Solving Systems Algebraically
By Substitution

$$
\begin{aligned}
& \text { Ex }\left[\begin{array}{l}
5 x-y=10 \\
x^{2}+x-2 y=0 \\
\rightarrow 5 x-y=10 \\
-5 x-y x \\
-y=-5 x+10 \\
y=5 x-10 \\
=-2 \\
\rightarrow x^{2}+x-2(5 x-10)=0
\end{array}\right. \\
& x^{2}+x-10 x+20=0 \\
& x^{2}-9 x+20=0 \\
& (x-4)(x-5)=0 \\
& \text { so } x=4 \text { or } x=5
\end{aligned}
$$

(1) Isolate the

$$
\text { " } y \text { " simpler }
$$

(2) Substitute What y equals into the OTHER equation
and $y=5 x-10$ so $4, \overline{\overline{1}}$ or 5,15
Check: $5 x-y=10$

$$
\begin{array}{ll}
S(4)-(10)=10 & (4)^{2}+4-2(10) \stackrel{?}{=} \\
& 16+4-20=0 \\
S(5)-15=10 & (5)^{2}+5-2(15) \stackrel{?}{=} 0 \\
& 25+5-30=0
\end{array}
$$

Questions: Section 8.2 pg 451

$$
\# 3
$$

AND: (1)

$$
\begin{aligned}
& p=3 k+1 \\
& p=6 k^{2}+10 k-4
\end{aligned}
$$

Solving by Elimination:

- The goal is to ELIMINATE one of the variables by adding the two equations together.
- Startby writing one equation above the other and lining up like terms.
Ex: $\quad 5 x-y=10$ and $x^{2}+x-2 y=0$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{2}+x-2 y=0 \\
-2(5 x-y=10) \\
0 \\
x^{2}+x-2 y=0 \\
-10 x+2 y=-20
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{2}-9 x=-20
\end{array}\right.} \\
& x^{2}-9 x+20=0 \\
& \text { Then, } \\
& \text { solve it! } \\
& (x-4)(x-5)=0 \\
& x=4 \text { or } 5 \text { then go back } \\
& \text { + figure out } y \text {... }
\end{aligned}
$$

$$
\begin{array}{r}
2\left(\frac{3}{2} x^{2}-\frac{1}{2} x-\frac{1}{2} y=1\right) \Rightarrow 3 x^{2}-x-y=2 \\
2\left(\frac{3}{2} x^{2}+2 x-\frac{1}{2} y=2\right) \Rightarrow x^{-1}\left(3 x^{2}+4 x(-y=4)\right. \\
0 \quad 0 \\
3 x^{3}-x-y^{\prime}=2 \\
-3 x^{2}-4 x+y=-4 \\
-5 x=-2 \\
x=\frac{2}{5} \text { then go find } \\
y \text { a check!! }
\end{array}
$$

Solve using elimination:
$\operatorname{Pg} 452 \# 4$ and 75

Use
lin.
use elem. or subst. \rightarrow whichever you prefer.

