Limits of $\log F^{n}$ ns

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \ln x=-\infty \\
& -\lim _{x \rightarrow \infty} \log _{b} x=+\infty \\
& \log _{b} x=y
\end{aligned}
$$

DERIVATIVES OF LOG PD's

$$
\begin{aligned}
& \frac{d}{d x} \ln x=\frac{1}{x} \quad \frac{d}{d x} \ln (f(x))=\frac{1}{f(x)} \cdot f^{\prime}(x) \\
&=\frac{f^{\prime}}{f} \\
& \frac{d}{d x} \log _{b} x=\frac{1}{\underline{x} \ln b} \quad \frac{d}{d x} b^{x}=b^{x} \ln b
\end{aligned}
$$

Ex

$$
\begin{array}{ll}
y=\ln \left(2 x^{3}\right) \quad y^{\prime}=\frac{6 x^{2}}{2 x^{3}}=\frac{3}{x} \\
y=\ln (\cos x) \quad y^{\prime}=-\frac{\sin x}{\cos x}=-\tan x
\end{array}
$$

$$
\begin{aligned}
& \text { Ex } y=\ln \left(\frac{x}{\sqrt{x+1}}\right) \\
& y^{\prime}=\frac{\frac{(\sqrt{x+1}) \cdot 1-\left(\frac{1}{2}(x+1)^{-1 / 2} \cdot x\right)}{(\sqrt{x+1})^{2}}}{\frac{x}{\sqrt{x+1}}} \\
& \frac{2 \sqrt{x+1}}{\left.\frac{2}{2 x+1} \sqrt{x+1}\right)-\frac{x}{2 \sqrt{x+1}}} \\
& \frac{(x+1)}{\frac{x}{x+1}}=\frac{\frac{2(x+1)-x}{2 \sqrt{x+1}}}{\frac{(x+1)}{\sqrt{x+1}}} \\
& \frac{\frac{x+2}{2 \sqrt{x+1}(x+1)} \cdot \frac{\sqrt{x+1}}{x}}{\frac{x+2}{2 x(x+1)}}
\end{aligned}
$$

$$
\begin{aligned}
& y=\ln \left(\frac{x}{\sqrt{x+1}}\right)= \ln x-\frac{1}{2} \ln (x+1) \\
& \downarrow \\
& \frac{1}{x}-\frac{1}{2} \cdot \frac{1}{x+1} \\
& \frac{2(x+1)}{2(x+1)} \frac{1}{x}-\frac{1}{2(x+1)}\left(\frac{x}{(x)}\right) \\
& \frac{2 x+2-x}{2 x(x+1)}=\frac{x+2}{2 x(x+1)}
\end{aligned}
$$

