \ldots$
Series: $1+2+3+4+5+\cdots$

- A series is a Sum of a sequence
- tn still works for firming an individual

Ext (5) $+8+11+\ldots+53$
Find the sum of this Series

$$
S_{n}=\frac{n}{2}\left[t_{1}+t_{n}\right]
$$

We need ' n ' first:
use: $t_{n}=t_{1}+(n-1) d$ to find n

$$
\begin{aligned}
& \downarrow \\
& 53=5+(n-1) \cdot 3 \\
& 53=5+3 n-3 \\
& 53=3 n+2 \\
& -2 \\
& \frac{51}{3}=\frac{3 n}{3} n=17
\end{aligned}
$$

So:

$$
\begin{aligned}
t_{1} & =5 \quad d=3 \quad t_{n}=53 \quad n=17 \\
S_{17} & =\frac{17}{2}[5+53] \\
& =493
\end{aligned}
$$

other Ja:

$$
\begin{aligned}
& \text { Sher ja': } \begin{aligned}
S_{n} & =\frac{n}{2}\left[2 t_{1}+(n-1) d\right] \\
S_{17} & =\frac{17}{2}[2(5)+(17-1) \cdot 3] \\
& =\frac{17}{2}[10+48] \\
& =493
\end{aligned}
\end{aligned}
$$

Find t_{1} if $d=6, S_{(14)}=574 \quad n=14$
$S_{n}=\frac{n}{2}\left[2 t_{1}+(n-1) d\right]$
$574=\left(\frac{14}{2}\right)\left[2 t_{1}+(14-1) \cdot 6\right]$
$574=7\left[2 t_{1}+78\right] \quad 13$

$$
\begin{gathered}
574=14 t_{1}+546 \\
-546 \\
\frac{28}{14}=\frac{14}{14} t_{1}-546 \\
t_{1}=2
\end{gathered}
$$

