Misconception Throwback with T-GEM

For my posting today, I’m going with a classic throwback to the beginning of the course: Seasons and the phases of the moon. Since there are so many student misconceptions around these topics (it’s true! I asked my students the other day just randomly to explain it to me and they fumbled around and couldn’t quite explain it accurately), the added element of the simulation may give them the impetus that they need in order to finally grasp them.
I could envision this being worked together into a lesson about orbits, since both simulations involve looking at orbits to understand the concepts:

Simulations:

(Freezeray.com is a resource that contains many different simplistic, yet easily interacted with, simulations. Try the bouncing ball one (http://freezeray.com/flashFiles/bouncingBall.htm)! It’s strangely relaxing to play around with, yet could also be highly useful for students to learn about potential and kinetic energy.)


Generate:
In this phase of the process, students would be asked to diagram and to explain as best as they can what causes the seasons. I would ask them to do this before they ever saw the simulation to get a good baseline of knowledge and to give them more room to evaluate and modify. After they had all finished, I would project whichever simulation we are doing first, most likely the seasons. On the main screen, I would make sure that they understood how the simulation worked, the necessary vocabulary (orbit, axis, rotation, NESW, tilt, oblong, hemisphere), and that they had roles down for working together in teams. Teams would first write down their first hypothesis on how seasons worked and then interface with the simulation. This personal working with the simulation has been shown to have positive correlations with student achievement (Khan 2010).

Evaluate
In this phase, students would revisit their hypotheses after using the simulation to check for internal validity. If they notice problems, through questioning, they would be lead to discover which parts of their hypothesis needs to be changed. For groups that get it on the first try or early on, the second simulation of moon phases is available for them to move on to.

Modify
After identifying which parts of their hypothesis needs to be evaluated, students would be invited to change their hypothesis and then to start the process over.And the end, reflection journals could be written, along with new diagrams and explanations to show the growth. By putting them side by side with their original explanations, student growth would be evident to all the participants. This method of writing and reflection will also help to make visible mental models (Khan 2007).T-GEM seems to make a lot of sense, but to be honest, it is incredibly close to the traditional scientific method that we have been taught from early on (Hypothesis, experiment, analyze, modify, conclude), but with T-GEM, computer simulations replace the experimental phase and the teacher is hyper-aware of not giving students information that is not necessary. Rather, they are left to experiment and learn more independently, making it closely related to experiential learning and problem-based learning.

Sources
Khan, S. (2007). Model-based inquiries in chemistryScience Education, 91(6), 877-905.
Khan, S. (2010). New pedagogies for teaching with computer simulationsJournal of Science Education and Technology, 20(3), 215-232.

Leave a Reply

Your email address will not be published. Required fields are marked *