The Power Rule:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f(x)=x \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h} \\
& \begin{aligned}
&=\lim _{h \rightarrow 0} \frac{h}{h}=1 \quad f(x)=x \\
& f^{\prime}(x)=1
\end{aligned} \\
& f(x)=x^{2} \rightarrow f^{\prime}(x)=2 x \\
& f(x)=x^{3} \\
& a^{3}-b^{3} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{a-b} \\
& \begin{aligned}
& h \rightarrow 0 \\
= & \lim _{h \rightarrow 0} \frac{\binom{a-b}{(x+h-x}\binom{a^{2}}{(x+h)^{+}+(x+h)(x)+x^{2}}}{h}
\end{aligned} \\
& =\lim _{h \rightarrow 0} \frac{K\left((x+h)^{2}+(x+h)(x)+x^{2}\right)}{h x} \\
& =(x+0)^{2}+(x+0)(x)+x^{2} \\
& =x^{2}+x^{2}+x^{2}=3 x^{2} \\
& \begin{array}{c|c}
f(x) & f^{\prime}(x) \\
\hline x & x^{0} \\
x & x^{\prime} \\
x & x^{2} \\
x^{4} & 4 x^{3} \\
x^{7} & 7 x^{6} \\
2 x^{4} & 8 x^{3}
\end{array} \\
& f(x)=\sqrt{x}=x^{1 / 2} \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
& f(x)=\sqrt[7]{x^{5}} \\
& =x^{5 / 7} \\
& f^{\prime}(x)=\frac{5}{7} x^{-4 / 7} \\
& =\frac{5}{7 \sqrt[7]{x^{2}}}
\end{aligned}
$$

In general: The Power encl is:

$$
\text { If } f(x)=x^{n}
$$

then $f^{\prime}(x)=n x^{n-1}$

The Constant Rule:
If ' C ' is some constant, then

$$
\text { if } g(x)=c \cdot f(x) \quad\left(\text { eg. } 2\left(x^{2}+1\right)\right)
$$

then $g^{\prime}(x)=c \cdot f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=3 \cdot x^{5} \\
& f^{\prime}(x)=3 \cdot\left(5 x^{4}\right)=15 x^{4}
\end{aligned}
$$

Sum and Difference Rules:
If f and g are differentiable then so are $f+g$ and $f-g$.
That is:

$$
\begin{aligned}
& (f+g)^{\prime}=f^{\prime}+g^{\prime} \\
& \text { ex: }\left(3 x^{2}+7 x\right) \Rightarrow 6 x+f^{\prime}+7 \\
& (f-g)^{\prime}=f^{\prime}-g^{\prime} \\
& 3 x^{2}-7 x \Rightarrow 6 x-7
\end{aligned}
$$

What if: $f(x)=3$ what is $f^{\prime}(x)$?

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
&= \lim _{h \rightarrow 0} \frac{3-3}{h}=0 \\
& \text { or } \quad f(x)=3 x^{\circ} \\
& f^{\prime}(x)=0
\end{aligned}
$$

The derivative of a constant is ZERO

Eg: $\quad f(x)=4 x^{7}-\sqrt{x}+8$

$$
f^{\prime}(x)=28 x^{6}-\frac{1}{2} x^{-1 / 2}
$$

$(2.1)+2.2 a 2.3$

