Combinations
nPr nCr
Ex 1 c) If S sprinters compete in a race, how many different ways can they place 15Ty 2nd f. 3nd;
SKAJB
S K A ORDER MATTERS K S A
$7 \text{ nPr or } 5P_3 = 5! = 60$
this called a PERMUTATION of 5 objects falsen 3 at a time. b) The fastest 3 qualify for the relay team. How many relay teams can be formed?
SKA > Same team so order does NET KSA > matter
Y Y Y N N
of ways: $5! = 10$
This is called a COMBINATION of 5 objects taken 3 at a time. O (unordered or order doesn't matter)
nCr = n! $(n-r)!r!$
$5^{C_3} = 5! = 5!$ $7^{C_3} = 5! = 2!3!$

Examples

(1) How many different committees of 3 can be formed from 7 people? (order has no significance so nCr)

$$_{7}C_{3} = \frac{7!}{4!3!} = \frac{35}{4!3!}$$

(2) Same group, but now the committee must have a president, secretary treasurer? (now order matters)

$$nP_{c}$$
 $\gamma P_{3} = \frac{7!}{4!} = \frac{210}{}$

(3) 7 people, 3 boys 44 girls?
must have I boy 1 2 girls?

(4) Same group (3B,46) now need a committee with at least one mak.

1826 OR 2816 or 38

$$3C_{1}\cdot 4C_{2} + 3C_{2}\cdot 4C_{1} + 3C_{3}$$
 $18 + 12 + 1 = 31$

Evaluate
$$100!$$
 = 161100

 $\frac{3!}{97!}$
 $\frac{100.99.98.92!}{3.2.1.97!}$

Tey $n^{C_2} = 21$ find n
 $(n.)$ = 21
 $(n-2)!z!$
 $n^{C_1} = 21$
 $(n-2)!z!$
 $n^{C_2} = 21$
 $n^{C_1} = 21$
 $n^{C_2} = 21$
 $n^{C_1} = 21$
 $n^{C_2} = 21$
 $n^{C_2} = 21$
 $n^{C_1} = 21$
 $n^{C_2} = 21$
 $n^{C_2} = 21$
 $n^{C_1} = 21$
 $n^{C_2} = 21$