Polynomial Equations

$$
\begin{align*}
2 x+1 & =0 \\
-1 & -1 \\
\frac{2 x}{2} & =-\frac{1}{2} \tag{1}
\end{align*}
$$

solutions
$E x \# 2$ solve $x^{4}-4 x^{3}+x^{2}+6 x=0$
Factors

$$
x\left(x^{(3)}-4 x^{2}+x+6\right)=0
$$

$p(1)=1-4+1+6 \ldots$ Nope
$P(-1)=-1-4-1+6 \checkmark$ ZERO
$(x+1)$

$(x-3)(x-2)$

$$
\begin{gathered}
1 x^{2}-5 x+6 \\
(x-3)(x-2) \\
x^{4}-4 x^{3}+x^{2}+6 x=0 \\
\underline{x}(\underline{x}+1)(x-3)(\underline{x}-2)=0
\end{gathered}
$$

Answers: $x=0,-1,3,2$

$$
\begin{aligned}
& x^{4}-4 x^{3}+x^{2}+6 x=0 \\
& \underline{x}(\underline{x}+1)(x-3)(x-2)=0 \\
& \rightarrow f(x)=x^{4}-4 x^{3}+x^{2}+6 x \\
& \rightarrow f(x)=x(x+-1)(x-3)(x-2)
\end{aligned}
$$

Lead. $\operatorname{cor}(f:+1$ Pg 109
x-int: $0,-1,3,2$
End Behavior \rightarrow Both up

$$
y \text {-intercept }-\underline{0}
$$

$$
\text { DEGREE: } 4^{\swarrow}
$$

$f(x)$ is positive or $f(x)>0$ when:

$$
\begin{aligned}
& x<-1 \\
& 0<x<2 \\
& x>3
\end{aligned}
$$

$$
f(x)<0 \text { when }
$$

$$
-1<x<0 \text { or } 2<x<3
$$

