Inverse Functions

- · From an equation
 - · On a graph
- · In an INVERSE f. 1, x and y trade places. Or, the domain becomes the range and the range becomes the domain.

If for
$$f(x)$$
, $D = x \ge 3$
 $R = R$
Then $f^{-1}(x)$, $D = R$
 $R = y \ge 3$

- Almost always, a negative exponent means take the reciprocal. $x^{-1} = \frac{1}{x}$
- . For notation is the EXCEPTION

$$f_{-1}(x) \neq \frac{f(x)}{1}$$

ALGEBRAICALLY

Steps

$$f(x) = 3x - 7$$

$$0 \quad y = 3x - 7$$

3
$$x = 3y - 7$$

 $+7$ $+7$
 $x + 7 = 3y$
 $y = 3x + 7 = 3x + 7$
 $y = 3x + 7 = 3x + 7$

$$\Phi = \int_{-1}^{-1} (x) = \frac{x+7}{3}$$

Example #2

$$f(x) = \frac{3x-7}{2x+1}$$

$$0 \quad y = \frac{3x-7}{2x+1}$$

$$3 \quad x = \frac{3y-7}{2y+1}$$

3
$$(2y+1) \times = (3y-7)(2y+1)$$

 $(2y+1)$

$$(2y+1)x = (3y-7)$$

 $2xy+x = 3y-7$
 $-3y - 3y - 7$

$$2xy - 3y + x = -7$$

Factor
$$2xy - 3y = -x - 7$$

$$\frac{y(2x=3)}{(2x-3)} = (-x-7)$$

$$y = \frac{(-x-7)}{(2x-3)} = -\frac{x+7}{2x-3}$$

$$(4) \qquad f^{-1}(x) = \frac{-x-7}{2x-3}$$

. x & y trade places · f-1(x) is a REFLECTION of f(x) across the line y=x