
Assignment 3

GEOS 300

Term 1 (Autumn 2024)

University of British Columbia

Instructor:

Marysa Laguë, Assistant Professor, Department of Geography

Preamble:

In this exercise you will use a 30-min data-set measured above an extensively flat cotton

field near Kettleman City, CA, USA1. You will use two datasets:

df1 = wind200008021530.xls

df2 = turbulence200008021530.xls

The "wind" dataframe lists horizontal wind speeds u measured with cup-

anemometers installed at six heights on a profile tower averaged over 30 minutes.

Screen-level air temperature is also provided.

The "turbulence" dataframe contains longitudinal wind u, lateral wind v and vertical

wind w measured every second over the same 30 minutes by a fast-response

anemometer located at 6.4 m height.

For all questions assume neutral conditions and $z_d = 0$. Assume a pressure of 100

kPa.

Instructions: Please return your answers including all calculations, graphs and

discussions in a well-structured report (PDF, either your jupyter notebook or a word/

google doc saved as a pdf).

Label the report document with your name, your student number, the course and year.

Marks are indicated in square brackets. This assignment is worth 10% of your final

grade.

1http://www.eol.ucar.edu/rtf/projects/ebex2000/

Import relevant packages:

geos300_a3_python_solutions about:srcdoc

1 of 17 2024-12-03, 4:32 p.m.

http://www.eol.ucar.edu/rtf/projects/ebex2000/
http://www.eol.ucar.edu/rtf/projects/ebex2000/

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime
from datetime import datetime as dt
import time

Load the datasets:
First, open the dataset:

Import the data - upload this file from Canvas and put it in the same folder as your assig
data_file = 'wind200008021530.xls'

df1 = pd.read_excel(data_file,skiprows = 6,)

a few post processing steps:

1. Remove units from variable names & rename variables
names_and_units = list(df1.columns.values)
just_names = [x.split(" ",1)[0] for x in names_and_units]

2. replace the column names with our new names that don't have units
df1.columns = just_names
df1 = df1.rename(columns={"Horizontal": "U"})

3. add a variable called logHeight:

df1['logHeight'] = np.log(df1['Height'])

df1.head()

Height U logHeight

0 0.95 1.54 -0.051293

1 1.55 1.83 0.438255

2 2.35 2.00 0.854415

3 3.72 2.22 1.313724

4 6.15 2.50 1.816452

df1

geos300_a3_python_solutions about:srcdoc

2 of 17 2024-12-03, 4:32 p.m.

Height U logHeight

0 0.95 1.54 -0.051293

1 1.55 1.83 0.438255

2 2.35 2.00 0.854415

3 3.72 2.22 1.313724

4 6.15 2.50 1.816452

5 9.05 2.72 2.202765

data_file = 'turbulence200008021530.xls'

dateparse = lambda x: dt.strptime(x, '%Y-%m-%d %H:%M:%S')

df2 = pd.read_excel(data_file,
header = 0,
parse_dates=['Date'],
date_format='%Y-%m-%d %H:%M:%S',
index_col='Date')

a few post processing steps:

1. add time from Date

df2['Time'] = df2.index.time

2. Remove units from variable names & rename variables
names_and_units = list(df2.columns.values)
just_names = [x.split(" ",1)[0] for x in names_and_units]

3. replace the column names with our new names that don't have units
df2.columns = just_names

print out the top of the dataframe

df2.head()

u v w Time

Date

2000-08-02 15:00:00 3.2174 -0.5631 -0.4740 15:00:00

2000-08-02 15:00:01 3.1313 0.0400 0.0050 15:00:01

2000-08-02 15:00:02 3.7852 -0.4075 0.4388 15:00:02

2000-08-02 15:00:03 3.6670 -0.2518 0.0259 15:00:03

2000-08-02 15:00:04 3.9281 -0.1403 -0.2484 15:00:04

geos300_a3_python_solutions about:srcdoc

3 of 17 2024-12-03, 4:32 p.m.

visualize the data:

plt.plot(df2.index,df2.u,color="blue",label='u')
plt.plot(df2.index,df2.v,color="red",label='v')
plt.plot(df2.index,df2.w,color="orange",label='2')
plt.legend()
plt.grid(':')
plt.xlabel('Time')
plt.ylabel('wind speed [m/s]')

plt.show()
plt.close()

Question 1.

[1]

Did you use ai assistance with this assignment? If so, how?

Question 2:
2. z_0 is the roughness length - the height at which a wind speed theoretically

becomes zero in neutral atmospheric conditions. Estimate z_0 graphically from

all measured values of the wind profile in df1 (the wind dataframe). You can either

geos300_a3_python_solutions about:srcdoc

4 of 17 2024-12-03, 4:32 p.m.

use a spreadsheet/software (e.g. R, python, excel) or the semi-logarithmic paper

provided on Canvas.

Note: If you solve this question using a semi-logarithmic paper, use a ruler and your

graphical judgement (subjective) to create the best fit through the points. [6]

Rubric: [2] approach [3] graph [1] answer for z0

plt.plot(df1.U, df1.logHeight,marker='o')
plt.xlabel('Wind Speed U [m/s]',fontsize=14)
plt.ylabel('ln(z) [m]',fontsize=14)
plt.grid()
plt.title('Wind Speed vs. log(Height)',fontsize=14)

plt.show()
plt.close()

To estimate z_0, we need to calculate the y-intercept of the linear fit line that

approximates the above. For a line $y=mx + b$, we have $x=u$, $y=ln(z)$, where m is

the slope of the log-normal plot above, and $b=ln(z_0)$ is the intercept we're looking

for. You can estimate this by hand by drawing the line back through the y axis on log-

normal paper, or you can calculate the linear fit to the data. Both methods are fine for

this assignment, and should give approximately similar answers. Answers within $

\pm0.01$ m are acceptable.

geos300_a3_python_solutions about:srcdoc

5 of 17 2024-12-03, 4:32 p.m.

Solving for the y-intercept via linear regression gives us $ln(z_0)$. To get z_0 itself,

we have: $b=ln(z_0) \Rightarrow z_0 = e^b$

In python, we can do a simple linear fit using a 1-degree polynomial
using the numpy package. You can also use fancier statistical modeling
packages; they should all give approximately the same answer for this dataset.

m,b = np.polyfit(df1.U, df1.logHeight, 1)

z0 = np.exp(b)

print('The y-intercept z0 = %1.3f'%z0)

The y-intercept z0 = 0.047

Solving for z_0 requires the use of $log(z)$ on the y axis. For demonstrational

purposes, I'm also including the plot of u vs z, where you can see wind speed

approaching zero near the surface (no-slip boundary condition), and wind speed

increasing exponentially with height.

plt.plot(df1.U, df1.Height,marker='o')
plt.xlabel('Wind Speed U [m/s]',fontsize=14)
plt.ylabel('z [m]',fontsize=14)
plt.grid()
plt.title('Wind Speed vs. Height',fontsize=14)

plt.show()
plt.close()

geos300_a3_python_solutions about:srcdoc

6 of 17 2024-12-03, 4:32 p.m.

Question 3:
3. Based on the slope of the curve in Question 2, calculate the friction velocity u∗.

How would the wind profile in Q2 look different if u* were larger than what you

calculated? [6]

Rubric: [2] approach [1] u* value [3] discussion

to answer this, we're going to use von-karman's constant k, and the fact that the slope
of a linear-log graph of wind vs log(z) is equal to k/u_star ... and we're looking
for u_star, the friction velocity

first, we have to calculate the slope of the graph:
m,b = np.polyfit(df1.U, df1.logHeight, 1)

print(m)

then define von-karman's constant:

geos300_a3_python_solutions about:srcdoc

7 of 17 2024-12-03, 4:32 p.m.

k = 0.41

now calculate ustar:
u_star = k/m

print('The friction velocity ustar = %1.2f m/s'%u_star)

1.9460884981854518
The friction velocity ustar = 0.21 m/s

If the friction velocity were larger, since k is a constant, we could rearrange the equation

$u*=k/m \Rightarrow m=k/u*$... if $u*$ were larger, then m the slope would be

smaller [1], ie there would be less change in wind with height [1]. This conceptually is

consisten with more surface friction leading to more drag and so winds aren't increasing

as quickly above the surface as if the surface had less drag [1].

Students are NOT required to make a plot as part of the discussion, but I've plotted a

log-linear plot with different slopes, and the exponential version of that plot that would

correspond to the wind profile for the observed wind speeds assuming $u*$ vs 2x $u*$.

m_bigu = k/0.4
m_realu = k/u_star

plt.plot(df1.U, df1.U*m_bigu + b, label='2u*')
plt.plot(df1.U, df1.U*m_realu + b, label='true u*')
plt.legend()
plt.xlabel('wind speed U [m/s]')
plt.ylabel('log(z) [m]')

plt.show()
plt.close()

plt.plot(df1.U, np.exp(df1.U*m_bigu + b), label='2u*')
plt.plot(df1.U, np.exp(df1.U*m_realu + b), label='true u*')
plt.legend()
plt.xlabel('wind speed U [m/s]')
plt.ylabel('z height [m]')

plt.show()
plt.close()

geos300_a3_python_solutions about:srcdoc

8 of 17 2024-12-03, 4:32 p.m.

9+1

10

geos300_a3_python_solutions about:srcdoc

9 of 17 2024-12-03, 4:32 p.m.

Question 4:
4. Estimate the eddy diffusivities for momentum K_M using the wind gradients $

\Delta u$ in the dataframe df1, between each layer:

(a) z= 0.95 and 1.55 m,

(b) z= 1.55 and 2.35 m,

(c) z = 2.35 and 3.72 m,

(d) z = 3.72 and 6.15 m, and

(e) z = 6.15 and 9.05 m.

Discuss how K_M changes with height, and explain why this happens. [6]

rubric: [2.5] values [.5 per value] [1.5] how KM changes with height [2] discussion

-1 for no units.

rho = 1.131 #kg/m3

tau0 = rho*(u_star**2) #

print('tau = %1.2f N/m2'%tau0)

using equation tau = rho * Km * du/dz, solve for Km
can use mean u or instantaneous u then average.

dudz = np.diff(df1.U)/np.diff(df1.Height)
print('delta u / delta z:')
print(dudz)

Km = tau0 / (rho*dudz)

print('K_m:')
print(Km)

print('z:')
print(df1.Height.values)

alternative method just using ustar:

print('Alternative method just using u*:')
Km = u_star**2/dudz

print('K_m:')
print(Km)

print('z:')
print(df1.Height.values)

geos300_a3_python_solutions about:srcdoc

10 of 17 2024-12-03, 4:32 p.m.

tau = 0.05 N/m2
delta u / delta z:
[0.48333333 0.2125 0.16058394 0.11522634 0.07586207]
K_m:
[0.09183237 0.20887363 0.27640152 0.385204 0.58508351]
z:
[0.95 1.55 2.35 3.72 6.15 9.05]
Alternative method just using u*:
K_m:
[0.09183237 0.20887363 0.27640152 0.385204 0.58508351]
z:
[0.95 1.55 2.35 3.72 6.15 9.05]

a) K_m = 0.092 m2/s

b) K_m = 0.21 m2/s

c) K_m = 0.28 m2/s

d) K_m = 0.39 m2/s

e) K_m = 0.59 m2/s

K_M, the diffusivities, are increasing with height. This can be explained by an

increasing average eddy size that mixes momentum more efficiently at higher layers

(higher eddy diffusivity means more efficient exchange).

Also accept drawing that shows that eddy size is increasing with height.

Generally use the flux gradient relationship with K_M the eddy diffusivity for

momentum: \begin{eqnarray} \tau_0 = \rho_a\, K_M \, \frac{\Delta \overline{u}}{\Delta z}

\end{eqnarray} rearrange \begin{eqnarray} K_M = \frac{\tau_0}{\rho_a} \frac{\Delta z}

{\Delta \overline{u}} = u_{\ast}^2 \frac{\Delta z}{\Delta \overline{u}} \end{eqnarray}

Students can do calculation using either layer-individual u_{\ast} or with 'average'

u_{\ast} (from fit above). Differences should be minor. Units of K_M are $\rm{m}

^2\,\rm{s}^{-1}$.

Question 5:
5. From the values in df1, calculate the aerodynamic resistance of the momentum flux

r_{aM} for the layer from the surface to 9.05 m. How would an increased

aerodynamic resistance alter the momentum flux? [4]

rubric: [1] approach [1] value [2] discussion

z0 = 0 # m
z1 = 9.05 # m

u0 = 0 # m/s (non-slip boundary condition)
u1 = df1.U.values[-1]

geos300_a3_python_solutions about:srcdoc

11 of 17 2024-12-03, 4:32 p.m.

print('check wind at 9.05 m')
print(u1)

ram = rho * (u1 - u0) / tau0

print('ram = %1.2f s/m'%ram)

check wind at 9.05 m
2.72
ram = 61.28 s/m

Plug-in $z=0$ and $\overline{u}(0)=0$ as lower boundary condition:

\begin{eqnarray} r_{a_M} = \rho_a \frac{\Delta \overline{u}}{\tau_0} \end{eqnarray}

Or alternatively you could do the following, but you'd have to redo your K_M

calculations based on the specific Δu and Δz for this question.

\begin{eqnarray} \rho_a \frac{\Delta \overline{u}}{r_{a_M}} = \rho_a \,K_M\, \frac{\Delta u}

{\Delta z} \end{eqnarray}

rearrange:

\begin{eqnarray} r_{a_M} = \frac{\Delta z}{K_M} \end{eqnarray}

Units of r_{a_M} are $\textrm{s}\,\textrm{m}^{-1}$. Values are summarized in Tab. 5.1.

[Total Marks: 2]

Discussion:

More aerodynamic resistance would mean smaller diffusivities K_M and smaller

eddies [1], so a more aerodynacmially rough surface would be less efficient at mixing

momentum, all else equal [1].

Question 6:
From the turbulence data provided in the turbulence dataframe df2, calculate \bar{u},

\bar{v}, and \bar{w} [4]

rubric: [2] approach [1] values [1] for equation.

-1 for missing units.

df2.head()

geos300_a3_python_solutions about:srcdoc

12 of 17 2024-12-03, 4:32 p.m.

u v w Time

Date

2000-08-02 15:00:00 3.2174 -0.5631 -0.4740 15:00:00

2000-08-02 15:00:01 3.1313 0.0400 0.0050 15:00:01

2000-08-02 15:00:02 3.7852 -0.4075 0.4388 15:00:02

2000-08-02 15:00:03 3.6670 -0.2518 0.0259 15:00:03

2000-08-02 15:00:04 3.9281 -0.1403 -0.2484 15:00:04

ubar = df2.u.mean()
vbar = df2.v.mean()
wbar = df2.w.mean()

print('using python averaging:')
print('mean u = %1.4f m/s'%ubar)
print('mean v = %1.4f m/s'%vbar)
print('mean w = %1.4f m/s'%wbar)

total_seconds = 1800 # seconds
print(total_seconds)
ubar_manual = df2.u.sum()/total_seconds
vbar_manual = df2.v.sum()/total_seconds
wbar_manual = df2.w.sum()/total_seconds

print('using manual averaging:')
print('mean u = %1.4f m/s'%ubar_manual)
print('mean v = %1.4f m/s'%vbar_manual)
print('mean w = %1.4f m/s'%wbar_manual)

using python averaging:
mean u = 2.8194 m/s
mean v = -0.0000 m/s
mean w = 0.0000 m/s
1800
using manual averaging:
mean u = 2.8194 m/s
mean v = -0.0000 m/s
mean w = 0.0000 m/s

\overline{u} is the temporal average of u: \begin{eqnarray} \overline{u} &=& \frac{1}

{1800} \sumf_{t=1}^{1800} u(t) \\ \end{eqnarray} same for v and w [Formula is

required only for one of u, v, or w, but due to the orientation of the coordinate

system (aligned into mean wind), both $\overline{v} = 0$ and $\overline{w} = 0$. Accept

very small numbers that arise from numerical rounding errors.

Question 7:

geos300_a3_python_solutions about:srcdoc

13 of 17 2024-12-03, 4:32 p.m.

From the data in the turbulence dataframe df2, calculate $\bar{u'^2}$, $\bar{v'^2}$, and

$\bar{w'^2}$. Name and briefly define/describe these parameters and state what they

are used to calculate. [4].

rubric: [1.5] values [2.5] discussion

df2.head()

u v w Time

Date

2000-08-02 15:00:00 3.2174 -0.5631 -0.4740 15:00:00

2000-08-02 15:00:01 3.1313 0.0400 0.0050 15:00:01

2000-08-02 15:00:02 3.7852 -0.4075 0.4388 15:00:02

2000-08-02 15:00:03 3.6670 -0.2518 0.0259 15:00:03

2000-08-02 15:00:04 3.9281 -0.1403 -0.2484 15:00:04

u_prime = df2.u - df2.u.mean()
v_prime = df2.v - df2.v.mean()
w_prime = df2.w - df2.w.mean()

up2 = [x ** 2 for x in u_prime]
vp2 = [x ** 2 for x in v_prime]
wp2 = [x ** 2 for x in w_prime]

up2_bar = np.sum(up2)/(1800)
vp2_bar = np.sum(vp2)/(1800)
wp2_bar = np.sum(wp2)/(1800)

print('the u variance is %1.3f m2/s2'%up2_bar)
print('the v variance is %1.3f m2/s2'%vp2_bar)
print('the w variance is %1.3f m2/s2'%wp2_bar)

the u variance is 0.265 m2/s2
the v variance is 0.204 m2/s2
the w variance is 0.075 m2/s2

geos300_a3_python_solutions about:srcdoc

14 of 17 2024-12-03, 4:32 p.m.

Variances: Allow both, the biased (left) and the unbiased variance (right, makes no

difference) and check for correct units: \begin{eqnarray} \overline{u^{\prime 2}} =

\frac{1}{1800} \sum \limits_{t=1}^{1800} (u(t)-\overline{u})^{2} \hspace{0.5cm}

\textrm{or} \hspace{0.5cm} \overline{u^{\prime 2}} = \frac{1}{1800-1} \sum \limits_{t=1}

^{1800} (u(t)-\overline{u})^{2} \end{eqnarray}

Names: $\overline{u^{\prime 2}}$ is the variance of the longitudinal (also allow:

horizontal) wind velocity, $\overline{v^{\prime 2}}$ is the variance of the lateral wind

velocity. $\overline{w^{\prime 2}}$ is the variance of the vertical wind velocity [1.5].

These values are used to calculate the mean turbulent kinetic energy (TKE) [1]. [Total

Marks: 4]

Question 8:
8. From the data in the turbulence dataframe df2, calculate the turbulence intensities

Iu, Iv, and Iw. Briefly discuss what these values tell you. [4]

rubric: [1.5] values [2.5] discussion

first we need the standard deviations:

sig_u = np.sqrt(up2_bar)
sig_v = np.sqrt(vp2_bar)
sig_w = np.sqrt(wp2_bar)

Next we need the length (magnitude) of the mean wind vector, M = swrt(ubar^2 + vbar^2 + wba

M = np.sqrt(ubar**2 + vbar**2 + wbar**2)

Turbulence intensities are the dimensionless ratio between the standard deviation
and the length of the mean wind vector M: I = sigma_u / M (or sigma_v, sigma_w)

Iu = sig_u / M
Iv = sig_v / M
Iw = sig_w / M

print('The turbulent intensities for u are %1.3f'%Iu)
print('The turbulent intensities for v are %1.3f'%Iv)
print('The turbulent intensities for w are %1.3f'%Iw)

The turbulent intensities for u are 0.183
The turbulent intensities for v are 0.160
The turbulent intensities for w are 0.097

Question 9:

geos300_a3_python_solutions about:srcdoc

15 of 17 2024-12-03, 4:32 p.m.

Turbulent kinetic energy:

Define turbulent kinetic energy, and write the equation used to calculate it. [2]

From the data provided, calculate the mean turbulent kinetic energy per unit mass $

\bar{e}$ [2].

What is the ratio of \bar{e} to the mean kinetic energy per unit mass? [1]

Rubric:

a: [1] for equation, [1] for definition

b: [1] for approach, [1] for value

c: [1] for approach, [1] for value

TKE = 1/2 * (up2_bar + vp2_bar + wp2_bar)
print('TKE = %1.3f m2/s2'%TKE)

MKE = 1/2 * (ubar**2 + vbar**2 + wbar**2)
print('MKE = %1.3f m2/s2'%MKE)

ratio = TKE/MKE

print('The ratio of TKE to MKE is %1.3f (unitless)'%ratio)

TKE = 0.272 m2/s2
MKE = 3.974 m2/s2
The ratio of TKE to MKE is 0.068 (unitless)

Turbulent kinetic energy is the average of the kinetic energy of the instantaneous

deviations per unit mass [1] (vs mean kinetic energy, which is the energy in the mean

flow rather than the deviations). The equation used to calculate it is [1]:

$$ \bar{e} = \frac{1}{2} \big(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \big) $$

Question 10:
Which of the three wind components, u, v or w, contains most turbulent kinetic energy

per unit mass (in the dataframe df2)? Speculate about the shape of the eddies [2].

Rubric: [1] for answer [1] for discussion

From question 7, we can see the variance is largest for the u direction, so the most

turbulent kinetic energy per unit mass is occuring as a result of the u component of the

wind [1]. This means there is more tubulence horizontally than vertically (and in

particular, in the horizontal u direction; for this dataset that means the east-west

direction). The variance in the v direction is almost as big. The variance in the w

direction is much smaller. Since the variances in the u and v direction are similar, and

geos300_a3_python_solutions about:srcdoc

16 of 17 2024-12-03, 4:32 p.m.

much larger than in the w direction, the eddies would have a pancake shape (and not a

cigar or isotropic shape). This means flat-ish, circular-ish eddies.

geos300_a3_python_solutions about:srcdoc

17 of 17 2024-12-03, 4:32 p.m.

