Assignment1 solutions
October 9, 2024

1 Assignment 1

1.1 GEOS 300
Term 1 (Autumn 2024)

University of British Columbia

1.1.1 Instructor:

Marysa Lagué, Assistant Professor, Department of Geography

1.2 Instructions:

It is strongly recommended that you complete this assignment in Python or R. Templates (this
document) are provided for the Python programming language. You may choose to complete this
assignment using other software, such as Excel, Sheets, or Numbers.

Please upload your completed assignment as a .pdf file to the course Canvas page as a single,
well structured report. Include all figures, tables, graphs, code/calculations, and written answers.
We recommend completing the assignment within a Jupyter Notebook document (like this one);
you can add “cells” for written answers using the Markdown format for the cell. The completed
notebook can then be downloaded as a .pdf file (File -> Save and Export Notebook As -> pdf),
which you can upload to canvas.

You can choose to instead write your answers in some other document processor (e.g. Word) and
paste your figures, code/calculations etc., however, if you choose to do this, please ensure all your
code and calculations are legible, and ensure it is clear what language/program was used to perform
the calculations. Label the report document with your name, your student number, the course and
year. Upload your report to Canvas by the Assignment deadline on the Canvas page. Do not attach
a spreadsheet.

Include your student number on every plot you produce.

Include correct units on all plots and all answers, where applicable. Label all axes with the
appropriate variables and units.

Points per question are indicated in square brackets. This assignment is worth 10% of the final
course grade.

[2]:

[3]:

[]:

Getting started: enter your name and student number

Student_Name = 'Marysa Lague'
Student Number = 123456789
print(f'GEOS 300 Assignment 1 Submission for {Student_Namel}: {Student_Number}')

GEOS 300 Assignment 1 Submission for Marysa Lague: 123456789

We need to import python “packages” that contain useful functions for the kind of data analysis
covered in this assignment.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime

from datetime import datetime as dt
import time

1.3 Question 1:
[6] points

Unit conversions! Note that negative exponents mean that unit is in the denominator, e.g. kg / m?3
is the same as kg m 2. Both formats are commonly used and both are acceptable here.

The energy transfer associated with heat is quantified as heat flux (e.g. “sensible heat flux” and
“latent heat flux”: the flow of energy per unit time per unit area.

(a) [2] What are the units for energy, and what is this in base SI units? (Report full unit name
and SI unit symbol)

(b) [1] What are the units for time? (Report full unit name and SI unit symbol)
(c) [1] What are the units for area? (Report full unit name and SI unit symbol)

(d) [2] Combine the base SI units for energy, time, and area to show that the units of heat flux
are W/m? (show steps / show your work)

(write your answer here!)

Answer:

(a) [2] What are the units for energy, and what is this in base SI units?
(1] for Joule [J]

2

[JforJ=Nm=kgms ?m=kgm?s"

(b) [1] What are the units for time?

[]:

[1:

(1] for second [s]
(c) [1] What are the units for area?
[1] for square meter [m?]

(d) [1] Combine the base SI units for energy, time, and area to show that the units of heat flux are
W /m?:

[1] for multiplying all the base units, [1] for correct answer
(kg m? 5 2)(s 1) (m %) = kg s°°
But if you don’t simplify the m?m~2, you can write:

(kgm? s 2)(s)m 2)=J (s H)(m 2)=Wm 2

1.4 Question 2

[2] The density of water is 1000 kg/m?*. Rainfall rate is often measured as a depth of rain, in mm/s,
while evaporation is often measured as the mass of water (kg) that evaporates over 1 square m (m?)
each second (s), i.e. kg/m?/s. What is the equivalent of 1 mm/s of rain in the units of kg/m?/s?

Answer:

[1] for showing work, [2] for correct answer (1 mm /s = 1 kg / m? / s)

mm mm 1 m 1 m
o =1 X 1000mm ~ 1000 s (1)
1 m kg 1000 kg m
= 1000 s < 10905 = 1000 ms (2)
kg
s (3)

1.5 Question 3

[3] The atmosphere exerts downwards force on Earth’s surface. Following Newton’s 2nd law of
motion, force is equal to mass times acceleration (F' = ma).

(a) [1] The SI unit for force is a “newton”. From Newton’s second law, what are the SI base units
of force?

(b) [2] A “pascal [Pa]” is the SI unit for pressure, which is has units of force acting per unit area.
Write an expression for pascals using newtons, and a separate expression for pascals using
only SI base units.

[4]:

Answer:
(a) Force [N] = mass [kg] acceleration [m/s?]
N =kgm / s?
(b) pressure
[Pa] = force [N] / area [m?]
Pa=kgm/s?/m?=kg/ m/s?

2 Data Analysis Section

For the rest of the questions, we will be analysing radiation data measured on the UBC Vancovuer
campus at Totem Field. This data can be found in the file data20100710_ py.csv on the Canvas
webpage for this assignment. The .csv file contains the following variables: incoming and reflected
short-wave radiation (K|, K7), incoming and outgoing longwave radiation (LJ, L'1), air temperature
(Ta) and relative humidity (RH). Use this dataset to answer the remaining questions. Place the

.csv file in the same folder as this .ipynb folder in your JupyterOpen file system.

To help you get started, we have provided a chunk of code below that loads and plots the data. We
strongly encourage you to step through each line of the code and make sure you understand what
is happening (tip: leaving comments in your code is very helpful both for whoever is grading your

assignment, but also to remind yourself what you are doing at each step).

First, we need to load the data:

Import the data - upload this file from Canvas and put it in the same folden,

»as yYyour assignment.
data_file = 'GEOS300/Fall2024/Assignmentl/FromSara/data/data20100710.csv’
data_file = 'data20100710_py.csv'

dateparse = lambda x: dt.strptime(x, '%Y-%m-%d %H:%M')

Pandas (pd here) allows us to set a timestamp as an index which lets usy
»easily parse time series data

It opens the csv file into a data format called a "data frame", so we'rey,
»going to call 2t "df" for short

df = pd.read_csv(data_file,parse_dates=['Date'],date_format='%Y-%m-%d %H:
~%M',index_col=['Date'])

df contains all the variables that were column headers of the .csv file.

the "Date" dimension is the "indez" dimension for the dataframe. The datesy
ware saved as "datetime" objects which know

lots of useful things about time, like how to interpret minutes and hours,,
setc.

We can get a extra variables (DOY & HOUR) that will be helpful later
df ['HOUR'] = df.index.hour

df ['DOY'] = df.index.dayofyear
df ['TIME'] = df.index.time

Take a quick look at the first few entries - the pandas "head()" command,
wprints out the top of the dataframe that you just opened:
df .head ()

"NaN" stands for "not a number", and is used in datasets to show where there,
1S no value for the variable at that time.

[4]: K in K out L_in L_out AirT RH HOUR DOY \
Date
2010-07-10 00:10:00 0.0 0.0 383.0 403.2 NaN NaN 0 191
2010-07-10 00:20:00 0.0 0.0 370.9 400.8 NaN NaN 0 191
2010-07-10 00:30:00 0.0 0.0 363.1 399.1 19.3 70.2 0 191
2010-07-10 00:40:00 0.0 0.0 355.6 397.5 NaN NaN 0 191
2010-07-10 00:50:00 0.0 0.0 357.3 397.4 NaN NaN 0 191

TIME
Date
2010-07-10 00:10:00 00:10:00
2010-07-10 00:20:00 00:20:00
2010-07-10 00:30:00 00:30:00
2010-07-10 00:40:00 00:40:00
2010-07-10 00:50:00 00:50:00

[]:
[]:
[]:

[6]: # Now calculate the net SW absorbed at the surface, the net LW at the surface,
»and the net radiation at the surface:

df ['K_net'] = df['K_in'] - df['K_out']
df['L_net'] = df['L_in'] - df['L_out']
df['Q_net'] = df['K_net'] + df['L_net']

[6]: | # Now we'll plot the data to help us answer the question:

plt.plot(df.index,df['K_in'],label='K_in', color='darkorange',linewidth=1)
plt.plot(df.index,df['K_out'],label='K_out',color='goldenrod',linewidth=1)
plt.plot(df.index,df['K_net'],label='K_net',color='darkred',linewidth=2)

plt.plot(df.index,df['L_in'],label='L_in',color='darkblue',linewidth=1)
plt.plot(df.index,df['L_out'],label='L_out',color='royalblue',linewidth=1)

[11]:

plt.plot(df.index,df['L_net'],label='L_net',color='blueviolet',linewidth=2)

plt.plot(df.index,df['Q_net'],label='Q_net',color='black',linewidth=2)

make the plot prettier:

plt.
plt.
plt.
plt.
plt.

plt.

grid()

legend(fontsize=12,loc="'upper left', bbox_to_anchor=(1., 1.))
ylabel ('W/m$~2$"')

xlabel('time of day')

gca() .xaxis.set_major_formatter (mdates.DateFormatter('/H:%M'))

title('Surface radiative fluxes over the course of one day')

add your student number

plt.

plt.
plt.

text(1.05,0.0,'%1.0f'%Student_Number,
fontsize=10,transform=plt.gca() .transAxes)

show()
close()
Surface radiative fluxes over the course of one day
K in
800 - \ K_out
\ — K net
— L.n
600 1 —— L out
— L _net
'E 400 - — Qnet
s
200 -
0 -
123456789

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
time of day

Now we'll plot the data to help us answer the question:

plt.plot(df.indez,df['K_in'],label="K_in',color="darkorange', linewidth=1)

plt.plot(df.indez,df['K_out'],label="K_out',color="'goldenrod', linewidth=1)
plt.plot(df.index,df['K net'],label='K_net',color="'darkred', linewidth=2)

plt.plot(df.index,df['L_in'],'--',label='L_in',color="'darkblue',linewidth=2)
plt.plot(df.index,df['L_out'],':',label='L_out',color='royalblue',linewidth=2)
plt.plot(df.index,df['L_net'],'-',label='L_net',color='blueviolet',linewidth=2)

plt.plot(df.indez,df['(Q net'],label="(net',color="'black', linewidth=2)

make the plot prettier:

plt.grid()

plt.legend (fontsize=20,loc="'upper left', bbox_to_anchor=(1., 1.))

plt.ylabel('W/m$"2$',fontsize=20)

plt.xlabel('time of day',fontsize=20)

plt.gca() .xaxis.set_major_formatter (mdates.DateFormatter('/H:%M'))

plt.xticks(rotation=45)

plt.title('Surface longwave radiative fluxes\nover the course of oney
~day',fontsize=20)

plt.gca() .tick_params(axis='both', labelsize=20)

add your student number

plt.text(1.05,0.0,'71.0f'/Student_Number,

fontsize=10, transform=plt.gca().transAzes)

plt.show()
plt.close()

[71:

[71:

[8]1:

[8]1:

[9]:

Surface longwave radiative fluxes
over the course of one day

...........

---- L.n
4007 OV W N S L out
— L net
™~
£ 200
=
0_

QQQQQQQQQ
O O O O O O O O O
SRR RN AP\ RPN I N
time of day

((df['Q_net'] .sum()*(60*10)))*1.e-6
14.819099999999999

df ['Q_net'] .mean () *(60*60%24) /10**6
14.8191

Try tweaking the above code to change the colours of the lines.

You could look at this plot and try to find when R, , reached a maximum, and what its value at
that time was - but with a bit of code we can find the exact values, as follows:

Using your dataset we'll find the index for the time of the day when we,
wobserve (a) the mazimum of R_net

ind_max= df['Q_net'].idxmax()

max_val = df['Q net'] [ind_max]

max_time = df ['TIME'] [ind_max]

Using this index, find the time when R_net is mazimum and display output,
o (using the function 'format' to display only the H:M)

print("The time of the day we observe the maximum of Q_net is "+ max_time.
owstrftime ("JH:M")+".")

Now lets print the mazimum value using a different way of stuffing a number,
»into a string:
print("The value of Q_net at this time is %1.1f W/m2"%max_val)

The time of the day we observe the maximum of Q_net is 12:30.
The value of Q_net at this time is 582.6 W/m2
2.0.1 Now its your turn:
2.1 Question 4:
(4]
Calculate:
(a) the minimum of Q_net [1]
(b) the maximum of K_ net [1]
(<)

(d) the minimum of L_net [1]

the maximum of L net [1]

Include units in answers.

[10]: # type your code here

Write your answer here

[]:

Answer:

[11]: # (a) minimum of R_net
ind_min= df['Q_net'].idxmin()
min_val = df['Q_net'] [ind_min]
min_time = df['TIME'] [ind_min]
print("The minimum value of Q_net is %1.1f W/m2"/min_val)

(b) mazimum of K_net

ind max= df['K net'].idxmax()

max_val = df['K_net'] [ind_max]

max_time = df ['TIME'] [ind_max]

print("The minimum value of K_net is %1.1f W/m2"max_val)

(c) mazimum of L_net

ind_max= df['L_net'].idxmax()

max_val = df['L_net'] [ind_max]

max_time = df['TIME'] [ind_max]

print("The maximum value of L_net is %1.1f W/m2"max_val)

(d) minimum of L_net

ind min= df['L net'].idxmin()

min_val = df['L_net'] [ind_min]

min_time = df ['TIME'] [ind_min]

print("The minimum value of L_net is %1.1f W/m2"/min_val)

The minimum value of Q_net is -54.5 W/m2
The minimum value of K net is 690.9 W/m2
The maximum value of L_net is -14.8 W/m2
The minimum value of L_net is -112.9 W/m2

[]:

2.2 Question 5:
4]
(a) What is the average value of Q_ net over the course of the day? [1]
(b) What surface fluxes balance Q_net at any given point on the land surface? [3]

[12]: # (a) mean of @ _net
mean_val = df['Q_net'] .mean()
print("The mean value of Q_net is %1.1f W/m2"Ymean_val)

The mean value of Q _net is 171.5 W/m2

Answer:
[]:
(b) Q_net is balanced by surface fluxes of sensible heat, latent heat, and ground heat flux. [2]
([1] for all three, [1] for at least 1 of the 3).
[]:

2.3 Question 6:
(8]

(a) [4] Calculate the average net short-wave Kx, net long-wave L*, and net all-wave Qx* radiative
flux densities in W/m2 over the 24 hour cycle.

(b) [4] Then determine the daily energy gain (+) or loss (-) for each flux in (a) by converting the
average W/m2 into daily totals (energy per square metre and day, expressed in MJ / day /
m?2).

Include units in all answers.

10

[1:
[1:

Answer:

(3] for values, [1] for units:

[13]: # Averages:

K_mean= df['K_net'].mean()
print("The average value of K_net is %1.1f W/m$~2%")K_mean)

L_mean= df['L_net'] .mean()
print("The average value of L_net is %1.1f W/m$~2%"JL_mean)

Q_mean= df['Q_net'] .mean()
print("The average value of Q_net is %1.1f W/m$~2%"J.Q_mean)

The average value of K_net is 237.9 W/m$~2%
The average value of L_net is -66.3 W/m$~2%
The average value of Q_net is 171.5 W/m$~2$

[3] for values, [1] for units:

[14]: # Daily totals:

seconds_per_day = 60.%60.%24. # s /day
Joules_per MJ = 10%*6 # J/MJ

K_tot= K_mean*seconds_per_day/Joules_per_MJ
print("The total daily K_net is %1.1f MJ / m$"2$ / day"/K_tot)

L_tot= L_mean*seconds_per_day/Joules_per_MJ
print("The total daily L_net is %1.1f MJ / m$"2$ / day"/L_tot)

Q_tot= Q_mean*seconds_per_day/Joules_per_MJ
print("The total daily Q_net is %1.1f MJ / m$"2$ / day"/Q_tot)

The total daily K_net is 20.6 MJ / m$~2$ / day

The total daily L_net is -5.7 MJ / m$~2$ / day
The total daily Q_net is 14.8 MJ / m$~2$ / day

[]:
[]:

[]:

11

[15]:

2.4 Question 7:

2]

Why do you think the diel cycle (the day-night cycle) of L in smaller than the diel cycle of L_ out?
Write your answer here

Answer:

L_ out increases during the day due to solar heating from the sun; as the land warms from K_ in,
it heats up, leading to increased L_ out. L_in from the atmosphere doesn’t change dramatically
because L_in is a function of the temperature of the whole troposphere; while near-surface air
changes temperatures over the diel cycle, the full depth of the troposphere has a smaller diel cycle
in temperature, and thus there is a small diel cyclQ4. Calculate solar declination § for your daye
in L_in reaching the surface.

[1] for L_ out being influenced by S_in more than L_in
[1] for S_in has a big daily cycle

2.5 Question 8:
(4]

Calculate solar declination ¢ for the day of the observations.

First estimate DOY
DOY = df.D0OY

Estimate gamma () - the fractional year. Note that we are using radiansy
wrather than degrees.
gamma = (2*np.pi/365)*(DOY-1)

Next, estimate the declination angle using the more precice method from the,
wlecture slides. We will call this variable delta2

delta = 0.006918 - 0.399912*np.cos(gamma) + 0.070257*np.sin(gamma) - O.
-006758%np. cos(2*gamma) + 0.000907#*np.sin(2*gamma) - 0.002697*np.cos (3*gamma)
o+ 0.00148*np.sin(3*gamma)

Note that delta2 is in radians - we need to convert radians to degrees
delta2deg = delta*(180/np.pi)

print("The declination for my day is: %1.2f"J,delta2deg.values[0]+chr(176))

The declination for my day is: 22.35°

12

[16]:

[]:

[]:

[]:

2.5.1 simple calculation method:

First estimate DOY
DOY = df.D0OY

delta_simple = -23.4 * np.cos(2#np.pi * (DOY + 10) / 365)

print("The declination using the simple calculation for my day is: %1.
-2f")delta_simple.values[0]+chr(176))

The declination using the simple calculation for my day is: 22.22°

Write your answer here
Answer:
[3] for trying to code it

[1] for correct answer

2.6 Question 9:
Calculate the local apparent time (LAT) for sunrise and sunset.

Hint: Set solar altitude to = 0o (for sunrise and sunset) and solve for the hour angle h when
8 = 0. Then convert h to an actual time. Note that LAT always ensures solar noon is at 12:00.
You will need to use the declination from Q6.

This radiation data was collected on the University of British Columbia campus, located in Van-
couver, BC (49.20N, 123.20 W).

Write the equation you use to calculate LAT for sunrise and sunset using declination, solar altitude,
and location [4], then calculate LAT using the site data [4].

8]

Write your answer here

Answer:

Use the equation from lecture YY, slide YY:

cos(Z) = sin(¢)sin(d) + cos(¢)cos(§) cos(h)
cos(Z) = sin(B)

13

We're looking for h.

sin(f) = sin(¢)sin(d) + cos(¢)cos(d) cos(h)
sin(0) = sin(¢)sin(d) + cos(¢p)cos(§) cos(h)
0 = sin(¢)sin(d) + cos(d)cos(d) cos(h)
—sin(¢p)sin(d)/(cos(¢)cos(d))+ = cos(h)
h = arccos(—sin(¢)sin(d)/(cos(d)cos(6)))

LAT of sunrise is § 12 - h/15$, and LAT of sunset is 12 + h/15.

[17]: phi = 49.2
phi_rad = phi*np.pi/180

delta = 22.35*np.pi/180 # from question 6

cos_h = (-np.sin(phi_rad)*np.sin(delta)) / (np.cos(phi_rad)*np.cos(delta))
print(cos_h)

h = np.arccos(cos_h)

print(h)

h_deg = h*180/np.pi

From the slides, we know h = 15%(12-t), so
#t = 12 + h/15

LAT is calculated from moon (12); sunrise and sunset occur when beta = 0, in,
wetther direction of local noon.

LAT_sunrise = 12 - h_deg/15

print (LAT_sunrise)

LAT_sunset = 12 + h_deg/15

print (LAT_sunset)

sunrise_time = LAT sunrise
sunset_time = LAT_sunset

hours = int(sunrise_time)
minutes = (sunrise time*60) % 60
seconds = (sunrise_time*3600) 7% 60

14

[]:

[18]:

print("The LAT of sunrise: %d:%02d.%024" 7 (hours, minutes, seconds))

hours = int(sunset_time)
minutes = (sunset_timex*60) 7 60
seconds = (sunset_time*3600) % 60

print("The LAT of sunset: %d:%02d.%02d4" 7, (hours, minutes, seconds))

-0.4763215203262487
2.0672627201288303
4.1036380661255825
19.896361933874417
The LAT of sunrise: 4:06.13
The LAT of sunset: 19:53.46

2.7 Question 10:

[2] Vancouver is located in the Pacific Time Zone (UTC -8), which is centered on the 120 W
meridian. Using the equations from lecture, calculate the local meant solar time (LMST) and local
apparent time (LAT).

define LST to be local noon:
LST = datetime.datetime(year=2010,month=7,day=10,hour=12, minute=0, second=0)
print (LST)

declare the standard meridian of the time zone:
Standard_meridian = -120

Define the longitude of the station
lon = -123.2

Define the difference between the station longitude and the standard meridian
delta_lon = lon-Standard_meridian

Calculate LMST for both days
LMST = LST + datetime.timedelta(days=0,hours=0,minutes=delta_lon*4,seconds=0)
print (LMST)

print('Local mean solar time (LMST) is ' + LMST.strftime("/H:%M:%S"))

15

Next the time offset between LMST and LAT (TLAT, i.e. deltaT LAT), ing
ominutes can be calculated using the formula given in Lecture 4, Slide 12

note that we only need gamma for moon, and gamma varies with the day of yeamn,
= so fetch a gamma from anything but the last timestep.

There are fancier ways to get gamma from exactly moon... should be using ay
wvalue of gamma=3.27

deltaT_LAT = 229.18%(0.000075 + 0.001868*np.cos(gamma[96]) - 0.032077*np.
-»sin(gamma[96]) - 0.014615%np.cos(2*gamma[96]) - 0.040849*np.sin(2*gamma[96]))

deltaT_LAT_temp = 229.18%(0.000075 + 0.001868*np.cos(3.3) - 0.032077*np.sin(3.
-3) - 0.014615%np.cos(2%3.3) - 0.040849*np.sin(2%3.3))

print('temp:')

print(deltaT_LAT_temp)

print(gamma[96])
print('deltaT_LAT:')
print(deltaT_LAT)

deltaT_LAT_datetime = datetime.
~timedelta(days=0,hours=0,minutes=deltaT_LAT,seconds=0)

deltaT LAT datetime

LAT = LMST - deltaT_LAT_datetime
print('Local apparent time (LAT) is ' + LAT.strftime("%H:%M:%S"))

2010-07-10 12:00:00

2010-07-10 11:47:12

Local mean solar time (LMST) is 11:47:12
temp:

-5.345258202844987

3.270699200997593

deltaT_LAT:

-5.089859878992924

Local apparent time (LAT) is 11:52:17

/tmp/ipykernel_722/3504298967 .py:27: FutureWarning: Series.__getitem__ treating
keys as positions is deprecated. In a future version, integer keys will always
be treated as labels (consistent with DataFrame behavior). To access a value by
position, use “ser.iloc[pos]”

deltaT_LAT = 229.18%(0.000075 + 0.001868%*np.cos(gamma[96]) -
0.032077*np.sin(gamma[96]) - 0.014615*np.cos(2*gamma[96]) -
0.040849*np.sin(2*gamma[96]))
/tmp/ipykernel_722/3504298967 .py:33: FutureWarning: Series.__getitem__ treating

16

[]:

[]:

[1]:

[5]:

[4]:

keys as positions is deprecated. In a future version, integer keys will always
be treated as labels (consistent with DataFrame behavior). To access a value by
position, use “ser.iloc[pos]”

print (gamma[96])

2.8 Question 11:
[4]

Assume the incoming solar irradiance at the top of the atmopshere (“extraterrestrial erradiance”
KEx) above the site at noon on the day of observations is 1178 W/m2 (recall: irradiance from the
sun at the solar equator is 1366.5 W /m2, but irradiance at the top of the atmosphere above any
given latitude-longitude point on Earth varies with day of the year, latitude, and longitude).

Assume = 63.1 ° (the angle between the surface and the incident sun beam).

What is the approximate bulk transmissivity (Va) of the total atmospheric column at this time?
Comment upon the reasons for the magnitude of ¥a you find.

Answer:
[4]

[1] for getting most of the code

[1] for getting the right numerical answer

(1] for commenting on how clean/dirty the numerical answer is

[1] for commenting on why there could be dirty air at the time of observations (any plausible
explanation is fine here)

A transmisitivity of 0.77 indicates a slightly dirty atmosphere; transmisivity ranges from 0.6 for
dirty, smoggy air to 0.9 for clean air. Reasons for a dirty atmosphere over the UBC campus in the
middle of July could include polution or forest fire smoke.

there are a couple different ways of getting m, which we show here

z = 90-63.1
m = 1/(np.cos(z*np.pi/180))
print(m)

1.1213307581628822

beta = 63.1
beta_rad = np.pi*beta/180

#Z =90. - 63.1

Z_rad = Z*np.pi/180

17

sinbeta = np.sin(beta_rad)
print(sinbeta)

m = 1/sinbeta
print (m)

0.891797529605214
1.1213307581628822

[20]: beta = 63.1
beta_rad = np.pi*beta/180

#Z =90. - 63.1

Z_rad = Z*np.pi/180

sinbeta = np.sin(beta_rad)
print(sinbeta)

m = 1/sinbeta
print(m)
df _noon = df.loc[df['TIME']==datetime.time(hour=12, minute=0, second=0)]

Kdown_noon = df_noon['K_in']
print(Kdown_noon)

KEx = 1178

print(Kdown_noon)
print (KEx)

psia = (Kdown_noon/KEx)**(1/m)
print('The transmisivity of the atmosphere is approximatley %1.2f'Jpsia)

0.891797529605214
1.1213307581628822

Date

2010-07-10 12:00:00 877.7
Name: K_in, dtype: float64
Date

2010-07-10 12:00:00 877.7
Name: K_in, dtype: float64

18

[]:

[]:

[]:

[]:

[]:

[]:

1178
The transmisivity of the atmosphere is approximatley 0.77

/tmp/ipykernel_860/2701710467 .py:28: FutureWarning: Calling float on a single
element Series is deprecated and will raise a TypeError in the future. Use
float(ser.iloc[0]) instead

print('The transmisivity of the atmosphere is approximatley %1.2f'’psia)

3 END ASSIGNMENT 1 - PUT REST ON ASSIGNMENT 2

19

