More Quadratic functions
aka (Parabolas)
Vertex Form: $\quad y=a(x-p)^{2}+q$
Vertex: (p, q)
Recall: A q.f. has an x^{2} (no higher or witt power

$$
\begin{aligned}
y & =(x-3)^{2}+2 \\
y & =x^{2}+3 x+2 \\
y & =x(x+2) \\
y & =x^{2}+2 x \\
y & =x^{2}+\frac{3}{x} \quad \times \quad \text { (NOT a parabola) } \\
y & =x(x-1)(x+2) \times \\
& =x^{3}+\ldots
\end{aligned}
$$

Standard Form

$$
\begin{aligned}
& y=x^{2}+2 x+3=\begin{array}{l}
A=1 \\
B=2 \\
y=A x^{2}+B x+C \quad C=3
\end{array} \\
& y_{1}=x^{2}+2 x+3 \\
& y=3 x^{2}+\frac{2}{7} x+191
\end{aligned}
$$

Using your Graphing Calc:
To find vertex:
$2^{\text {nd }}$ function Trace
max or \min

- Cursor to LEFT of vertex (enter)
- cursor to Right of vertex (enter)
- Guess? (ignore! enter)

C-INTERCEPTS:

- $2^{\text {nd }}$ function Trace (rale)
-"zeroes"
- Cursed on the left of the intersection + hit enter, same on the right
- Guess? Enter
TODA4 work on 3.2
when you are done, go back
\& finish 3.1
Tomorrow we move on to 3.3

