2.4 The Product Rule

The sum d difference rule work so well ... $(f+g)^{\prime}=f^{\prime}+g^{\prime}$, will the same idea work for the product $f \cdot g$?

$$
\text { i.e. } \begin{aligned}
\left(\left(x^{3}\right)\left(x^{2}\right)\right)^{\prime} & =\left(x^{3}\right)^{\prime} \cdot\left(x^{2}\right)^{\prime} \\
\left(x^{5}\right)^{\prime} & =3 x^{2} \cdot 2 x \\
5 x^{4} & \neq 6 x^{3} \quad \text { NOPE }
\end{aligned}
$$

In general, $\underbrace{(f \cdot g)^{\prime}(x)}_{(f(x) \cdot g(x))^{\prime}} \neq f^{\prime}(x) \cdot g^{\prime}(x)$
Instead:

$$
\begin{aligned}
& (f \cdot g)^{\prime}=f \cdot g^{\prime}+f^{\prime} \cdot g \\
& f(x)=x^{3} \\
& g(x)=x^{2} \\
& (f \cdot g)^{\prime}=\left(x^{3}\right)(2 x)+\left(3 x^{2}\right)\left(x^{2}\right) \\
& \\
& =2 x^{4}+3 x^{4}=5 x^{4}
\end{aligned}
$$

2.5 The Quotient Rule

If $F(x)=\frac{f(x)}{g(x)}$
Then $F^{\prime}(x)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}$
Examp6:

$$
\begin{aligned}
& F(x)=\frac{x^{2}+2 x-3}{x^{3}+1} \rightarrow f(x) \\
& g \text {. } f^{\prime}-f \cdot g^{\prime} \\
& F^{\prime}(x)=\frac{\left(x^{3}+1\right)(2 x+2)-\left(x^{2}+2 x-3\right)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}} \\
& 9^{2} \\
& F^{\prime}(x)=\frac{2 x^{4}+2 x^{3}+2 x+2-\left(3 x^{4}+6 x^{3}-9 x^{2}\right)}{\left(x^{3}+1\right)^{2}} \\
& =\frac{-x^{4}-4 x^{3}+9 x^{2}+2 x+2}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

Now: You can work on everything up to the end of sect. 2.5 u

