Permutations Involving Distinct Objects
Ex 1 How many ways can you arrange:
(a) the letters A and B ?

Permutation $A B$ or $(3 A$
(2) $\quad 2.1=2$
(b) the letters A, B and C ?
Permutations $\left\{\begin{array}{ll}A B C & C B A \\ B A C & B C A \\ A C B & C A B\end{array} \quad\right.$ (6) ${ }^{\overline{3} \cdot \overline{2} \cdot \overline{1}}$
(C) the letters $A B C$ and D ?

(D) 7 letters:

$$
\begin{aligned}
& \quad 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)=5040 \\
& 12 \cdot 11 \cdot 10 \ldots \cdot 1= \\
& 12!\rightarrow 12 \text { "factorial" } \\
& \\
& \\
& \rightarrow \text { means } 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 7 \cdot 1
\end{aligned}
$$

! is a mathematical symbol called a "factorial"

$$
(-4)!=-4 \cdot-5 \cdot-6 \cdot-7 \ldots \text { huh?!! }
$$

you can't take the factorial of a negative \#!!
\rightarrow also only works for whole $\#^{\prime}$'s By Definition $0!=1$

$$
7(\text { math } \Theta \leftrightarrow \leftrightarrow 4=7!=5040
$$

A PERMUTATION is an arrangement of objects in which order is important.

How many ways can two letters be chosen from $A B \subseteq D$ and E ?

$$
\frac{5}{4} \cdot \underline{4}=20
$$

$A B$	$B A$	$C A$		
$A C$	$B C$	$C B$		5 columns, 4 in each
$A D$	$B D$	$C D$	$5 \times 4=20$	
$A E$	$B E$	$C E$	\ldots	5×4

6 letters, want permutations of 2?

$$
6 \cdot 5=30
$$

(6) Wethers, wanted permutations of 4?

$$
\begin{aligned}
& \frac{6 \cdot 5 \cdot 4 \cdot 3}{}=\underline{360} \\
& \frac{(6 \cdot 5 \cdot 4 \cdot 3) \cdot 2 \cdot 1)}{2 \cdot 1}=\frac{-6!}{2!}=\frac{6!}{(6-4)!}
\end{aligned}
$$

If we have 10 distinct objects and we want to arrange them in permutations of 3 , we write

$$
\begin{aligned}
& P=\frac{!}{(O)!}=\frac{10!}{7!}=\frac{10 \cdot 9 \cdot 8 \cdot \pi \cdot 6 \cdot 5 \cdot 4 \cdot 4 \cdot 3 \cdot \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 4} \\
& =10 \cdot 9.8=720 \\
& n \mathrm{Pr} \text { (on calculator) } \\
& { }_{10} P_{3}=10{ }_{n} P_{r} 3=720 \\
& n \operatorname{Pr}=\frac{n!}{(n-r)!}
\end{aligned}
$$

