Completing the Square
(Standard form to vertex form)

$$
\begin{aligned}
& \left.y=a x^{2}+b x+C c\right) \longleftrightarrow y=a(x-p)^{2}+q \\
& y \text {-interact } \quad \text { vertex }(p, q) \\
& \text { - Graph using } \\
& \text { Graphsformations } \\
& \text { - Finding the } \\
& \text { max or min } \\
& y=2(x-3)^{2}+7 \hat{\longrightarrow} \\
& \text {-up } \\
& \text {. }(3,7) \\
& \min _{y \geqslant 7} \text { of } 7
\end{aligned}
$$

vertex \rightarrow Standard form

$$
\begin{align*}
& y=2(x-3)^{2}+7 \\
& y=2(x-3)(x-3)+7 \tag{x-3}\\
& y=2 \cdot\left(x^{2}-6 x-9\right)+7 \\
& y=2 x^{2}-12 x+18+7 \\
& y=2 x^{2}-12 x+25
\end{align*}
$$

$$
\begin{aligned}
& (x-3)^{2}=x^{2}+9 \\
& (x-3)+x-3 \\
& x^{2}-3 x-3 x+9 \\
& x^{2}-6 x+9
\end{aligned}
$$

Ex2 $\quad y=3(x-4)^{2}+3$

$$
\begin{aligned}
& y=3(x-4)(x-4)+3 \\
& y=3\left(x^{2}-8 x(+16)+3\right. \\
& y=3 x^{2}-24 x+48+3 \\
& y=3 x^{2}-24 x+51
\end{aligned}
$$

$$
y=-2 x^{2}-12 x-24 \Rightarrow y=-2(x+3)^{2}-6
$$

Do these 3 :

$$
\begin{aligned}
& (x-6)^{2}=x^{2}-12 x+36 \\
& (x+7)^{2}=x^{2}+14 x+49 \\
& (x-4)^{2}=x^{2}-8 x+16 \\
& (x-12)^{2}=x^{2}-24 x+144 \\
& \left.x^{2}+6 x+9\right)=(x+3)^{2} \\
& x^{2}-20 x+100=(x+10)^{2} \\
& x^{2}+16 x+64=(x+8)^{2} \\
& x^{2}=12 x+36=(x-6)^{2}
\end{aligned}
$$

$$
y=\left(x^{2}-8 x\right)+5 \Rightarrow y=a(x-p)^{2}+q
$$

$$
\begin{aligned}
& y=\left(x^{2}-8 x+16\right)-16+5 \\
& y=(x-4)^{2}-11 \\
& y=\left(x^{2}+10 x\right)-13 \\
& y=\left(\frac{x^{2}+10 x+25}{10 \div 2=5^{2}}-25-13\right. \\
& y=(x+5)^{2}-38
\end{aligned}
$$

$$
\text { VERTEX }(4,-11)
$$

$$
\min \text { of }-11
$$

STEPS
(1) Group the two $x^{2}+x$ terms
(2) Put in pockets
(3) Divide the x coefficient by 2 and square it
(4) Now write in vertex form

Purple Sheet Adjustment:
Section 3.3 Change to:

$$
\# 1-4,6-8,12
$$

Trickier Questions

Ex 1:

$$
\begin{aligned}
& y=x^{2}-5 x+3 \\
& y=\left(x^{2}-5 x+\frac{25}{2^{4}}\right) \frac{-25}{4}+3 . \frac{4}{4} \\
& \left(\frac{+5}{2}\right)^{2} \\
& y=\left(x-\frac{5}{2}\right)^{2}-\frac{13}{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { Ex 2: } & y=\left(3 x^{2}-12 x\right) \\
y & =3\left[\left(x^{2}-4 x\right)\right]-9
\end{aligned}
$$

$$
\rightarrow y=3(x-p)^{2}+q
$$

(1) Group the terms \& then factor the
$y=\frac{\left[\left(x^{2}-4 x\right)\right]-9}{\left[(x-2)^{2}\right]-9}$

$$
\begin{aligned}
& y=3(x-2)^{2}-9 \\
& y=3(x-2)^{2}-21 \\
& y=3\left(x^{2}-4 x+4\right)-\frac{12}{4}-9
\end{aligned}
$$

Ex 3:

$$
\begin{aligned}
& y=\left(-5 x^{2}-70 x\right) \\
& y=-5\left(x^{2}+14 x\right) \\
& y=-5\left(x^{2}+14 x+49\right)+245 \\
& \left.y=-5(x+7)^{2}+245\right)
\end{aligned}
$$

Check:

$$
\begin{aligned}
& y=-5(x+7)(x+7)+245 \\
& y=-5\left(x^{2}+14 x+49\right)+245 \\
& y=-5 x^{2}-70 x-245+245 \\
& y=-5 x^{2}-70 x
\end{aligned}
$$

