Composite functions

- · Composite functions occur when we substitute one function into another
- · For example:

$$f(x) = 3x-7$$
 and $g(x) = 2x^2+3$

$$f(3) = 3(3) - 7$$

$$f(g(x)) = 3(2x^{2}+3) - 7$$

$$f(g(x)) = 6x^{2}+9-7 = 6x^{2}+7$$

means wherever there is an x' in frx), we substitute in g(x)

$$E \times 2$$
 $f(x) = 3x - 7$ $g(x) = 2x^2 + 3$

$$g(f(x)) = 2(3x-7)^{2} + 3$$

$$= 2(3x-7)(3x-7) + 3$$

$$= 2(9x^{2} - 21x - 21x + 49) + 3$$

$$= 2(9x^{2} - 42x + 49) + 3$$

$$f(g(x)) = (f \circ g)(x)$$
"f" "do+" "g" of x

 $f(x) \cdot g(x) = (f \cdot g)(x)$
or $(fg)(x)$

$$(g \cdot f)(3) \Rightarrow g(f(3))$$

$$g(x) = 3x^{2} - 2 \qquad f(x) = 2x - 1$$

$$g(5) = 3(5)^{2} - 2 \qquad f(3) = 2(3) - 1 = 5$$

$$g(f(3)) = g(5) = 73$$

or Find
$$g(f(x))$$

 $g(f(x)) = 3(2x-1)^2 - 2$
 $g(f(3)) = 3(2(3)-1)^2 - 2$
 $= 3(5)^2 - 2$
 $= 73$

Untitled.notebook February 11, 2014

$$f(x): [(\frac{1}{2},\frac{1}{2})(9,12)(10,15)(11,6)]$$
 $g(x): [(3,7)(5,9)(8,12)(10,11)]$
 $g(f(15))=11$
 $f(g(3))=f(7)=2$
 $f(g(10))=f(11)=6$
 $f(g(8))=f(12)$ due does not exist

Untitled.notebook February 11, 2014

Questions

(a)
$$f(x)=4x$$
 $g(x)=x+6$ $h(x)=x^2$

find:

(b) $g(h(-2))$ 10

(c) $h(h(2))$ 16

(d) $f(x)=\sqrt{x-1}$ $g(x)=x^2$

STATE RESTRICTIONS

Find $f(g(x)) = \sqrt{x^2-1}$ $x^2-1 \ge 0$
 $g(f(x)) = x-1$ $x > 1$
 $g(g(x)) = x^4$ None

Untitled.notebook February 11, 2014

If
$$f(x) = 3x + 4$$
 and $g(x) = x^2 - 1$

Find:

① $(f \circ g)(-3)$

= 28
② $(f \circ g)(a)$
= $3a^2 + 1$
③ $(g \circ f)(a)$
= $9a^2 + 24a + 15$
④ $(f \circ g)(x)$
= $9x^2 + 24x + 15$
⑥ $(g \circ f)(x)$
= $2x^2 + 1$
⑤ $(g \circ f)(x)$
= $2x^2 + 1$
 $2x^2 + 1$
⑥ $(g \circ g)(x)$
= $2x^2 + 1$
 $2x^2 + 1$
⑥ $(g \circ g)(x)$
= $2x^2 + 1$

10.3 Try to get #1-5 done for tomorrow (or farther if you have time) Ch10 Test TEST FRIDAY