Inverse Functions

- From an equation
- On a graph
- In an INUERSE fy, x and y trade places. Or, the domain becomes the range and the range becomes the domain.

If for $f(x), D=x \geq 3$

$$
R=\mathbb{R}
$$

Then : $f^{-1}(x) ; D=\mathbb{R}$

$$
R=y \geqslant 3
$$

- Almost always, a negative exponent means take the reciprocal. $x^{-1}=\frac{1}{x}$
- Fin notation is the Exception

$$
f^{-1}(x) \neq \frac{1}{f(x)}
$$

$f^{-1}(x)$ means find the Inverse function.

Algebraically
steps
(1) Replace $f(x)$ with y.
(2) Replace curry x with ar and every y with an x
(3) Solve for y again
(4) Replace y with

$$
f^{-1}(x)
$$

(3) $\begin{aligned} x & =3 y-7 \\ +7 & +7 \\ \frac{x+7}{3} & =3 y \\ y & =\frac{x+7}{3} \text { or } \frac{1}{3} x+\frac{7}{3}\end{aligned}$

$$
\begin{aligned}
& x=3 y-7 \\
& +7+7 \\
& \frac{x+7}{3}=\frac{3 y}{3} y \\
& y=\frac{x+7}{3} \text { or } \frac{1}{3} x+\frac{7}{3}
\end{aligned}
$$

Example

$$
f(x)=3 x-7
$$

(1) $y=3 x-7$
(2) $x=3 y-7$
(4) $f^{-1}(x)=\frac{x+7}{3}$

Example \#2

$$
f(x)=\frac{3 x-7}{2 x+1}
$$

(1) $\quad y=\frac{3 x-7}{2 x+1}$
(2) $x=\frac{3 y-7}{2 y+1}$
(3)

$$
\begin{aligned}
& (2 y+1) x=\frac{(3 y-7)(2 y+1)}{(2 y+1)} \\
& (2 y+1) x=(3 y-7) \\
& 2 x y+x=3 y-7 \\
& 2 x y-3 y+x=-7 \\
& -3 y
\end{aligned}
$$

Eactor

$$
\begin{aligned}
2 x y-3 y & =-x-7 \\
\frac{y(2 x-3)}{(2 x-3)} & =\frac{(-x-7)}{(2 x-3)} \\
y & =\frac{(-x-7)}{(2 x-3)}=-\frac{x+7}{2 x-3}
\end{aligned}
$$

(4) $f^{-1}(x)=\frac{-x-7}{2 x-3}$

- x + y trade places
- $f^{-1}(x)$ is a REFLECTION of $f(x)$ across the line $y=x$

