Radicals And Restrictions

- Restrictions state values that variables are NOT allowed to be. They are also referred to as
- You can NOT take the square root of a negative \#, so, for example:
$\sqrt{x} \quad$... the restriction is that x must be greater than or equal to $z^{\text {aero. We write }}$

$$
x \geq 0
$$

$\sqrt{x+4} \ldots$ well, the radicand, $x+4$, must be greater than or equal to zero. So:
$\begin{aligned} x+4 & \geq 0 \\ -4 & \text { Now solve for } x\end{aligned}$
$x \geq-4$ this is the domain for x or the restriction on x so that the radicand is always positive

SOLING RADICAL EQUATIONS

Type I: ONE RADICAL TERM

| Restrictions
 $x \geq-\frac{1}{2}$ $(\sqrt{2 x+1})^{2}=3^{2}$
 from: $2 x+1=9$
 $2 x+1 \geq 0$ -1
 -1 $2 x \geq-1$
 $2 x=8$ $=8$
 $2 x=4$ |
| :---: | :---: |

* State restrictions STEPS
(1) Square both sides
(2) Then solve it
(3) Check the answer

\[

\]

Why we check:
$(\sqrt{2 x+1})^{2}=(-3)^{2}$

$$
2 x+1=9
$$

$$
\begin{aligned}
\sqrt{2 x+1} & =-3 \\
\sqrt{2(4)+1} & \stackrel{?}{=}-3 \\
+\sqrt{9} & -3 \\
+\sqrt{9} & =3
\end{aligned}
$$

"Extraneous Root"
Shows up in the math bat leads to an impossible answer

Type II Two Radicals, No other terms

$$
\text { Ex 1 } \begin{aligned}
(\sqrt{2-x})^{2} & =(\sqrt{x-2})^{2} \\
2-x & =x-x / 2 \\
+2+x & +x+2 \\
4 & =2 x \\
x & =2
\end{aligned}
$$

Restrictions:

Check:

$$
\sqrt{2-2} \stackrel{2}{=} \sqrt{2-2}
$$

Square both sides! v then Solve and check.

$$
\left.\begin{array}{lc}
\sqrt{2-x} & 2-x \geq 0 \\
-2 & -2 \\
& -x \geq-2 \\
-1 & \downarrow-1
\end{array}\right]
$$

$x \leq 2$ (when you divide both sides of an INEQVAKITY by a negative $\#$, the inequality
changes' direction

$$
\begin{aligned}
\sqrt{x-2} & x-2 \\
& \geq 0 \\
+2 & +2 \\
x & \geq 2
\end{aligned}
$$

So, x must be less than or equal to 2 AND greater than or equal to $2 . .$.

$$
\begin{array}{r}
2 \leq x \leq 2 \quad \cdots \text { Lou, so } 1 \text { guess } \\
\\
x \text { must be } 2
\end{array}
$$

Normally the restrictions would end up something like:

$$
-3 \leq x \leq 2 \text { or } x \geq 7
$$

... This question was unusual.

