	Graphing Parabolas from
	Vertex Form
	y=a(x-p)2+q
	moves it up and down (vertical translation
S-	tretch/squish, left/right of q units)
(ve	rtical (horizontal
Co	expansion of punits)
	op if a is
	egative, if is
Q	reflection
	flip)
	If a>1 or a<-1 the graph is tall + skinny (stretch or expansion)
	· · · · · · · · · · · · · · · · · · ·
	-1(ac) it is a compression (shorter + flatter)
	From the equation and/or the graph:
	U
	(1) Vertex (2) Direction of opening
	(3) Max or min 0
	(4) y intercept (5) x-intercepts
	(6) axis of symmetry linkrapt
	* (7) Domain ~ all possible x-values
	* (7) Domain ~ all possible x-values Range ~ all possible y-values Domain _ kange
	Domain Range
	(x, y)
	V

Untitled.notebook October 18, 2013

$$y = -\frac{1}{3}(x-5)^2 + 2$$

 $y = -\frac{1}{3}(x-5)^2 + 2$ Vertex: $(5 \mid 2)$ Direction of Down
opening:
D: all IR $\{z \mid x \in R\}$ R: $y \leq 2$ max/min max of 2 = 4x = 5x-intercept $y = \frac{1}{3}(x-5)^2 + 2 = 5$ axis of symmetry. x = 5

Untitled.notebook October 18, 2013

Finding the Equation from the graph or from the vertex and a point

(1) To find the equation of a parabola you need the vertex (p,q) and one other point.

- (3,2) (2) Go back to vertex form and plug in what you Know!
 - · Vertex (3,2) p=3 g=2

· take your other point and use it for x and y

$$(5_1-6)$$
 $x=\frac{5}{2}$ and $y=\frac{6}{2}$
 $y=a(x-p)^2+2$
 $-6=a(\frac{5}{2}-3)^2+2$

3 Solve for a

$$-6 = a(5-3)^{2} + 2$$

$$-6 = 4a + 2$$

$$-2$$

$$-8 = 4a$$

$$4$$

$$y = \frac{x(x-p) + y}{(y-3)^2 + 2}$$

FINAL ANSWER