FE:
50 mC 1 mark@ $=50$ marks
7 written $2-5=25$ marks

$1 / 2$	Transformations	15%
3	Polynomial fl	15%
$415 / 6$	Trig	30%
$7 / 8$ Logs	20%	
10	functions	10%
11	Combinatorics	10%

The Binomial Theorem.notebook

The Binomial Theorem
For any whole number " n ",

$$
\begin{aligned}
& \Longleftrightarrow{ }_{n} C_{\underline{k}} a^{n-\underline{k}}=b^{\underline{k}}+\ldots+{ }_{n} C_{n} a^{0} b^{n} \\
& (k+1)^{s^{\top}} \text { term }
\end{aligned}
$$

To Find the expansion of the $(k+1)^{s t}$ term: $\quad t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k}$

Examples:
(1) Find the $4^{\text {th }}$ term of $(x-3)^{9}$

$$
\begin{array}{ll}
& t_{4}= \\
a=x \\
b & =(-3) \\
n & =9 \\
K & =3
\end{array} \quad \begin{aligned}
& \quad t_{4} \\
& k
\end{aligned}
$$

(2) Find the $5^{\text {th }}$ term of

$$
\begin{aligned}
& (2 x-3 y)^{16} \\
& t_{s}={ }_{n} C_{k} a^{n-k} b^{k} \\
& a=2 x \\
& b=-3 y \\
& t_{5}={ }_{16} C_{4}(2 x)^{12}(-3 y)= \\
& n=16 \\
& =1820 \cdot 4096 x^{12} \cdot(81) y^{4} \\
& k=4 \\
& =603832320 x^{12} y^{4}
\end{aligned}
$$

5 people

$$
\begin{aligned}
& \left(\frac{C_{1}}{C P}, 4 C_{2}\right. \\
& 1 / 0 \\
& \frac{1}{4} \quad \frac{2}{4} \quad \frac{1}{4} \\
& { }_{10} P_{3} \\
& 12 F C
\end{aligned}
$$

$2 R$ and $2 B$ OR $3 R$ and $I B$ OR $4 R$

$$
\begin{aligned}
& 2 R \text { and } 2 B \text { OR } 3 R \text { and } B \text { OR } 4 R \\
& \downarrow \downarrow \downarrow{ }^{1} \downarrow \\
& { }_{6} C_{2} \cdot{ }_{6} C_{2}+{ }_{6} C_{3} \cdot{ }_{6} C_{1}+{ }_{6} C_{4} \cdot{ }_{6} C_{0}
\end{aligned}
$$

