4.4 Applied Max Min Problems If $2700 \mathrm{~cm}^{2}$ of cardboard is available to make a box with a SQuARE base a OPEN TOP, what is the max volume?

$$
\begin{aligned}
& -\frac{1}{x}-x \\
& V=x \cdot x h \\
& =x^{2} h \leftarrow \\
& S A=x^{2}+4 x h \\
& 2700=x^{2}+4 x h \\
& h>0 \\
& \text { so } \frac{2700-x^{2}}{4 x}>0<h=\frac{2700-x^{2}}{4 x}<2700-x^{2}>0 \\
& V=x^{2} \cdot\left(\frac{2700-x^{2}}{4 x}\right) \quad \begin{aligned}
\sqrt{2700} & >\sqrt{x^{2}} \\
51.96 & >x
\end{aligned} \\
& V=\frac{2700 x-x^{3}}{4}=675 x-\frac{1}{4} x^{3} \\
& V=675 x-\frac{1}{4} x^{3} \\
& V^{\prime}=675-\frac{3}{4} x^{2} \\
& 675-\frac{3}{4} x^{2}=0 \\
& -675 \quad 4 \quad-675 \\
& -\frac{3}{4} x^{2}=-675 \\
& x^{2}=\frac{675.4}{3} \\
& x^{2}=900 \\
& C P . \rightarrow x=30 \\
& S A=2700
\end{aligned}
$$

Evaluate at $C P$.

$$
\begin{aligned}
& \begin{array}{l}
V(30)=(30)(30)\left(\frac{2700-(\sqrt{2700})^{2}}{4(30)}\right) \\
=13500 \\
\text { when } x=30 \mathrm{~cm} \\
V(0)=0 \\
V(51.96)=0 \\
\sqrt{2700}
\end{array}
\end{aligned}
$$

Find 2 numbers whose difference is 150° and whore product is a min!! x and y
(1) $x-y=150 \Rightarrow y=x-150$
(2) $x \cdot y \leadsto \mathrm{~min}$. value possible

$$
\begin{aligned}
& P(x)=x y \\
& P(x)=x(x-150) \\
& P(x)=x^{2}-150 x \\
& P^{\prime}=2(100)-150 \leftrightarrows \\
& 2 x-150=0 \\
& +150+150 \\
& 4.4 \\
& \mathrm{Ch}^{n o v i o u s} \\
& \partial x=150 \\
& x=75 \\
& \text { so } 75 \text { is a min } \\
& \text { \& } P(75)=x(x-150) \\
& =75(75-150) \\
& =-5625 \mathrm{~min}
\end{aligned}
$$

when $x=75$ and $y=-75$
$\sin \theta$

$$
\begin{aligned}
& y=x-150 \\
& y=75-150=-75
\end{aligned}
$$

Ch 4 Quiz (instead of a test) ON FRIDAY APR. $19^{\text {th }}$

