Untitled.notebook February 06, 2014

Products (x) and Quotients (+) of fr's

f's > functions

PRODUCTS of F1's

If
$$f(x) = x^2 + x - 6$$
 and $g(x) = 3x^2$
What is $(f \cdot g)(x)$ or $f(x) \cdot g(x)$
 $f \cdot g = (x^2 + x - 6)(3x^2)$

$$= 3x^4 + 3x^3 - 18x^2$$

Quotients

$$f(x) = x^{2} + x - 6 \quad g(x) = 2x + 6$$

$$\left(\frac{f}{g}\right)(x) = \frac{x^{2} + x - 6}{2x + 6} = \left(\frac{x + 5}{x + 3}\right)(x - 2)$$

$$\frac{f}{g}(x) = \frac{x^{2} + x - 6}{2x + 6} = \frac{(x + 3)}{2(x + 3)}$$

$$= x-2$$

$$(\frac{9}{f})(x) = \frac{2x+6}{x^2+x-6} = \frac{2(x+5)}{(x+3)(x-2)}$$
 $= \frac{2}{x-2}$

EX If $h(x) = f(x)$ what is $g(x)$	9(x) and $f(x) = 2x+5$
(a) h(x) = +2	
h=f·g	g = <u>2x5x+55x</u> 2x+5
wanta $h = f \cdot g$	g = \(\overline{\infty}(2\times+5)\)
g = h	g = 5x