3.4 Rates of Change \sim Business : Economics

If it costs a company $C(x)$ dollars to produce x units of a certain item/ commodity then $C(x)$ is called a COST FUNCTION

If the A of items produced changes from x_{1} to x_{2}, then additional cost is: $\Delta c=c\left(x_{2}\right)-c\left(x_{1}\right)$ and the AUERAGE Rate of change of cost is:

$$
\begin{aligned}
& \text { st is: } y_{2}-y_{1} \\
& \frac{\Delta C}{\Delta x}=\frac{C\left(x_{2}\right)-C\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

"marginal" \Rightarrow "instantaneous" The "Marginal" cost is like the "instantaneous" cost a is the derivative of the cost fl.

Example:

$$
C(x)=140000+0.43 x+0.000001 x^{2}
$$

(a) Marginal cost of producing 1000 bags of Four.

$$
\begin{aligned}
C^{\prime}(x) & =0.43+0.000002 x \\
C^{\prime}(1000) & =0.43+0.000002(1000) \\
& =\$_{0} 0.432 / \mathrm{bag}
\end{aligned}
$$

(b) How much would it cost to produce the $1001^{\text {st }}$ bag?

$$
\begin{aligned}
& \Delta C=C(1001)-C(1000) \\
& =\left[140000+0.43(1001)+.000001(1001)^{2}-\right. \\
& \quad\left(140000+0.43(1000)+.000001(1000)^{2}\right] \\
& =\$ 0.432001
\end{aligned}
$$

Definitions:

Price or Demand $f \underline{n}$:
small $\rightarrow p(x)$ is the price per unit that a company can charge if it sells x units.

Revenue function: is the amount of $\$$ that comes in from the sales (gross amount)

$$
R(x)=x \cdot p(x)
$$

Profit f :
$\begin{aligned} & \text { Capital, } \\ & \rightarrow P(x)= R(x)-C(x) \\ &(\text { revenue }-\cos t)\end{aligned}$
Marginal profit $=P^{\prime}(x)$
Revenue $=R^{\prime}(x)$
Now do 3.4 ur
FUN 442 NJOY

