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There are no hard and fast rules that will ensure success in solving
problems. However, it is possible to outline some general steps in the
problem-solving process and to give some principles that may be useful
in the solution of certain problems. These steps and principles are just
common sense made explicit. They have been adapted from George
Polya’s book How to Solve It.
1. UNDERSTAND THE PROBLEM. The first step is to read the
problem and make sure that it is clearly understood. Ask yourself the
following questions:

What is the unknown?

What are the given quantities?

What are the given conditions?
For many problems it is useful to

draw a diagram
and identify the given and required quantities on the diagram.

Usually it is necessary to

introduce suitable notation.
In choosing symbols for the unknown quantities we often use letters
such as a, b, ¢, ..., m, n, ..., x, y, but in some cases it helps to use
initials as suggestive symbols, for instance, V for volume,  for time.
2. THINK OF A PLAN. Find a connection between the given infor-
mation and the unknown that will enable you to calculate the unknown.
If you do not see a connection immediately, the following ideas may
be helpful in devising a plan.
(a) Try to recognize something familiar. Relate the given situation
to previous knowledge. Look at the unknown and try to recall a more
familiar problem having a similar unknown.
(b) Try to recognize patterns. Some problems are solved by recog-
nizing that some kind of pattern is occurring. The pattern could be
geometric, or numeric, or algebraic. If you can see regularity or rep-
etition in a problem, then you might be able to guess what the continuing
pattern is and then prove it.
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(c) Use analogy. Try to think of an analogous problem, that is, a
similar problem, a related problem, but one that is easier than the
original problem. If you can solve the similar, simpler problem, then
it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you
could first try a similar problem with smaller numbers. Or if the problem
is in three-dimensional geometry, you could look for a similar problem
in two-dimensional geometry. Or if the problem you start with is a
general one, you could first try a special case.

(d) Introduce something extra. It may sometimes be necessary to
introduce something new, an auxiliary aid, to help make the connection
between the given and the unknown. For instance, in geometry the
auxiliary aid could be a new line drawn in a diagram. In algebra it
could be a new unknown that is related to the original unknown.

(e) Take cases. You may sometimes have to split a problem into
several cases and give a different argument for each of the cases. We
used this strategy in dealing with absolute value and other functions in
Section 1.3 and in connection with geometric series in Example 2 in
Section 1.7.

(f) Work backwards. Sometimes it is useful to imagine that your
problem is solved and work backwards, step by step, till you arrive at
the given data. Then you may be able to reverse your steps and thereby
construct a solution to the original problem.

(g) Use indirect reasoning. Sometimes it is appropriate to attack a
problem indirectly. For instance, in a counting argument it might be
best to count the total number of objects and subtract the number of
objects that do notr have the required property. Another example of
indirect reasoning is proof by contradiction in which we assume that
the desired conclusion is false and eventually arrive at a contradiction.

3. CARRY OUT THE PLAN. In Step 2 a plan was devised. In
carrying out that plan we have to check each stage of the plan and
write the details that prove that each stage is correct.

4. LOOK BACK. Having completed our solution, it is wise to look
back over it, partly to see if there are errors in the solution and partly
to see if there is an easier way to solve the problem. Another reason
for looking back is that it will familiarize us with the method of solution
and this may be useful for solving a future problem. Descartes said,
““Every problem that I solved became a rule which I then used to solve
other problems.”’

Express the hypotenuse 7 of a right triangle in terms of its area A and
its perimeter P.

Let us first sort out the information by identifying the unknown quantity
and the data.
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Unknown: h
Given quantities: A, P
It helps to draw a diagram and we do so.

In order to connect the given quantities to the unknown, we introduce
two extra variables a and b, which are the lengths of the other two
sides of the triangle. This enables us to express the given condition,
which is that the triangle is right-angled, by the Pythagorean Theorem:

The other connections among the variables come by writing expressions
for the area and perimeter:

A = lagp P=a+ b+ h

Since A and P are given, notice that we now have three equations in
the three unknowns a, b, and h:

P =@+ b ©)

A = lab ®)

P=a+b+h Q@

Although we have the correct number of equations, they are not easy
to solve in a straightforward fashion. But if we use the problem-solving
strategy of trying to recognize something familiar, then we can solve
these equations by an easier method. Look at the right sides of Equations
1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

(a + b)? = a* + 2ab + b?
Using this idea, we express (@ + b)* in two ways. From Equations 1
and 2 we have

(a + b? = (@ + b*) + 2ab = h* + 4A
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From Equation 3 we have

(a + b)> =P — h)? = P2 — 2Ph + h?
Thus, #h* + 44 = P2 — 2Ph + h?

2Ph = P? — 4A
P — 4A
h=—+—
2P
This is the required expression. 15;'\.]

Solve the equation ||3x + 1| — x| = 2.
Use your calculator to evaluate

V2 + V6

V2 + V3
The answer looks very simple. Show that the calculated value is
correct.

A man drives from home to work at a speed of 80 km/h. The return
trip from work to home is covered at the more leisurely pace of
50 km/h. What is the average speed for the round trip?

In a right triangle, the hypotenuse has length 5 cm and another side
has length 3 cm. What is the length of the altitude that is
perpendicular to the hypotenuse?

A car with tires having radius 33 cm was driven on a trip and the
odometer indicated that the distance travelled was 640 km. Two
weeks later, with snow tires installed, the odometer indicated that
the distance for the return trip over the same route was 625 km.
Find the radius of the snow tires.

Bob and Jim, next-door neighbours, use hoses from both houses to
fill Bob’s swimming pool. They know it takes eighteen hours using
both hoses. They also know that Bob’s hose, used alone, can fill the
pool in six hours less than Jim’s.hose. How much time is required
by each hose alone?
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Now that we know how to calculate derivatives, we use them in this
chapter to compute velocity, acceleration, and other rates of change in
the natural and social sciences. Another application of derivatives occurs
when we use them in Newton’s method for finding approximate solu-
tions of equations.

‘vamnle 1
xample 1

Soilerbiinne
S0o1ution

We have already defined and computed velocities in Sections 1.5 and
2.1, but now we can compute them more easily with the aid of the
differentiation formulas that were developed in Chapter 2.

Suppose that an object moves along a straight line. (Think of a ball
being thrown vertically upward or a car being driven along a road or
a stone being dropped from a cliff.) The position function is s = f(¢),
where s is the displacement (directed distance) of the object from the
origin at time ¢. Recall that the (instantaneous) velocity of the object
at time ¢ is defined as the limit of average velocities over shorter and
shorter time intervals:

_fu+ h) — f0)
v =70 = lim——
[0 = lim P
Thus, the velocity is the derivative of the position function and in
Leibniz notation we write

_ds
dt

\%

If a stone is dropped from a cliff that is 122.5 m high, then its height
in metres after f seconds is A = 122.5 — 4.9¢? (until it hits the ground).
(a) Find its velocity after 1 s and 2 s. -

(b) When will the stone hit the ground?

(c) With what velocity will it hit the ground?

(a) The position function is & = 122.5 — 4.9¢2, so the velocity at

time 7 is
dh

— = —9.8¢
dt

Thus, the velocity after 1 s is

dh

— —98(1) = —9.8 m/
dt],l (1) S
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and after 2 s it is

dh] 9.8(2) 19.6 m/
— = —%Y. _ = 3 S
@), m

11225 (b) The stone will hit the ground when the height is 0, that is,

h(f) = 122.5 — 4.9t = 0
122.5

12:4—9:25

Since t > 0, we have r = 5. So the stone hits the ground after
5s.

Lo (c) The stone hits the ground with velocity
h'(5) = —9.8(5) = —49 m/s &

ixample 2 The position of a particle moving on a line is given by the equation
s =flt) =26 — 212 + 60t,t =0

where f is measured in seconds and s in metres.

(a) What is the velocity after 3 s and after 6 s?

(b) When is the particle at rest?

(c) When is the particle moving in the positive direction?
(d) Find the total distance travelled by the particle during the first 6 s.

Solution (a) The velocity after ¢ seconds is
v =f'(t) = 62 — 42t + 60

so the velocity after 3 s is

f'(3) = 6(3)2 — 42(3) + 60 = —12 m/s
and after 6 s it is
£(6) = 6(6)> — 42(6) + 60 = 24 m/s

(b) The particle is at rest when v(r) = 0, that is,

61> — 42t + 60 = 0
?—-T7+10=0
t—=2)t—5 =0
t=2 or t=5

Thus, the particle is at rest when r = 2 s and when r = 5 s.
(c) The particle moves in the positive direction when v() > 0, that
is,
P —=Tt+10=0¢—-2)(t—5>0

This inequality is true when both factors are positive (r > 5) or
when both factors are negative (r < 2). Thus the particle moves
in the positive direction in the time intervals 0 < r < 2 and

t > 5. It moves in the negative direction when 2 < f < 5.
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The motion of the particle is illustrated schematically in the

following figure.

t=35
§ =25
=0 r=2 S
s =0 s =52
(d) The distance travelled in the first 2 s is
R
From t = 2 to t = 5 the distance travelled is
If5) = f@)]| =25 = 52| = 2T m
From r = 5 to t = 6 the distance travelled is
[f(6) = f(5)] = 36 — 25] = 11 m
The total distance is
52+ 27 + 11 = 90 m ©
EXERCISE
A 1. The graph shows the position function of a car.
S
4D E
, C \
/B
/A "
0 F t
(a) What was the initial velocity of the car?
(b) Was the car going faster at B or at C?
(¢) Was the car slowing down or speeding up at A, B, and C?
(d) What happened between D and E?
(e) What happened at F?
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B 2. The position functions give s (in metres) as a function of 7 (in
seconds). Find the velocity as a function of time and the velocities
after 2 s and 4 s.

@ s=5+ 12 (b) s =8 —24r + 5
5¢
= — 68 d =
(c) s (d) s T

3. If a stone is thrown downward with a speed of 15 m/s from a cliff
that is 80 m high, its height in metres after ¢ seconds is
h = 80 — 15t — 4.9£. Find the velocity after | s and after 2 s.

4. If a ball is thrown directly upward with an initial velocity of 24.5 m/s,
then its height after 7 seconds, in metres, is
h = 24.5t — 4,912
(a) Find the velocity after 1 s, 25,3 s, and 4 s.
(b) When does the ball reach its maximum height?
(c) What is its maximum height?
(d) When does it hit the ground?
(e) With what velocity does it hit the ground?

5. The distance travelled by a car is given by s = 1602 + 20t, where
t is measured in hours and s in kilometres. When did the velocity
reach 100 km/h?

6. The position function of a particle iss = £ — 312 — 5¢, t = 0,
where ¢ is measured in seconds and s in metres. When does the
particle reach a velocity of 4 m/s?

7. The position of a particle is given by
s=r—4+41t=0
where s is measured in metres and ¢ in seconds.
(a) Find the velocity after 1 s and 3 s.
(b) When is the particle at rest? ‘
(¢) When is the particle moving in the positive direction?
(d) Draw a diagram to illustrate the motion of the particle.

8. The motion of a particle is described by the position function
s =10 =152+ 63t,t =0
where  is measured in metres and s in seconds.
(a) When is the particle at rest?
(b) When is the particle moving in the positive direction?
(c) Draw a diagram to illustrate the motion of the particle.
(d) Find the total distance travelled in the first 10 s.
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9.

If a ball is thrown upward with a velocity of 10 m/s from the upper
observation deck of the CN Tower, 450 m above the ground, then

the distance, in metres, of the ball above ground level after ¢
seconds 18

s = 450 + 10t — 5¢2
(a) When does the ball reach its maximum height?
(b) Use the quadratic formula to find how long it takes for the ball
to reach the ground.

(c) Find the approximate velocity with which the ball strikes the
ground.

If an object moves along a straight line, its acceleration is the rate of
change of velocity with respect to time. Therefore, the acceleration a(r)
at time f is the derivative of the velocity function:

dv
a(®) = v'() = ;‘r

Since the velocity is the derivative of the position function s = f(¥), it

follows that the acceleration is the second derivative of the position
function:

a(n) = v'(t) = f'()

or, in Leibniz notation,

_dv  ds

“Ta T ar

If s is measured in metres and ¢ in seconds, then the units for acceleration
are metres/second?, or m/s?.

The position function of a particle is given by s = * + 212 + 2t,
where s is measured in metres and ¢ in seconds.

(a) Find the velocity and acceleration as a function of time.

(b) Find the acceleration at 3 s.

(a) The velocity is

I
y=Z= =302 4 4142
dt
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and the acceleration is
_dv

= Bl o
“=ur

(b) After 3 s the acceleration is

a = 603) + 4 = 22m/s?

LT\

If a ball is thrown directly upward with an initial velocity of 24.5 m/s,
then its distance above the ground in metres after ¢ seconds is

s = 24.5t — 4.9

(until it hits the ground). Find the acceleration of the ball.
s = 24.5t — 4.9¢?

d
& 245 9.8
dt
d?*s
=25_ 93
a dﬂ

The acceleration is —9.8 m/s2.

Notice that the acceleration in Example 2 is constant, and is called
the acceleration due to gravity. The fact that it is negative means that
the ball slows down as it rises and speeds up as it falls.

In general, a negative acceleration

dv

-
“T

indicates that the velocity is decreasing (as at point A in the figure).
This follows from the fact that the acceleration is the slope of the
tangent to the graph of the velocity function. Likewise, a positive
acceleration

dv =0
a = —
dt

means that the velocity is increasing (as at B).
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Al A
v
pE
A
\ C D
B
0 r
The graph of a velocity function is shown. State whether the
acceleration is positive, zero, or negative
(a) fromOto A, (b) from A to B,
(¢) from B to C, (d) from Cto D,
(e) from D to E.
2 sﬁx
: E
D
: C
B
— 5
0 t

The graph of a position function is shown.

(a) For the part of the graph from O to A, use slopes of tangents to
decide whether the velocity is increasing or decreasing. Is the
acceleration positive or negative?

(b) State whether the acceleration is positive, zero, or negative

(i) from A to B (ii) from B to C
(iii) from C to D @iv) from D to E
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B 3. The position functions give the displacement s as a function of the
time . Find the velocity and acceleration as functions of .
(a) s = 12 + 30¢ (b) s = 162 + 5t — 10
) s=03+52+1+1 d s=Ve2+t
4. The position functions give s (in metres) as a function of 7 (in
seconds). Find the acceleration at 4 s.
(a) s = 100 — 15 — 4.9 (b)y s =08 -1

(©) s

B -2 4+3t-5 (d s =
1+t

S. A position function is given by s = s, + vt + %grz, where sg, Vv,

and g are constants. Find
(a) the initial position
(b) the initial velocity
(c) the acceleration

6. The position function of a particle is s = # — 121, t = 0, where s
is measured in metres and ¢ is measured in seconds. Find the
acceleration at the instant when the velocity is O.

7. A particle moves according to the equation of motion
s = £ — 92 + 18¢, where s is measured in metres and ¢ is
measured in seconds.
(a) When is the acceleration 0?
(b) Find the displacement and velocity at that time.

8. The position function of a particle is s = * — 12} + 30 + 51,
t = 0. When is the acceleration positive and when is it negative?

9. A car is travelling at 72 km/h and the brakes are fully applied,
producing a constant deceleration of 12 m/s2.
(a) Verify that the velocity function v(f) = — 12t + 20, where ¢ is

measured in seconds, gives this deceleration and initial velocity.

(b) How long does it take for the car to come to a complete stop?

AT 1Y FO

3.3 RATES OF CHANGE IN THE NATURAL SCIENCES

Recall from Section 2.1 that a derivative can be interpreted as a rate
of change. In this section, we use derivatives to find rates of change
in physics, biology, and chemistry.

First we recall from Section 1.5 the basic ideas behind rates of
change. If y is a quantity that depends on another quantity x, we can
write y as a function of x: y = f(x). If x changes from x, to x,, then
the change in x is

Ax = Xy — X
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and the corresponding change in y is
Ay = flx) — flx)

The (instantaneous) rate of change of y with respect to x at x; is the
limit of the average rate of change as x, approaches x;:

S :{(xo e

rate of change = lim — = li

Ax—0 X X=X Xy 1

[ixample A spherical balloon is being inflated. Find the rate of change of the
volume with respect to the radius when the radius is 10 cm.

Solution  We solved this problem as Example 4 in Section 1.5, but now we can
use our differentiation formulas.

If the radius of the balloon, in centimetres, is r, then the volume V,
in cubic centimetres, is given by

V(r) = 4mr’

Therefore  V'(r) = $m(3r?) = 4mr?

and so the rate of change of V with respect to » when r = 10 cm is

V'(10) = 4m(10)*> = 4007 cm’/cm

licatinne tn Phy Py
1ncanons Lo rnysics

We have already considered velocity (the rate of change of displacement
with respect to time) in Section 3.1 and acceleration (the rate of change
of velocity with respect to time) in Section 3.2. Other occurrences in
physics include current (the rate of flow of charge), power (the rate at
which work is done), temperature gradient (the rate of change of tem-
perature with respect to position), and rate of heat flow. In what follows,
we discuss in detail the linear density of a wire.

If a rod or piece of wire is homogeneous, then its linear density is
uniform and is defined as mass per unit length:

_m
P=L

If the mass m is measured in kilograms and the length L in metres,
then the linear density p is measured in kilograms per metre. If the rod
is not homogeneous, let m = f(x) be its mass measured from its left
end to a point x as shown in the figure.
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This partYof the rod
has mass f(x)

The mass of the part of the rod that lies between x = x, and
X = x 18 Am = f(x;) — flx)), so the average density of that part of
the rod is

average density =

Am _ fley) — fx)
.

Xy — X

If we now let Ax — 0 (that is, x, — x,), we are computing the average
density over a smaller and smaller interval. The linear density p at x,
is the limit of these average densities as Ax — 0; that is, the linear
density is the rate of change of mass with respect to length. Symbol-
ically, we can write

I Am  dm
= lim — = —
P= a5 Ax dx

Thus, the linear density of the rod is the derivative of mass with respect
to length.

The mass of the left-hand x metres of a rod is f(x) = x? kilograms.

(a) Find the average density of the part of the rod given by
2=<x=23.

(b) Find the linear density at x = 2.

(a) The average density for 2 < x < 2.3 is

Am _f2.3) - f(2) (23 - 2

= = 4.3 kg/
Ax  23-2 03 B
(b) The linear density at x = 2 is
dm ’ )
P - E:LZ = 2,\]‘\~:2 = 4 kg/m Qi?/j

Applications to Biology

If n = f(¢) is the number of individuals in a bacteria or animal population
at time f, then the change in the population size between the times
t = tpand t = 1 is An = f(t) — f(t;). Over the time period
t =<t =<t, we have

An _ ) — ft)

average rate of growth =
& & At L — 4
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The (instantaneous) rate of growth is the rate of change of the pop-
ulation size with respect to time:

rowth rate = lim — = —
¢ Ar—0 At dt

Thus, the rate of growth is the derivative of the population function.
Strictly speaking, this is not quite accurate because the actual graph of
a population function n = f{(f) would be a step function that is discon-
tinuous whenever a birth or death occurs and therefore not differentia-
ble. However, for a large population, we can replace the graph by a
smooth approximating curve as in the following figure.

A
n &—0

e—0

[
0
0
90
2°
0
0
0
0
90
%0
-0
<0

<0

o——0
&——0
c— ——0

In Chapter 8, we will use the exponential function to construct
models for population growth, and at that time we will be able to
compute growth rates for exponentially increasing populations. The
model for a population function in the next example is more appropriate
for a slowly growing bacteria colony.

The population of a bacteria culture after ¢ hours is given by
n = 500 + 200t + 12¢2. Find the rate of growth after 5 h.

The rate of growth is

dn
— = 200 + 24t
dt

After 5 hitis

d
l] = 200 + 24(5) = 320 bacteria’h D
dt],_s ii‘y
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Another occurrence of rates of change in biology is given in Exercise
3.3 as Question 9.

The concentration of a substance A is the number of moles
(6.022 X 10* molecules) per litre and is denoted by [A]. During a
chemical reaction the concentration will vary and so [A] is a function
of time. During a time interval t; < t < t,, the average rate of reaction

. . of a reactant A is
The minus sign is

used to make the rate A[A] _ _ [Al(®) — [Al()
of reaction positive. At L — 14

and the (instantaneous) rate of reaction is the rate of change of
concentration with respect to time:
A[A] d[A]

rate of reaction = — lim ——— = ———
A—0 At dt

Since the rate of reaction is the derivative of the concentration function,
chemists often determine the rate of reaction by measuring the slope
of a tangent (see Question 8 in Exercise 3.3).

Another application of rates of change in chemistry is described in
Question 7.

1. Find the rate of change of the volume of a cube with respect to its
edge length x when x = 4.

2. Find the rate of change of the area of a circle with respect to its
radius  when r = 5 cm.

3. If a tank holds 1000 L of water, which takes an hour to drain from
the bottom of the tank, then the volume V of water remaining in the
tank after + minutes is

t 2
V=1000{1 - =) 0=<t=60
< 60)
Find the rate at which the water is flowing out of the tank (the

instantaneous rate of change of V with respect to f) after 10 min.

4. The mass of the part of a wire that lies between its left end and a
point x metres to the right is \/x kilograms.
(a) Find an approximate value for the average density of the part of
the wire fromx = I mtox = 1.1 m.
(b) Find the linear density when x = 1 m.
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The mass of the left x centimetres of a string is x + %xz grams. Find
the linear density when x = 6 cm.

The population of a bacteria colony after t hours is given by
n = 1000 + 180r + 25¢/ + 3£, Find the growth rate after 3 h.

The volume V of a substance kept at constant temperature will
depend on the pressure P. The isothermal compressibility ( is
defined by
1 dv
F="vap
and measures how fast, per unit volume, the volume of the
substance decreases as the pressure increases at constant
temperature.
The volume V (in cubic metres) of a sample of air at 25°C was
related to the pressure P (in kilopascals) by the equation
v o33
P
Find the compressibility when the pressure is 40 kPa.

The concentrations of dinitrogen pentoxide, N,Os, in the reaction
2N,05 — 4NO, + O,
were measured at one-minute intervals as in the table below.

time (min) | 0 1 2 3 4

[N,Os] ‘ 0.160 0.113  0.080 0.056 0.040

Draw the graph of [N,Os] as function of time and use it to estimate
the rate of reaction after two minutes.

When blood flows through a blood vessel, such as a vein or artery,
we can assume that the blood vessel has the shape of a cylindrical
tube with radius R and length L. Because of friction at the walls of
the tube, the velocity v of the blood is greatest along the central axis
of the tube and decreases as the distance r from the axis increases
until v becomes O at the wall (see the figure).

The relationship between v and r is given by the Law of Laminar
Flow discovered by the French physician Poiseuille in 1840. This
states that

y = _P..(RZ — ,.2)

4qL

where 7 is the viscosity of the blood and P is the pressure difference
between the ends of the tube. If P and L are constant, then v is a
function of 7. In a typical human artery, the values are n = 0.027,
R = 0.008 cm, L = 2 cm, and P = 4000 dynes/cm?. Find the rate
of change of v with respect to r (which is called the velocity
gradient) when r = 0.005 cm.
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Although calculus has been applied to the natural sciences for centuries,
it has only been recently that the social sciences, such as psychology,
sociology, urban geography, and economics, have been making use of
calculus.

Psychologists interested in learning theory study the so-called learn-
ing curve, which graphs the performance level P(f) of someone learning
a skill as a function of the training time ¢. Of particular interest is the
rate at which performance improves as time passes, that is, the deriv-
ative P'(1).

Sociologists use calculus to analyze the spread of rumours (or inno-
vations or fads or fashions). If f(¢) is the fraction of the population that
knows a rumour by time ¢, then the derivative f'(f) represents the rate
of spread of the rumour.

These applications to psychology and sociology will be explored in
Chapter 8. In this section, we examine rates of change in business and
€conomics. '

If it costs a company C(x) to produce x units of a certain commodity,
then the function C is called a cost function. If the number of items
produced is increased from x; to x,, the additional cost is
AC = C(x,) — C(x)) and the average rate of change of the cost is

AC _ Cx) = C) _ Cl + Ax) = Cx)
Ax x, — X B Ax

The limit of this quantity as Ax — 0, that is, the instantaneous rate of
change of cost with respect to the number of items produced, is called
the marginal cost by economists:

AC dC

marginal cost = lim — = —
& Ax—0 Ax dx

Since x can usually take on only integer values, it may not make literal
sense to let Ax approach 0, but we can always replace C(x) by a smooth
approximating function as we did for growth functions in Section 3.3.

Thus, the marginal cost is the derivative of the cost function. To
see how to interpret the rate of change in this situation, we recall the
definition of a derivative at x = n:

Cn+ h) — Cn)
h

¢ = jin

Taking i = 1 and n large, we see that

C'(n) = Cn + 1) — Cn)
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Salntionn
Solution

Therefore, the marginal cost of producing n units is approximately
equal to the cost of producing one more unit, the (n + 1)st unit.
It is often appropriate to represent a cost function by a polynomial

Cx) = a + bx + ¢cx? + dx°
where a represents the fixed cost (rent, heat, maintenance) and the other
terms represent the cost of raw materials, labour, and so on. (The cost
of raw materials may be proportional to x, but labour costs might depend

partly on higher powers of x because of overtime costs and inefficiencies
involved in large-scale operations.)

Quinton Mills is a large producer of flour. Management estimates that
the cost (in dollars) of producing x 5-kg bags of flour is

C(x) = 140 000 + 0.43x + 0.000 001x?

(a) Find the marginal cost at a production level of x = 1000 bags.
(b) Find the actual cost of producing the 1001st bag.
(a) The marginal cost function is

C'(x) = 0.43 + 0.000 002x

The marginal cost when x = 1000 is

C’(1000) = 0.43 + (0.000 002)(1000) = $0.432/bag

(b) The cost of producing the 1001st bag is

C(1001) — C(1000) = [140 000 + (0.43)(1001) + (0.000 001)(1001)*]

—[140 000 + (0.43)(1000) + (0.000 001)(1000)?]

= $0.432 001 C

Of course a businessman is interested not only in costs but also in

revenue and profit. Let p(x) be the price per unit that a company can

charge if it sells x units. Then p is called the demand function (or

price function). If x units are sold and the price per unit is p(x), then
the total revenue is ' ‘

R(x) = xp(x)

and R is called the revenue function. The derivative R’ of the revenue
function is called the marginal revenue function and is the rate of
change of revenue with respect to the number of units sold.

Howard’s Hamburgers has taken a market survey and has found that
the yearly demand for their hamburgers is given by
~ 800 000 — x

, e
200 000 (p in dollars)
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(a) Graph the demand function.

(b) What is the demand for hamburgers corresponding to prices of
$0.00, $0.50, $1.00, $1.50, $2.00, $2.50, $3.00, $3.50, $4.00?

(c) Find the marginal revenue when x = 300 000.

(a) Notice from the graph that, unsurprisingly, more hamburgers are
sold as the price decreases.

P
$4 -

$34

$2

$1

>
—

800 000 X

0 " 400 000

(b) The table shows the demand at the given prices.
)/ | 0 $0.50 $1.00 $1.50 $2.00 $2.50  $3.00 $3.50  $4.00

x ISOO 000 700 000 600 000 500 000 400 000 300 000 200 000 100 000 0
(c) The revenue function is

800 000 — x)

1
= (800 000x — x?)

~ 200 000

R@x) = 1plx) = x( 200 000

So the marginal revenue function is

R'(x) = (800 000 — 2x)

|
200 000
When x = 300 000 the marginal revenue is

R'(300 000) =

200 000(800 000 — 600 000) = $1/hamburger

AR

Y,

In Example 2(c), the marginal revenue of $1 per hamburger is the
rate at which revenue is increasing with respect to increase in sales. It
represents the approximate additional income to the company per addi-
tional item sold.
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In general, if x units of a commodity are sold, the total profit is
obtained by subtracting the cost from the revenue:

P(x) = R(x) — C(x)

and P is called the profit function. The marginal profit function is
P', the derivative of the profit function.

‘“xample 3 Howard’s Hamburgers estimates that the cost, in dollars, of making x
hamburgers is

C(x) = 125000 + 0.42x

Using the demand function from Example 2, find the profit and the
marginal profit when (a) x = 300 000, (b) x = 400 000.

From Example 2, the revenue function is

I
R@x) = ——— v - 2
(1) = 555-555(800 000x — )

and so the profit function is

P(x) = R(x) — C(x)

= X —x2) — (12 + 0.42x
250 905800 000x — x3) — (125 000 + 0.421)

2

X
— 58x — 125 000
200 000 T 3%

The marginal profit function is

A

100 000

P'(x) = — + 3.58

(a) When x = 300 000, the profit is

(300 000)?
P 000) = ———— .58)(300 000) — 125 000
(300 000) 200 000 + (3.58)( )
= $499 000
and the marginal profit is
300 000
P’ = - + 3.58 = $0.58/h 'ger
(300 000) 0 00 358 =39 amburger
(b) When x = 400 000, the profit is
400 000)?
P(400 000) = SRR + (3.58)(400 000) — 125 000
200 000

$507 000
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and the marginal profit is

400 000

P'(400 000) = — 100 000

+ 3.58 = —$0.42/hamburger

P
=

In Example 3(a), the marginal profit of $0.58/hamburger represents
the approximate additional income per additional hamburger sold when
300 000 hamburgers have been sold. The negative marginal profit in
part (b) shows that, when 400 000 hamburgers have been sold, addi-
tional sales will increase revenue but decrease profits. In Section 4.5
we will see how to choose x so as to maximize profits.

A company determines that the cost, in dollars, of producing x items
is
C(x) = 55000 + 23x + 0.012x?
(a) Find the marginal cost function.
(b) Find the marginal cost at a production level of 100 items.
(c) Find the cost of producing the 101st item.

The cost in dollars for the production of x units of a commodity is
X X2
C(x) = 1500 + 0 + 1000
(a) Find the marginal cost function.
(b) Find the marginal cost at a production level of 800 units.
(c) Find the cost of producing the 801st unit.
A manufacturer determines that the revenue derived from selling x
units of one of their products is R(x) = 8000x — 0.02x°.
(a) Find the marginal revenue function.
(b) Find the marginal revenue when 300 units are sold.
(c) Compare this to the actual gain in revenue when the 301st unit
is sold.

The Manchester Pen Company estimates that the cost of
manufacturing x pens is
C(x) = 23000 + 0.24x + 0.0001x?
and the revenue is
R(x) = 0.98x — 0.0002x?
(a) Find the profit function.
(b) Find the marginal profit function.
(c) Find the maiginal profit when 1000 pens are sold.
(d) Compare this to the actual increase when the 1001st pen is sold.
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5. Sue’s Submarines has determined that the monthly demand for their
submarines is given by
30 000 — x
10 000
and the cost of making x submarines is
C(x) = 6000 + 0.8x
(a) Graph the demand function.
(b) Fill in the following table to illustrate the demand at the given
prices.

p:

p| 0 $0.50  $1.00  $1.50  $2.00  $2.50  $3.00

o |

(¢) Find the revenue function.

(d) Find the marginal revenue function.

(e) Find the marginal revenue when x = 1000.
(f) Find the profit function.

(g) Find the marginal profit function.

(h) Find the marginal profit when x = 10 000.

6. A company estimates that its production costs, in dollars, for x items
is
C(x) = 82000 + 23x + 0.001x?
and the demand function for this product is given by
p = 100 — 0.01x
(a) Find the marginal cost function.
(b) Find the marginal revenue function.
(¢) Find the marginal profit function.
(d) Find the marginal profit at a production level of 50 items.

2 DLT ATEN D ATEQ
3.9 RELA ” !LL!LJ" RA | DN

In a related rates problem, we are given the rate of change of one
quantity and we are asked to find the rate of change of a related quantity.
To do this, we find an equation that relates the two quantities and use
the Chain Rule to differentiate both sides of the equation with respect
to time.

lixample 1 A spherical snowball is melting in such a way that its volume is
decreasing at a rate of 1 cm*/min. At what rate is the radius decreasing
when the radius is 5 cm?

o

Solution  Let V be the volume of the snowball and r its radius. Then V and r are
related by the equation

V= 4ur’ (1)
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We are given the rate of change of V:

dv .
— = —1 cm¥min

dt

The minus sign is used because the volume is decreasing.

d .
We are asked to find 7; when r = 5. Using the Chain Rule to
a

differentiate Equation 1 with respect to time, we have

dv. dvdr ,dr
s ey e ey B
dt — drdr " de
o Eo L
dt  Awr? dt
dv o .
Now we put » = 5 and i 1 in this equation and we get
dr 1 1
— = () = —
dt  4w(5) 100w

The radius of the snowball is decreasing at a rate of

m = 0.003 cm/min. IS8

A water tank is built in the shape of a circular cone with height 5 m
and diameter 6 m at the top. Water is being pumped into the tank at
a rate of 1.6 m*min. Find the rate at which the water level is rising
when the water is 2 m deep.

First we sketch the cone.

9}

——
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Let V be the volume of the water and let r and / be the radius of
the surface and the height at time ¢, where ¢ is measured in minutes.
We are given the rate of increase of V, that is,

dav

— = 1.6 m¥min
dt

and we are asked to find % when A = 2 m.
The quantities V and / are related by the equation
V = lmr?h
but we have to express V as a function of / alone. To eliminate r we

look for a relationship between r and . We use the similar triangles
in the figure to write

Thus r = %h and we have

I /3 \2 37
= —q| 2} =23
Vv 3fn< 5 1> h > 5h
Differentiating both sides with respect to ¢, we have

av 3w dh 9w _dh
- = — N — = 2=
25(3]1)0'1 h

dt 25 dt
ah _ 2514y
dt 9w h? dt

When 2 = 2 and 51—‘{ = 1.6, we have

dt
dh 251 10
T2 (16 =—
dt 9w 22( ) 9
. 10 .
The water level is rising at a rate of — = 0.4 m/min. @
9

In solving related rates problems it is useful to recall some of the
problem-solving principles from the Review and Preview to this chapter
and adapt them to the present situation:

1. Read the problem carefully until you understand it.
2. Draw a diagram if possible.
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3. Introduce notation. Assign symbols to all quantities that are func-
tions of time.

4. Express the given information and the required rate in terms of
derivatives.

5. Write an equation that relates the various quantities of the problem.
If necessary, use the geometry of the situation to eliminate one of
the variables by substitution (as in Example 2).

6. Use the Chain Rule to differentiate both sides of the equation with
respect to f.

7. Substitute the given information into the resulting equation and
solve for the unknown rate.

A common error is to substitute the given numerical information
(for quantities that vary with time) at too early a stage. This should
only be done after the differentiation. (Step 7 follows Step 6.) For
instance, in Example 2 we dealt with general values of / until we finally
substituted 7 = 2 at the last stage. (If we had put # = 2 earlier, we

dv
would have got o 0, which is clearly wrong.)

The remaining two examples further illustrate this strategy.

A spotlight on the ground shines on a wall 10 m away. A man 2 m
tall walks from the spotlight toward the wall at a speed of 1.2 m/s.
How fast is his shadow on the wall decreasing when he is 3 m from
the wall?

/
2
P
-~
//
///
//
//
-~
//
//
T y
//
¥
~
-~
-~
e 7
-
=
rO= 10 — x

As in the figure, let x be the distance from the light to the man and
let y be the height of his shadow, in metres.
d d
We are given that F: = 1.2 m/s, and we wish to find E)z; when
10 — x = 3 m, thatis, x = 7 m.
To relate y to x we use similar triangles:



144 CHAPTER 3 APPLICATIONS OF DERIVATIVES

y _2
10 x
20
Thus, y=—
X
dy 20 dx
and so, — = —— —
dt X2 dr
dx
When x = 7 and ? = 1.2, we have
d
1y 20 24
Do _Za=-=
dt 72 49

24
The shadow is decreasing at a rate of — m/s. ¢

/
()

A man starts walking north at a speed of 1.5 m/s and a woman starts
at the same point P at the same time walking west at a speed of
2 m/s. At what rate is the distance between the man and the woman
increasing one minute later?

At any given time ¢ after they start, let x be the distance travelled
by the man, y be the distance travelled by the woman, and z be the
distance between them. We are given that

dx
= = 1.5 m/s and d_y = 2 m/s
dt dt

d
and we are required to find Fj when t = 60.

The equation that relates x, y, and z is given by the Pythagorean
Theorem:

Z2 — x2 + ),2 § 5 @

Differentiating with respect to #, we get

be d
2zd—z = 2xé + 2y—y

dt dt dt
dz 1/ dx dy
— =—|lx— + e
dt z(\ dt dt) @

When t+ = 60, we have x = 90 m and y = 120 m, so Equation 1
gives

z = V90? + 120> = 150 m



3.5 RELATED RATES 145

Putting these values in Equation 2, we have

dz 1
— = —90(1.5) + 1 =25
0 150[9 A 20(2)]

The distance between the man and the woman is increasing at a rate
of 2.5 m/s. )

Y/

10.

11.

dy dx
If xy> = 12 and — = 6, find — when y = 2.
X) an 0 , fin drw en ) 2

dx dy
Ifx3 + y3 = d— = 4, find = x = 2.
X 3 9 an 0 , fin 0 when x

How fast is the area of a square increasing when the side is 3 m in
length and growing at a rate of 0.8 m/min?

How fast is the edge length of a cube increasing when the volume of
the cube is increasing at a rate of 144 cm?s and the edge length is

4 cm?

A stone is dropped into a lake, creating a circular ripple that travels
outward at a speed of 25 cm/s. Find the rate at which the area
within the circle is increasing after 4 s.

A spherical balloon is being inflated so that the volume is increasing
at a rate of 8 m*min. How fast is the radius of the balloon
increasing when the diameter is 2 m?

A snowball melts so that its surface area decreases at a rate of
0.5 cm?min. Find the rate at which the radius decreases when the
radius is 4 cm.

The side of an equilateral triangle decreases at the rate of 2 cm/s. At
what rate is the area decreasing when the area is 100 cm??

The area of a triangle is increasing at a rate of 4 cm*min and its
base is increasing at a rate of 1 cm/min. At what rate is the altitude
of the triangle increasing when the altitude is 20 cm and the area is
80 cm??

A man 2 m tall walks away from a lamppost whose light is 5 m
above the ground. If he walks at a speed of 1.5 m/s, at what rate is
his shadow growing when he is 10 m from the lamppost?

A ladder 4 m long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at a speed of 30 cm/s, how quickly
is the top of the ladder sliding down the wall when the bottom of the
ladder is 2 m from the wall?
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12.

13.

14.

15.

16.

17.

Joe is driving west at 60 km/h and Dave is driving south at 70 km/h.
Both cars are approaching the intersection of the two roads. At what
rate is the distance between the cars decreasing when Joe’s car is
0.4 km and Dave’s is 0.3 km from the intersection?

At 1:00 p.m. ship A was 80 km south of ship B. Ship A is sailing
north at 30 km/h and ship B is sailing east at 40 km/h. How fast is
the distance between them changing at 3:00 p.m.?

A waterskier skis over the ramp shown in the figure at a speed of
12 m/s. How fast is she rising as she leaves the ramp?

5m P

A plane flies horizontally with a speed of 600 km/h at an altitude of
10 km and passes directly over the town of Quinton. Find the rate at
which the distance from the plane to Quinton is increasing when it is
20 km away from Quinton.

A water trough is 10 m long and a cross-section has the shape of an
isosceles triangle that is 1 m across at the top and is 50 cm high.
The trough is being filled with water at a rate of 0.4 m*min. How
fast will the water level rise when the water is 40 cm deep?

Sand is being dumped from a conveyor belt at a rate of 1.2 m*min
and forms a pile in the shape of a cone whose base diameter and
height are always equal. How fast is the height of the pile growing
when the pile is 3 m high?
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1 HOD

A quadratic equation ax* + bx + ¢ = 0 can be solved either by
factoring or by using the quadratic formula. For a cubic equation
ax’ + bx* + cx + d = Othere is also a formula, but it is so complicated
that it is seldom used. Likewise, the formula for the solutions of a
fourth-degree equation is extremely difficult and there is no formula at
all for equations of degrees higher than four. Using Newton’s method,
however, we can find approximations to the solutions of such equations.

Suppose we want to solve an equation of the form f(x) = 0, where
fis adifferentiable function. Let r be a solution, or root, of the equation;
that is, f(r) = 0. Our aim is to find a good approximation to r. The
idea behind Newton’s method is seen in the figure, where r is shown
as the x-intercept of the graph of f.

)7

(1, flxy))

PO R

Y

(=]
I, \
~

We start with a first approximation x, to r, obtained by guessing,
or by numerical experimentation, or by roughly sketching the graph of
f. We draw the tangent line to the graph of f at the point (x;,f(x;)). Let
X, be the x-intercept of this tangent line. It appears from the figure that
if x, is close to r, then x;, is even closer to r and so we use it as the
second approximation to r. ‘ ‘

To express x;, in terms of x, we first write the equation of the tangent
line in slope-point form:

y = fa) = [l = x)

Since the x-intercept is x,, we put y = 0 and x = x, in this equation:
0 = f) = f'x)e — x)

If f'(x;) # 0, we can solve for x:

A flxy)
Xy = X f’(,\'l) @
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Solution
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If we repeat this procedure with x, replaced by x,, we get a third
approximation x; given by
. J(x2)

f'(x)

X3 = Xy

In fact, if we repeat the procedure indefinitely, we get a sequence of
approximations x;, X, X3, X4, ... as shown in the following diagram.
If, as we hope, these numbers become closer and closer to the desired
root r, then, in the notation of Section 1.6, we can write

lim x, = r
y A |
JENED)
g
l
(x2,f(x2)) 4 !
/| i
r A | ; L
“Mx3 'x, X X
0 __/t 3 X X

Newton’s Method
If x, is a first approximation to a root of the equation f(x) = 0,
then successive approximations are given by

S
fey
if f'(x,) # 0. @

1, 2,3, ..

Starting with x; = 1, find the third approximation x; to the root of the
equation x* + x — 1 = 0.,

Applying Newton’s method with
fo)y=x*+x—-1

and  f'() =3¢ + 1
we have X=X — f/(«\‘l)
fx)
x+x -1
= "‘] e T 5
3xt + 1
T & Sl
- 3(1)2 + 1

EN[o%)
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Then, using this value to get the next approximation, we have

B o= s — S(x2)
B
3
NENC)
o
27 — 1
3 e 4
4
Z+1
-
86
The third approximation is £ = 0.6860. 8y

If we wish to find a root correct to six decimal places, say, we use
Formula 2 forn = 1, 2, 3, ... and we stop when successive approx-
imations x, and x, | agree to six decimal places.

The procedure in going from stage n to stage n + 1 is the same for
all values of n, and we call Formula 2 a recursion formula. As a
result, it is especially convenient to use a computer or a programmable
calculator when using Newton’s method.

Use Newton’s method to find V/13 correct to four decimal places.

Notice that finding V13 is equivalent to finding the positive root of
the equation

*—-13=0
Therefore we take f(x) = x* — 13 in Newton’s method, so
f'(x) = 4x* and Equation 2 becomes '

_ ) x-—13

Xov1 = Xy — f’(,\‘,,) =X 4}(?' @
If we take x; = 2 as our initial approximation and we put n = 1 in
Equation 3, we get

24 — 13
X, = 2 — ——— = 1.906 250
° 42y

With this value of x,, Equation 3 gives
x; = 1.898 872
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Repeating this procedure using a calculator, we obtain

x; = 1.898 829
xs = 1.898 829

Il

These values agree to six decimal places, so we conclude that

W13 = 1.898 829

correct to six decimal places.

If we had used a different positive initial value for x; in Example
2, we would have arrived at the same approximation for /13, though
more steps might be required. For instance, if the initial guess is
x; = 5, then we get

X, = 3.776 000

x; = 2.892 365
x; = 2.303 589
xs = 1.993 561
Xs = 1.905 370
x; = 1.898 863
xg = 1.898 829
X9 = 1.898 829

Find the coordinates of the point of intersection of the curves y = x°
and y = x2 + 1 correct to six decimal places.

First notice that the x-coordinate of the point of intersection satisfies

=2+ 1

so it is a root of the equation

¥»=—xx—-1=0

and we can employ Newton’s method with f(x) = x> — x> — | and
f'(x) = 5 — 2x.

To find a first approximation x, we sketch the curves y = x° and
y = x2 + 1. It appears that the curves intersect when x is slightly
larger than 1, so we take x; = 1.
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\
)
’ I
1
\\ I
\ /
/ ‘”\, /
y=x*+1 \
| /
I<— y = \5
0 rox

Newton’s method gives

P (NN it it
n+1 “n f’(x,,) n 5)‘3 _ 2,\',,

So we have, successively,

x = 1.333333
X3 = 1.223 997
x, = 1.195 608
x5 = 1.193 865
xg = 1.193 859
x; = 1.193 859

The y-coordinate of the point of intersection can be approximated using
either of the equations y = x> or y = x2 + 1. Correct to six decimal
places, the point of intersection is ’

PZASN
(1.193 859, 2.425 300) oy

Finally, we note that care should be taken to ensure a reasonable
first approximation x,. If x, is not chosen close enough to r, it could
happen that x, is a worse approximation than x,. (See the diagram below
and Question 3(a) in Exercise 3.6.)
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“x Y = f)

X, 0 / r X\ \ X

Start with x, = 0 and use Newton’s method to find the second
approximation x, to the root of the equation x> + 2x + 1 = 0.

Find the second and third approximations to the root of the equation

x4+ x2 + 1 = 0 using Newton’s method and taking x, = —1.

(a) Use Newton’s method with x; = 2 to find the root of the
equation x> — x — 2 = 0 correct to six decimal places.

(b) Solve the equation in part (a) using x; = 1 as the initial
approximation.

(c) Solve the equation in part (a) using x, = 0.57. Sketch the
graph of f(x) = x> — x — 2 to show why x; is such a poor
approximation.

Use Newton’s method to approximate the root of the equation in the

given interval correct to six decimal places.

(A * —xX+x—-5=0,1<x<2

b) ¥ — ¥ +2x=9,2<x<3

€ x*=Vx+7,1<x<2

Use Newton’s method to find all roots of the equation correct to six

decimal places.

(a ¥*—=-5%+1=0 (b) » = 4x*? — 1

(a) Apply Newton’s method to derive the following square-root
algorithm (used by the ancient Babylonians to compute Va):

| a
Xp+1 = 2 Xn + ;
n

(b)  Use part (a) to compute \/17.2 correct to six decimal places.
Use Newton’s method to approximate the following numbers correct
to six decimal places.

(a) V28 ) V1.23

Sketch the following pairs of curves and find the coordinates of their
point of intersection correct to six decimal places.

(a y=xy=x+1 by y=x2+ l,xy =1



COMPUTER APPLICATION

Newton’s method for solving equations is well suited to
computer implementation. We present a pseudocode (the logic
of the algorithm) for Newton’s method, together with a com-
puter program in BASIC. This program relates to Example 3 in
Section 3.6.

Pseudocode
define the function
define the derivative
establish a first root
loor throudh calculations of successiuve
arproximations
calculate next approximation using
Newton’s formula
check for desired accuracy
reset the variables in preparation
for the next pass through the loop
continue looring until desired accuracy
reached
Print out the root of the esuation

A BASIC version

DEF function(x)=X{"5—-¥"2-1

DEF derivative(x)=58%X{"4—-2%X

PRINT *‘enter a first approximation for
the roots.s "3

INPUT xn

DO
LET xmext=xn—Ffuntion{xn)/
derivative(xn)
LET difference=ahs{xn—xnext)
LET xn=xnext
LODOP until difference<0.,00000001
PRINT *‘correct to B decimal placess the

root is 4. ]

PRINT wsing *‘#########' ' 1 unext
END
The Output

enter a first arproximation for the root
s 1

correct to B decimal Places: the root is
v+ 1,183B53911
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TSR
CALIOLY

A

The position function of a particle is given by s = 21> + 412 — ¢,
where s is measured in metres and ¢ in seconds.

(a) Find the velocity and acceleration as functions of ¢.

(b) Find the velocity and acceleration after 4 s.

The motion of a particle is described by the position function
s=0 — 122+ 45+ 3,t=0

where f is measured in seconds and s in metres.

(a) When is the particle at rest?

(b) When is the velocity positive and when is it negative?

(¢) When is the acceleration positive and when is it negative?

(d) Find the velocity when the acceleration is O.

(e) Draw a diagram to illustrate the motion of the particle.

(f) Find the total distance travelled in the first 8 s.

If a ball is thrown upward on the moon with a velocity of 65 m/s,
its height in metres after r seconds is
h = 65t — 0.83¢2
(a) Find the velocity of the ball after 1 s.
(b) Find the acceleration of the ball after 1 s.
(c) When will the ball hit the moon?
(d) With what velocity will it hit the moon?
Find the rate of change of the area of a square with respect to the
length L of a side when L = 5.
The mass of a length of wire from its left end to a point x metres to
the right is (2 + x4+ %,\'2) kilograms.
(a) Find the average density of the part of the wire from x = 2 m
tox = 2.1 m.
(b) Find the linear density when x = 2 m.
A company estimates that the cost, in dollars, of manufacturing x
units of their product is C(x) = 19 000 + 16.2x + 0.06x2.
(a) Find the marginal cost function.
(b) Find the marginal cost at a production level of 200 units.
(c) Find the cost of manufacturing the 201st item.

Pasquale’s Pizza makes only one size of pizza and has determined
that the cost of making x pizzas is
C(x) = 12500 + 1.08x

The monthly demand for their pizzas is given by
20 000 — x

1000
(a) Find the marginal cost function.
(b) Find the revenue function.
(c) Find the marginal revenue function.
(d) Find the profit function.

p:
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(e) Find the marginal profit function.

(f) Find the marginal profit when x = 8000.

A rectangle is expanding so that its length is always twice its width.

The perimeter of the rectangle is increasing at a rate of 6 cm/min.

Find the rate of increase of the area of the rectangle when the

perimeter is 40 cm.

Boyle’s Law states that when a sample of gas is compressed at a

constant temperature, the pressure P and volume V satisfy the

equation PV = C, where C is a constant. At a certain instant, the

volume is 480 cm?, the pressure is 160 kPa, and the pressure is

increasing at a rate of 15 kPa/min. At what rate is the volume

decreasing at this instant?

At 9 a.m. ship A is 50 km east of ship B. Ship A is sailing north at

40 km/h and ship B is sailing south at 30 km/h. How fast is the

distance between them changing at noon?

Use Newton’s method with initial approximation x; = 1 to find the

second approximation x, to the root of the equation x* + x — 1 = 0

that lies between O and 1.

Use Newton’s method to find all the roots of the equation

x> — x2 + 1 = 0 correct to six decimal places.

(a) Sketch the curves y = x® and y = 3 — 2x using the same axes.

(b) Find the coordinates of the points of intersection of these curves
correct to six decimal places.
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The position function of a particle is given by

s=8—-6+9% +1,t=0
where ¢ is measured in seconds and s in metres.
(a) Find the velocity after 4 s.
(b) Find the acceleration after 4 s.
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the velocity when the acceleration is 0.
(f) Find the total distance travelled in the first 4 s.
A manufacturer of CD players estimates that the cost of making x
machines is

C(x) = 87000 + 122x
and the demand function is given by

_ 600 000 — x
~ 1000

(a) Find the marginal cost function.
(b) Find the revenue function.
(c) Find the marginal revenue function.
(d) Find the profit function.
(e) Find the marginal profit function.

A paper cup has the shape of a cone with height 8 cm and radius
3 cm at the top. Water is poured into the cup at a rate of 2 cm?/s.
How fast is the water level rising when the water level is 6 cm
deep?

Find the root of the equation x> = x + 2 correct to six decimal
places.



NET

"UMULATTIV

CUMULATIVE REVIEW FOR CHAPTERS 1 TO3 157

Find each limit.
2x2 4+ 1 X2 —3x + 2

@ \11—1312 32— 4 () \111]2 x2—4
X+ 2+ 1 . 24+ h?-38
(c) .‘,E)H_ll 2+ - (d) /}B}(l) o,
I I i ]
_ = P
34+ h? 9 f li —_—
®) g BB 9 O im e T s +2
h—0 h
lim, V> — x — 2 b lim 210
(g) r—2t ( ) _\'—»IE]S‘ |\ EE 5|
Let

—x—2 ifx< =2
fx) = {1 —xr if-2=sx<2
X — 35 ifx>2
(a) Find the following limits, if they exist.
@) lim _ fx) (i) lim - f(x) (i) lim  f(x)

(iv) lim f(x) (v) lim_ f(x) (vi) lim f(x)
(b) Sketch the graph of f.
(c) Where is f discontinuous?
(d) Where is f not differentiable?
Find the following limits.

1 — 2,
(a) lim "

p)y lim 3-»
n—wo pn 4+ p3 ®)

n—ow

Find the sum of the series or state that it is divergent.
9 27 4 8 16

—3+-—-=+ .. 24 -4+ -+ —+ ...
(a 2 -3 1 8+ (b) 3 + 3 9+27

(a) Iff(x) = 6 — 5x + 3x%, find f'(x) directly from the definition
of a derivative.

(b) Find the equation of the tangent line to the parabola
y = 6 — 5x + 3x% at the point where x = 1.

Find the derivative of the function g(x) = /3 — x directly from the
definition.

Differentiate.

@ S0 = 126 = Yt = dx (o) i) =

© m:€@m+% @ g = —%
& ’ 3 i S

3 2 -y
© fi) = Va7 ® 19 = (113)
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10.

11.

12.

13.

14.

15.

16.

1
(g y=(Gx + 5 — 1) (h) y = el

, Vx —x .
M y=-""3 0 y=
|
If flx) = ﬁ’ find f'(x) and state the domains of both f

and f.
1

Find ;—y ifxt + 2% + 32 = 21.
X

Find y’ and y”.

x+ 1
) = b) 2 — 3 =
@ y=""> (b) ¥ —y =7
Find the equation of the tangent line to the curve at the given point.
= 1,1 by x* — ¥ =3,(-2,—
(@ vy 1erz,(,) (®) x* —) (=2, =D

Find the equation of both tangent lines to the curve y = x3 — x that
are parallel to the line 22x — 2y + 1 = 0.

Suppose that f(2) = —3,f'(2) = 10, f'(4) = 6, g(2) = 4, and
g'(2) = 1. Evaluate

@ (/&2 () (91(2) © (f°8)'®

If f is a differentiable function, find an expression for F'(x) in terms
of f'(x).
(@) F(x) = fix%) (b)y Fx) = [f0)P

(©) F(x) = xfx) (d) Flx) = @

If a ball is thrown downward from a 120 m high cliff with an initial
speed of 18 m/s, then its height after ¢ seconds, before it hits the
ground, is
h = 120 — 18t ~ 4.9
(a) Find the average velocity of the stone for the following time
periods. ‘ ‘

i) 2=sr=3 (i) 2=¢r=2.1 (i) 2=r=20l
(b) Find the velocity after 2 s.
(c¢) Find the acceleration after 2 s.

The motion of a particle is described by the position function
s=2 -6+ 9% +51t=0

where s is measured in metres and ¢ in seconds.

(a) Find the velocity after 2 s and 4 s.

(b) Find the acceleration after 2 s and 4 s.

(c) When is the particle at rest?
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(d) When is the velocity positive and when is it negative?

(e) When is the acceleration positive and when is it negative?

(f) Find the total distance travelled in the first 5 s.

A spherical balloon is being inflated.

(a) Find the rate of change of the volume with respect to the radius
when the radius is 0.5 m.

(b) If the volume of the balloon is increasing at a rate of
10 m¥min, how fast is the radius increasing when the radius is
3 m?

A boat is pulled into a dock by a rope attached to the bow of the
boat and passing through a pulley on the dock that is 1 m higher
than the bow of the boat. If the rope is pulled in at rate of 0.8 m/s,
how fast does the boat approach the dock when it is 10 m from the
dock?

A water trough is 6 m long and has a cross-section in the shape of
an isosceles trapezoid with dimensions as shown in the diagram.
Water is being pumped into the.trough at a rate of 0.5 m*min. How
fast is the water level rising when it is 0.5 m deep?

Use Newton’s method to find the root of the equation x* = 2x + 5
correct to six decimal places.
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DERIV

ATI\/EC

EVIEW AN (VIEW i
EXERCISE 1

LL -3 2.2 3,80 = 615kmh
4. 2.4 cm 5. 424 = 338 cm

6. 15 + 3\/37 = 33.25 h with Bob’s hose,

. (@0

21 + 3V/37 = 39.25 h with Jim’s hose

(b) C (c) The car was speeding up at
A and C, slowing down at B. (d) The car is
stopped. (e) The car returned to the point at

which it started.

. (@) v(@) = 12, 12 m/s, 12 m/s

(b) v(r) = 16t — 24, 8 m/s, 40 m/s

() v(f) = 3¢ — 12t, —12 m/s, 0 m/s
5
5

@0 = G573

—24.8 m/s, —34.6 m/s

(a) 14.7 m/s, 4.9 m/s, —4.9 m/s, —14.7 m/s
(b)2.5s (c)30.6m (d)atS5s

(e) —24.5 m/s

at 15 min 6. at 3 s

(a) —2m/s,2m/s (b)at2s (c)after2s
(d) - 5

m/s, & m/s

l:2<
=0

8. (a)at3sand 7< (b)when0=t<3ort>7
(c) 5 -
(=1
t=20 t=3
) 100 s
(d) 194 m
9. (a)atls (b)yatl + V91 = 10.5s

(SN

[ )

e I W

(c) —95.4 m/s

al i\ n

R | i 3.7
Y Y &Y

(a) positive (b) negative (c) positive

(d) zero (e) positive

(a) velocity increasing, acceleration positive
(b) (i) negative (ii) positive (iii) zero
(iv) negative

@v=30,a=0 (b)yv=232t+5,a=32

v =32+ 10+ 1,a = 6 + 10
RS

(dv = o L NETD

(a) —9.8 m/s?> (b) 22 m/s? (c) 20 m/s?

(d) —0.08 m/s?

(@) sy (b)vy (c)g 6. 12 m/s?

(@ at3s (b)0m, —9 m/s

positive when 0 < r < | or t > 5, negative
when 1 <t <5 9. (b) 3s



1. 48 2:
4. (a) 0.488 kg/m (b) 0.5 kg/m

6. 411 bacteria/h 7. 35 m¥kPa/m?
8. —0.03 moles/L/min

10 cm¥cm 3. 2% L/min

5. 7 g/cm

[NxOs]
g 0.16-
0.14-
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P

0 $0.50 | $1.00 | $1.50 | $2.00 | $2.50 | $3.00

30 000 [ 25 000 [ 20 000 | 15 000 | 10 000 [ S000 0

9. —185.2 cm/s/cm

EXERCISE 3.4
1. (a) C'(x) = 23 + 0.024 x
(c) $25.41

(b) $25.40/item

2. @CE =&+ =

10 500
(c) $1.70
3. (a) R'(x) = 8000 — 0.06x2
(c) $2581.92

4. (a) P(x) = 0.74x — 0.0003x2 — 23 000
(b) P'(x) = 0.74 — 0.0006x (c) $0.14/pen
(d) $0.1397

5. (a)

(b) $1.70/unit

(b) $2600/unit

(©) R(Y) = 15h5(30 000x — ?)
(d) R'() = 5h5(30 000 — 20) (e) $2.80

5

) P(x) = 2.2x — — 6000
() Plx) Y~ Toooo ~ %
X
P'(x)y =22 - —— (h .20
(&) P'(x) 5000 (h) $0
6. (a) C'(x) = 23 + 0.002x
(b) R'(x) = 100 — 0.02x
(©) P'(x) = 77 — 0.022x (d) $75.90
EXERCISE 3.5
1. —18 2. —16 3. 4.8 m*min
4. 3 cm/s 5. 50007 = 15 700 cm%/s
2 1
6. — = 0.64 m/min 7. — = 0.005 cm/min
’TI’ 64
20
8. ﬁ = 11.5 cm?s 9. —1.5 cm/min
10. Tovs 11 Y3 = 0.17 s
12. 90 km/h 13 00, 31.5 km/h
. m . ——= = 31.5km
V17
V2
14. % = 2.35 m/s 15. 240V/5 = 537 km/h
. 8 .
16. 5 cm/min 17. — = 0.17 m/min
157
EXE ISE )
L -4 2.-2, -8 3 (21521380
(©) ;
YA
0.57 _
0 x

0 30000 X \C
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. (a) 1.556 250 (b) 2.095 366 (c) 1.191 554

. (a)—2.330 059, 0.201 640, 2.128 419
(b) —0.492 689, 0.508 422, 1.528 643

. (b) 4.147 288
(a) 1.947 294 (b) 1.026 214

(a) (1.324 718, 2.324 718)
(b) (0.682 328, 1.465 571)

3.7 REVIEW EXERCISE

SK
| VP, O3 te ) W1

1. @) v(®) = 662 + 8 — 1,a(f) = 12t + 8
(b) 127 m/s, 56 m/s?
2. (a)at 3sand 5s (b) positive when t > 5 or

0 =t < 3, negative when 3 < <5
(c) positive when ¢ > 4, negative when 0 < 1 < 4
(d) —3 m/s

©)
=35 -
r=0e = > (-‘)’ =3
0 20 805

(f) 112 m
3. (a) 63.34 m/s (b) —1.66 m/s> (c) 78.3 s

(d) —65 m/s
4. 10 5. (a) 3.05 kg/m  (b) 3 kg/m
6. (a) C'(x) = 16.2 + 0.12x (b) $40.20/unit

(c) $40.26/unit

. (@ C'(x) = 1.08 (b) R(x) = 20x — 0.001x?

(¢) R'(x) = 20 — 0.002x
(d) P(x) = —0.001x2 + 18.92x — 12 500
(e) P'(x) = —0.002x + 18.92 (f) $2.92/pizza

8. %) cm¥min 9. 45 cm3/min
1470

10. ——— = 68 km/h 11. ¢
/466 m 5

12. —0.754 878

13. (a) YA

(b) (1, 1), (—1.335 387, —5.670 774)

2 Q@ CITADTLD 2 Lo
? Q | TER TES'T

J.0 CHAKF 1K )y LES L

1. (a) 9 m/s (b) 12 m/s?

(c)atls,3s
(dwhenO=r<lort>3 (e) —3m/s
(f) 12 m

2. (a) C'(x) = 122 (b) R(x) = 600x — 0.001x?
(¢) R'(x) = 600 — 0.002x
) P(x) = —0.001x2 + 478x — 87 000
(e) P'(x) = —0.002x + 478

3. 32 = 0.13 cm/s 4. 1.267 168
8l
/K, 5 ‘/‘ { I K \L
L@3 B @0 @12 ©-% (B3
80 (h) =2
2. (a) (i) 0 (ii)) —3 (iii) does not exist (iv) —3
(v) =3 (vi) =3
(b)
YA
\\ ;
/\ | /;
=9 2 X
(¢) =2 () —2,2
3. (a) =2 (b)O 4. (a) divergent (b) 9
S5.(@6x—5 b)x—y+3=0

—1
6. g'(x) = N



7. (@) f'(x) = 60x* — 23 — 4

12
B = 5 ©g' = - 33
ey 2X(x = 3) by 2—=3p2
(d) g'x) o —3) @) f'(t) = o
(y) = 202 =y
L) = ~ T o
(8 y" =30 — DX10x* + 15x2 — 1)
4 -
Wy = —2— (y = DA
M 2V
1 — X2

DY = AT T

—x
8. f'(x) = ——, domai = i
S'x) Ve = omain of f = domain of
ff=fHp<-lorx>1}
dy 20 + 28

“dx 3x%y? + y
| =2
10. )= " =
@y =Y T vy
2x 6y* — 8x?
b)y' = — y = 2
(b)) 3 b} 9y

11.
12.

13.
14.

15.

16.

17.

18.

19.
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@x+y—-—2=0 b)2x—y+3=0
lIx =y +16 =0, llx —y — 16 = 0

@37 MY (©6
@ S¥F'(S) (b S ()

ALY Spr 1 L '\.-fl(‘\') _f('\.)
© 30 + ') @4 o)
(a) (i) —42.5 m/s (ii)) —38.09 m/s
(iii) —37.65 m/s (b) —37.6 m/s

(¢) —9.8 m/s?
(a) =3 m/s, 9m/s (b) 12 m/s?
(c)at1s,3s

(d) positive when t > 3 or0 < ¢ < 1,
negative when 1 < r < 3

(e) positive when ¢ > 2, negative when
0=r<2 (f)28m

5
(@) m m¥m (b) — = 0.088 m/min
181

2V101
75 = 0.8 m/s
% m/min = 6.6 cm/min 20. 2.094 551
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