Graphing Parabolas from
Vertex Form

$$
y=a(x-p)^{2}+q
$$

movesit
τ moves it up and down (vertical translation of q units)
(vertical (horizontal compression translation
or expansion) of punits)
AND if a is negative, it is
a refúction
(flip)
If $a>1$ or $a<-1$ the graph is tall + skinny (stretch or expansion)
$-1<a<1$ it is a compression (shorter x flatter)
\Rightarrow From the equation and/or the graph:
(1) Vertex
(2) Direction of opening
(4) y intercept
(S) th-interepts
(6) axis of symmetry

$$
x=\$
$$

(7) Domain \leadsto all possible x-values Range \rightarrow all possible y-values

$$
\begin{aligned}
& \text { Domain Range } \\
& \binom{x}{y}
\end{aligned}
$$

$$
y=-\left(\frac{1}{3}\right)(x-5)^{2}+2
$$

Vertex: ($\underline{\underline{5}, 2}$)
Direction of Down
opening: Dow opening:- Down
$D: a \mid l \mathbb{R}$: $\{x \mid x \in \mathbb{R}\}$
$R: y \leq 2$
max/ min max of 2 (at $x=5$) x-intercepts 2.8 and 7.6 y-intercept $y=-\frac{1}{3}(0-5)^{2}+2 \Rightarrow-\frac{25}{3}+\frac{6}{3}=-\frac{19}{3}, ~$
axis axis of symmetry. $x=\underline{=}$

Finding the Equation from the graph or from the vertex and a point
(1) To find the equation of a parabola you need the vertex (p, q) and one other point.

(2) Go back to vertex form and plug in what you Know!

- Vertex $(3,2) \quad p=3 \quad q=2$

$$
y=a(x-3)^{2}+2
$$

- take your other point and Use it for x and y $(5,-6) \quad x=5$ and $y=-6$

$$
\begin{aligned}
y & =a(x-p)^{2}+q \\
-6 & =a(\underline{5}-3)^{2}+2
\end{aligned}
$$

(3) Solve for ' a '

$$
\begin{aligned}
&-6=a\left(\frac{5-3)^{2}}{-6}+2\right. \\
&-6=4 a+2 \\
&-2 \\
& \frac{-8}{4}=\frac{4}{4} \\
& a=-2
\end{aligned}
$$

$$
y=\underline{a}(x-p)^{2}+\underline{a}
$$

$$
y=-2(x-3)^{2}+2
$$

FINAL ANSWER

