Geometric Sequences $\leadsto 1.3$
RECALL: ARITHMETIC Sequences:

General: $t_{n}=3 n+8$ (pu the $t_{1}+d$ in and simplify)
Geometric:

$$
\begin{aligned}
& \underbrace{1,16,64}_{\times 4 \times 4 \times 4}, \ldots \\
& \qquad \underbrace{125,05}_{\div 5} \div 5
\end{aligned}
$$

$$
\div 5 \div 5 \quad=\frac{25}{125}=\frac{1}{5}
$$

$$
\frac{1}{5}=\frac{1}{5}
$$

Ex $1 \quad 3,6,12,24, \ldots$

$$
\begin{array}{cc}
t_{1}=3 & t_{1}=3 \\
r=2 & t_{2}=3 \cdot 2^{1}=6 \\
& t_{3}=3 \cdot 2^{2}=12 \\
& t_{4}=3 \cdot 2^{3}=24 \\
\vdots \\
& t_{30}=3 \cdot 2^{29} \\
\vdots \\
& t_{\underline{n}}=t_{1} \cdot r \text { n-1 }
\end{array}
$$

So:

Ex: $\quad 10,20,40,80, \ldots . \quad t_{n}=t_{1} \cdot r^{n-1}$

$$
\begin{aligned}
t_{1} & =10 \quad \text { (a) } \quad \begin{aligned}
t_{11} & =10 \cdot 2^{10} \\
r & =2 \\
& =10 \cdot 1024=10240
\end{aligned}
\end{aligned}
$$

($)_{\text {G) General term, } t_{n}}^{\rightarrow m e a n s ~ p u t ~ i n ~}$ \rightarrow means put in t_{1} and r, but leave n as n

$$
\begin{aligned}
& t_{n}=t_{1} \cdot r^{n-1} \\
& t_{n}=10 \cdot 2^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex } \quad \begin{aligned}
t_{3} & =54 \\
t_{6} & =-1458
\end{aligned} \\
& \begin{aligned}
& 54, \text { find } \\
& t_{3} r t_{4}^{r} t s^{r} t_{6}
\end{aligned} \\
&-1458=54 \cdot r \cdot r \cdot r \\
&-\frac{1458}{54}=\frac{54 r^{3}}{54} \\
& r^{3}=-27 \\
& r=-3
\end{aligned}
$$

find: t_{1}, t_{2}, t_{3} and r t_{1}, t_{2}, t_{3}

$$
t_{3}=t_{1} \cdot r^{2}
$$

$$
\downarrow
$$

$$
54=t_{1} \cdot(-3)^{2}
$$

$$
\frac{54}{9}=t_{1} \cdot \frac{9}{9}
$$

$$
\begin{aligned}
& t_{1}=6 \\
& t_{2}=-18 \\
& t_{3}=54
\end{aligned}
$$

method

$$
2 \begin{aligned}
t_{6}=t_{1} \cdot r^{5} \rightarrow \begin{aligned}
-1458 & =t_{1} \cdot r^{5} \text { divide } \\
t_{3} & =t_{1} \cdot r^{2} \rightarrow
\end{aligned} \\
54 \cdot r^{2}
\end{aligned}
$$

If $t_{1}=1$ and $t_{6}=32$, find r

$$
\begin{aligned}
& t_{n}=t_{1} \cdot r^{n-1} \\
& \downarrow \\
& \vdots \downarrow \\
& 32=(1) \cdot r^{5} \\
& 32=r^{5} \\
& r=2
\end{aligned}
$$

