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Abstract. Current supercomputing systems consisting of 

thousands of nodes cannot meet the demands of emerging 
high-performance scientific applications. As a result, a new 

generation of supercomputing systems consisting of hundreds 

of thousands of nodes is being proposed. However, these sys-

tems are likely to experience far more frequent failures than 

today's systems, and such failures must be tackled effectively. 

Coordinated checkpointing is a common technique to deal 
with failures in supercomputers. This paper presents a model 

of a coordinated checkpointing protocol for large-scale su-

percomputers, and studies its scalability by considering both 

the coordination overhead and the effect of failures. Unlike 

most of the existing checkpointing models, the proposed 

model takes into account failures during checkpointing and 
recovery, as well as correlated failures. Stochastic Activity 

Networks (SANs) are used to model the system, and the model 

is simulated to study the scalability, reliability, and perform-

ance of the system.

1. Introduction 

The computational demands of emerging applications, 

such as protein folding, is giving rise to a new generation of 

supercomputers (currently in the planning stage) consisting of 

several thousand processors. For example, the newly de-

ployed IBM BlueGene/L [1] is expected to scale to 64K 

dual-processor nodes. Despite the huge computing power 

these systems provide, the large number of nodes makes them 

significantly more vulnerable to errors. The resulting larger 

number of failures due to errors can impair system perform-

ance and limit scalability.  

Although a hierarchy of error detection and recovery tech-

niques, such as ECC, CRC, and message retransmission, can 

correct some errors/failures, some transient errors/failures 

cannot be covered using these techniques, e.g. corrupted 

states due to propagation of undetected errors. For these er-

rors/failures, checkpointing and rollback may be to recover 

the application before rebooting or reconfiguring the system. 

This paper focuses on errors/failures that need checkpointing 

and rollback to recover.  

The most commonly used checkpointing scheme for su-

percomputing systems is coordinated checkpointing, due to 

its simplicity of implementation. In this approach, coopera-

tive processors synchronize to ensure a global consistent state 

before taking a checkpoint [3].  The main problem with co-

ordinated checkpointing is its lack of scalability, as it requires 

all processors to take a checkpoint simultaneously.  

This paper makes two main contributions. First, it builds a 

model of a large-scale system that uses coordinated check-

pointing for recovery from failures with complex semantics. 

Second, it studies the scalability and performance of the sys-

tem for several hundred thousand processors by simulating 

the model with realistic parameter values. 

An important issue considered in our model is the effect of 

scaling from several thousand processors to several hundred 

thousand processors, i.e., by two orders of magnitude. Issues 

such as failures during checkpointing and recovery, corre-

lated failures within the system, and checkpointing overhead 

due to coordination are of primary importance for the new 

generation of supercomputers. This is because their larger 

number of nodes and higher failure rates invalidate some as-

sumptions that existing models make about system behavior 

[7, 8, 9, 10, 11, 12] and exacerbate some effects previously 

considered negligible. These assumptions are:  

 The computation interval and the checkpoint overhead 

are much smaller than the mean time between failures 

(MTBF). However, large-scale supercomputers experience 

much smaller MTBFs and much larger checkpoint overheads, 

and hence failures during checkpointing and recovery can 

occur and must be taken into account [5].  

 Failures are independent of each other. This is not a 

valid assumption, as Tang and Iyer [6] showed that even a 

small number of correlated failures increase system unavail-

ability considerably. 

 The overhead of inter-processor coordination for 

checkpointing is negligible. However, as the number of nodes 

increases, the coordination overhead grows, and it cannot be 

ignored. 

A measure called useful work similar to accumulated re-

ward [17] is used to evaluate system performance. Useful 

work is defined as the computation that contributes to the 

ultimate completion of the job (see definition in Section 7). If 

a failure occurs before the computation can be checkpointed, 

the computation since the last checkpoint needs to be re-

peated after the recovery and is not counted as useful work. 

Accurate modeling of useful work requires knowledge on 

future behavior of the system and cannot be represented using 

simple Markov models. Instead, Stochastic Activity Net-

works (SANs) are used to model the system behavior. The 

modeling power of SANs allows us to concisely represent 

complex system phenomena such as checkpoint coordination, 

failures during checkpointing and recovery, and correlated 

failures. The SAN model is studied using simulation, and the 

impact of system parameters on system performance and 

scalability is evaluated. 

2. Related Work 

Checkpointing models. One of the earliest models for 

computing the optimal checkpointing interval is by Young 
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[7]. This model assumes that the MTBF of the system is very 

large compared to the checkpoint and recovery time, and 

hence it does not consider failures during checkpointing and 

recovery. Daly [8] presents a modification of Young’s model 

for large-scale systems. This model takes into account fail-

ures during checkpointing and recovery as well as multiple 

failures in a single computation interval. However, it does not 

model the coordination overhead of the checkpointing proto-

col itself or consider correlated failures.  

Kavanagh and Sanders [9] evaluate two time-based coor-

dinated checkpointing protocols based on analytical and 

simulation models, which take the overhead of coordination 

into account. However they do not consider failures during 

checkpointing and recovery, as they assume that the MTBF 

of the system is much greater than the checkpoint interval.  

Plank and Thomason [10] investigate the use of spare 

nodes to provide redundancy in the system to handle perma-

nent failures. We do not consider permanent failures in our 

model and assume that all nodes can be recovered by restart-

ing the system from the last-saved checkpoint. Plank and 

Thomason do not consider the overhead of coordination in 

their model or the effect of scaling the model to a large num-

ber of nodes. A recent paper by Elnozahy et al. [11] extends 

the work of Plank and Thomason to systems consisting of 

thousands of nodes. It considers the effects of failures during 

checkpoint and recovery and multiple failures in a single 

computation interval. However, it does not consider the ef-

fects of coordination among the nodes in the checkpointing 

protocol, nor does it consider correlated failures.  

Vaidya [12] derives an analytical expression for the opti-

mal checkpointing frequency in a uniprocessor system. It 

distinguishes the checkpoint latency from the overhead of a 

checkpointing scheme. This model considers failures during 

checkpointing/recovery but does not take into account the 

scalability of the checkpointing protocol or the system. 

Large-scale systems. Bronevetsky et al. [23] present a 

compiler-based technique for asynchronous, coordinated 

checkpointing. Agarwal et al. [24] consider an adaptive, in-

cremental checkpointing technique for scientific applications 

on large-scale systems. Finally, Zhang et al. [18] do an exten-

sive study of failure data analysis in large-scale supercom-

puting systems and show the existence of temporal and spa-

tial correlation among failures in large-scale systems. We 

consider temporal correlations in our model (correlated fail-

ures), but not spatial correlations. 

3. Target System 

This study focuses on a typical abstract structure com-

monly shared by many supercomputers and a basic coordi-

nated checkpointing protocol whose variants are applied in 

the supercomputing world.  

3.1 Architecture  

Each node of the supercomputing system is a tightly inte-

grated unit consisting of multiple processors. For example, 

Blue-Gene/L has 2 processors per node, and ASCI Q has 4 

processors per node. Future systems could have 8, 16, or 32 

processors per node. 

Usually, large-scale supercomputing systems have dedi-

cated nodes for job computation (compute nodes) and for I/O 

operations (I/O nodes). The compute nodes in a set share the 

connections to an I/O node, and all the I/O nodes are con-

nected to a parallel file system through a separate connection 

network. For example, IBM BG/L has 64K compute nodes 

and 1024 I/O nodes. The network bandwidth from 64 com-

pute nodes to one I/O node is 350MB/s, and the bandwidth 

from one I/O node to the file system is 1 Gb/s. 

Data writes from compute nodes to the file system are 

performed in two steps: from compute nodes to I/O nodes and 

then from I/O nodes to the file system. The I/O nodes locally 

buffer the application data or checkpoint they receive from 

the compute nodes and then write it to the file system in the 

background while the compute nodes continue with the com-

putation. The two steps are reversed for data reads with the 

exception that reads cannot be done in the background, as the 

application may have to wait for the data to be read before 

proceeding, depending on the nature of the read.
1

3.2 Checkpoint Protocol 

There are two checkpointing approaches used in super-

computing systems. One is application-based, where a global 

barrier is explicitly used in the application for saving a global 

consistent state. This places the burden of checkpointing on 

the application (e.g., in BlueGene/L [1]). The other approach 

is system-supported checkpointing (e.g., the algorithm used 

by Cray in the IRIX OS [19]). Our checkpointing protocol is 

a system-supported synchronous checkpointing and follows 

the basic principles of coordinated checkpointing, e.g., Koo 

and Toueg’s protocol [4]. 

In our protocol, a single coordinator node, or master, pe-

riodically initiates the checkpointing as follows: 

(1) The master broadcasts a ‘quiesce’ request to all the compute nodes. 
(2) On receiving ‘quiesce’ each node quiesces its operations, i.e., stops 

all its activities at a consistent and interruptible state and replies 

‘ready’ to the master. 
(3) After receiving ‘ready’ from all the compute nodes, the master 

broadcasts ‘checkpoint’ to all the compute nodes. 

(4) On receiving ‘checkpoint’ each compute node dumps its state to an 
I/O node, and then sends a ‘done’ message to the master. 

(5) When the master collects the ‘done’ messages from all the compute 

nodes, it broadcasts ‘proceed’ to all the compute nodes, and the I/O 
nodes begin to write the checkpoint to the file system in the back-

ground. 

(6) On receiving ‘proceed’ each compute node continues its activity from 
the point at which it quiesced.

When a node is quiesced, it means that it stops all the 

task-related activities in a consistent and interruptible state. 

Further, a timeout period is specified at the master to avoid 

waiting indefinitely for the ‘ready’ responses. This indefinite 

wait can occur as a result of an erroneous or failed node that 

does not respond to the quiesce request. If all the responses 

are not received within this time, the master times out and 

broadcasts an ‘abort’ message to all the compute nodes, 

causing them to abandon the checkpointing and proceed with 

their computations. 

Note that the current checkpoint does not overwrite the 

previous checkpoint, unless the checkpointing successfully 

                                                          
1
 While current supercomputing systems may not have this 

capability, future systems might allow this two-step I/O.
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completes and the checkpoint is verified to be correct. So 

whenever the checkpointing is abandoned the previous 

checkpoint is still valid. Hence, the system can always re-

cover to the last good checkpoint upon a compute node fail-

ure. 

3.3 Application 

The application is a parallel, scientific computing work-

load composed of multiple computation tasks. Each compute 

processor runs exactly one task of the parallel application and 

no other tasks.  

Application tasks may be performing computation, com-

munication, or I/O at any time. Since most parallel, scientific 

applications are written using the BSP (Bulk Synchronous 

Parallel) model [13], the multiple tasks more or less coordi-

nate their actions and behave as one cohesive unit.  

The application is instrumented with a number of check-

point primitives at its safe points (e.g. a global barrier), where 

it can safely quiesce, as at the end of a loop. For example, in 

IRIX, the programmer inserts checkpoint functions in the 

source code, and the OS calls these whenever it wants to take 

a checkpoint. 

A task that is doing an I/O write, cannot quiesce until it 

finishes the I/O operation, as this could leave the I/O in an 

inconsistent state and possibly corrupt the file system. While 

there are methods to address this, ensuring global coordina-

tion is complicated, and the simple approach of 

non-preemptive I/O is preferred in practice. I/O reads of a 

task can be stopped for checkpointing at any time, and hence, 

they are not specifically considered in our model. 

3.4 Failure and Recovery 

On the failure of a compute node, the entire application 

rolls back to the last saved checkpoint and recovers, i.e., we 

only consider failures that require recovery from a check-

point. While permanent/persistent errors are not considered in 

the paper, checkpointing can still be used to recover from 

permanent hardware failures. This, however, would require 

system reconfiguration and remapping of the checkpointed 

states into a new set of nodes (assuming that spare nodes are 

available). 

Failures of compute nodes and I/O nodes are always de-

tected without any latency. The mechanism for failure detec-

tion is not modeled. 

When an I/O node fails, all the I/O nodes need to be re-

started. This assumption is reasonable, since in the BSP 

model, the application needs the I/O operations on all the I/O 

nodes to be completed before continuing the computation. 

When the master node fails when checkpointing is not in 

progress, we assume that the error is detected and the master 

recovers independently of the other nodes. If the master fails 

during checkpointing, the checkpointing protocol is aborted 

and the master goes back to the initial state. 

As nodes have multiple processors, the node failure rate is 

the product of the processor failure rate and the number of 

processors per node. The system parameter MTTF is used to 

refer to the per-node mean time to failure throughout this 

paper unless specified otherwise. Then per-processor MTTF 

is MTTF times the number of processors per node. It is as-

sumed that advanced design and error handling techniques 

are applied to maintain low node failure rates, e.g., use of 

multiple cores on a chip. 

As there is no consensus on MTTF in the literature, we 

assume an MTTF value from 1 year to 25 years due to both 

hardware and software errors based on the following: (i) 

ASCI-Q has a per-node MTTF of 1 year [11], (ii) IBM 380 X 

processor has an MTTF of 8 years [16], (iii) IBM mainframes 

have an MTTF of 25 years, and (iv) IBM G5 processor is 

advertised with an MTTF of 45 years [22] (hardware failures 

only).  

3.5 Correlated Failure 

This paper models two categories of correlated failures: (i) 

correlated failures due to error propagation only and (ii) ge-

neric correlated failures.  

For correlated failures due to error propagation, we as-

sume that recovery fully restores the application/system state 

and that propagated errors do not cross recovery boundaries. 

The error propagation is characterized by a short error burst, 

which typically impacts the recovery. The duration of the 

error burst is referred to as the correlated failure window.

The system may need to recover several times before a suc-

cessful recovery [20]. A typical value of the correlated failure 

rate is 600 times the normal failure rate [6] (see Section 6).  

Correlated failures may be caused by factors other than 

error propagation, e.g., common causes such as increases in 

node temperature or some environmental phenomena. Usu-

ally, a hyper-exponential distribution is assumed for model-

ing generic correlated failures, i.e., the system experiences an 

independent failure rate and a correlated failure rate alterna-

tively. Unlike correlated failures due to propagation, the se-

mantics of generic correlated failures is not necessarily lim-

ited to a short duration, but rather forms a global view of the 

system for the entire system life. 

4. Overall Composition of the Model 

The system is decomposed into several subsystems. Each 

subsystem is modeled as a separate Stochastic Activity Net-

work (SAN) submodel, and the overall model is obtained by 

integrating these submodels. All the compute nodes are mod-

eled as a single unit and all the I/O nodes are modeled as an-

other unit. This allows the model to scale to a large number 

of nodes without requiring a large simulation time. Table 1 

lists the SAN submodels of the entire system, and Figure 1 

illustrates how these submodels (the ovals in Figure 1) are 

integrated into an overall model. The arrows in the figure 

illustrate the logical interactions between the submodels. 

These interactions are implemented by state sharing between 

the submodels. The dots in the submodels in Figure 1 indicate 

the initial position of the tokens in the corresponding SAN. It 

should be emphasized that Figure 1 is not a state diagram,in 

that the ovals do not represent the states of the system at any 

particular time. The submodels are organized into four mod-

ules: computing & checkpointing, failure and recovery, cor-
related failure, and useful work computation.

Computing and checkpointing module. The com-

pute_nodes submodel depicts the computation and check-

pointing behavior of the compute nodes in the failure-free 

mode. While the compute nodes are in execution, the applica-
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tion may be performing either computation or I/O operations, 

and this is represented in the app_workload submodel. The 

master submodel represents the master node in the coordi-

nated checkpointing protocol. It triggers and coordinates the 

checkpointing, as modeled in the compute_nodes submodel. 

The coordination among the compute nodes is modeled in the 

coordination submodel. The io_nodes submodel captures the 

I/O operations conducted by I/O nodes. It receives data from 

the compute_nodes submodel, writes/reads checkpoints 

to/from the file-system, and writes data on behalf of the ap-

plication in the app_workload submodel. These five submod-

els form the computing and checkpointing module of the sys-

tem model and are further described in Section 5. 

Table 1: Submodel List 

Failure and recovery module. A compute node or I/O 

node may fail in any of its states. The occurrence of failures 

in compute nodes is modeled in the comp_node_failure sub-

model. Recovery is initiated following the detection of the 

failure and modeled in the comp_node_recovery submodel. 

As failures may also occur during recovery, compute nodes 

may experience multiple failures and subsequent recoveries 

in the comp_node_recovery submodel before the final suc-

cessful recovery, after which the system resumes the normal 

execution and checkpointing cycle. Failures of compute 

nodes do not affect the I/O nodes if error propagation is not 

considered. The behavior of I/O nodes is similar, except that 

when an I/O node fails while writing application data to the 

file system, the application results are lost and the system 

rolls back to the last checkpoint. This is represented in Figure 

1 by an arrow from the io_node_failure submodel to the 

comp_node_failure submodel.  

The recovery process occurs in two stages. First, the I/O 

nodes read the checkpoint from the file system and buffer it 

in their local memories. Then the compute nodes read the 

checkpoint from the I/O nodes and complete the recovery. 

The compute nodes then go back to the execution state, the 

master process gets reset, and the system exits the correlated 

failure window if there was one. If the checkpoint is already 

locally buffered in the I/O nodes when a compute node fails, 

the first stage is skipped. If an I/O node fails while writing 

out a checkpoint, the checkpoint is aborted and the I/O nodes 

get restarted, but the compute nodes are not affected.  

If the number of unsuccessful recoveries in the 

comp_node_recovery and/or io_node_recovery submodel(s) 

exceeds a predefined threshold, the whole system, including 

the compute nodes and I/O nodes, is rebooted in sys-
tem_reboot (“severe failures” transitions from 

comp_node_recovery and io_node_recovery to system_reboot 

in Figure 1). When the reboot completes, I/O processors are 

ready for execution, but compute nodes still need to read the 

last checkpoint and recover. So the arrows of “reboot com-

pletes” from the system_reboot submodel point to the 

io_nodes and comp_node_failure submodels, instead of the 

compute_nodes submodel in Figure 1.  

Figure 1: The overall composition of the model

Correlated failure module. The correlated_failures 

submodel models the semantics of correlated failures sepa-

rately from the compute and I/O nodes’ failure and recovery 

submodels. It controls the rates of all failures in the system. 

When a correlated failure occurs, the system enters a corre-

lated failure window, in which it experiences failures with a 

higher rate than the independent failure rate. Note that inde-

pendent failures can continue to occur when the system is 

within a correlated failure window. 

Useful work module. The useful_work submodel calcu-

lates the useful work completed by the system. A positive 

reward is accumulated when the compute nodes perform job 

computation or I/O operations, and a negative reward equal to 

the amount of the lost work is applied when a compute node 

fails. 

5. Modeling Computing and Coordinated 

Checkpointing 

In this section, we describe the details of modeling the 

computing and coordinated checkpointing module using 

SANs. Due to space limitations, detailed SAN models of the 

Module Submodel Comments 

app_workload Application state: performing compu-

tation or I/O operations 

compute_nodes Compute processor state in the 
checkpoint cycle: executing (including 

both application’s computation and 

I/O operations), quiescing, or check-
point dumping 

coordination Coordination procedure for check-

pointing 

io_nodes I/O processor state: idling (including 
data transmission between compute 

nodes), writing application data, writ-

ing checkpoint, or reading checkpoint; 
if checkpoint is locally buffered 

Computing 

& check-

pointing 

master System checkpointing state: if check-

pointing is started or not 

comp_node_fail-
ure 

Failure behavior of compute nodes 

comp_node_recov

ery 

Recovery behavior of compute nodes 

io_node_failure Failure behavior of I/O nodes 

io_node_recovery Recovery behavior of I/O nodes 

Failure & 
recovery 

system_reboot System reboot operation 

Correlated 

failure 

correlated_failures Correlated failure behavior 

Useful 

work 

useful_work Useful work computation 

app_workload

compute_nodes io_nodescoordination

comp_node_failure io_node_failure
comp_node
_recovery

io_node_recovery

correlated_failures

system_reboot

useful_work

checkpointing control

detail
expansion I/O operation

checkpoint
dump/
read

failure failure

useful work 
computation

useful work 
computation useful work 

computation

recovery 
starts

recovery completes

I/O 
failure

recovery 
starts

recovery 
completes

severe failures

severe failures
reboot
completes

reboot
completes

failure rate 
control

failure rate 
control

failure rate 
control

failure rate control

computing & checkpointing
useful

work

failure & 

recovery

correlated 

failure

master

detail
expansion

useful work 
computation

comp_node_failure

useful work 
computation
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(a) compute_nodes

(b) io_nodes

(c) app_workload

(d) master (e) coordination
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1

2

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

9

Figure 2: Submodels for computing and checkpointing 

other three modules are not described in this paper. The 

reader may refer to the technical report [25] for these. 

Figure 2 shows the SAN submodels for the computing and 

coordinated checkpointing module. States are shared among 

the submodels with the same names. Selected shared states 

are numbered in Figure 2 to help identify them.  

When the application is started in the system, the compute 

nodes start out in the execution state and the master is in the 

master_sleep state. We assume the application starts doing 

computation and the app_workload is in the compute state. 

The I/O nodes are in the ionode_idle state. Initially, each of 

these states has a token, indicated by block arrows in Figure 

2. In our model, the non-random events are modeled as de-

terministic activities, and exponential distribution is assumed 

for random events. To simplify the model, message transmis-

sions are not explicitly modeled in SAN, but the parameters 

of the corresponding events are appropriately set to include 

the message transmission latency. Also, the ‘done’ and ‘pro-

ceed’ message exchanges are not modeled in the interest of 

simplicity. The following steps detail the behavior of the 

model. 

•First, assume that the checkpoint interval expires and the 

checkpoint activity is enabled. The master moves from the 

master_sleep state to the master_checkpointing state and 

starts a timer as shown by the start_timer gate. (Figure 2d) 

•The compute nodes are initially in the state execution.

When the master moves to master_checkpointing, the com-

pute nodes move to the quiescing state after a latency of 

recv_quiesce_bcast _time (broadcast overhead). (Figure 2a)

•  Henceforth, the behavior depends on whether the ap-

plication workload is performing computation or I/O. If the 

app_workload is in the compute state, the coordination for 

checkpointing is started, as shown in the to_coordination 

activity. If the app_workload is in the IO state, the compute 

nodes wait till the I/O completes before starting the coordina-

tion activity. (Figure 2c)

•  After the coordination activity (coord) completes, a to-

ken is placed in the complete_coordination state, enabling the 

activity coordinate in compute_nodes, and the compute nodes 

move from quiescing to checkpointing. (Figure 2e, 2a)

• If the timer expires before the coordination is complete, 

it places a token in the timedout state. This activates the 

skip_chkpt2 activity in compute_nodes, causing the compute 

nodes to abort the checkpointing and move to the 

back_to_execution state. (Figure 2d, 2a, 2e) 

•When the compute node is in the state checkpointing and 

the I/O node is in the state ionode_idle, the dump_chkpt ac-

tivity is enabled. The checkpoint dump time depends on the 

checkpoint size and the bandwidth between the compute 

nodes and the I/O nodes. (Figure 2a) 

•  After storing the checkpoint, the compute nodes go 

back to the execution state. The completion of this activity 

also places tokens in the enable_chkpt state. (Figure 2a) 

•When the I/O node is in ionode_idle, it sees the token in 

the enable_chkpt state and goes to the writing_chkpt state. 

This enables the write_chkpt activity, which models the writ-

ing of the checkpoint to the file system. The latency of the 

write depends on the checkpoint size and the bandwidth be-

tween the I/O node and the file system. (Figure 2b) 

• If the I/O node is not in ionode_idle, the compute node 

has to wait for the I/O node to come to the ionode_idle state 

before sending the checkpoint to it. This prerequisite is en-

forced by the ionode_is_idle input gate. (Figure 2a) 

•When the checkpointing is completed or aborted, tokens 

are placed in the two states chkpt_completed_or_aborted and 

to_reset_processor_state. The tokens cause the master to 

move back to the master_sleep state and the app_workload to 

reset at the compute state. (Figure 2c) 

Since the model considers all the compute nodes as a sin-

gle unit, it does not reflect the discrepancy in the quiesce 

times among the compute nodes and does not show how the 

variation in the quiesce time among the nodes can cause the 
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master to timeout. This behavior is modeled separately in the 

coordination submodel (Figure 2e). It is assumed that each 

node has an identical, exponentially distributed quiesce time 

with the mean of MTTQ. We use a random variable Y, repre-

senting the maximum of all the quiesce times, to model the 

coordination time as follows: 

Let n and Xi denote the number of compute nodes and the 

ith node’s quiesce time, respectively, and Y = max{Xi} (1  i 

 n). Then, the CDF of Y is FY(y)=(FX(y))n=(1-e- y)n
 where 

is the quiesce rate of a single compute node. Y can be gener-

ated from a uniform random variable U between 0 and 1 by Y
= -1/ ·log(1-U1/n). The value of Y is used as the latency in the 

coord activity in the coordination submodel to represent the 

coordination process. 

6. Modeling Correlated Failures  

Two categories of correlated failures are modeled in the 

paper: (i) correlated failures due to error propagation and (ii) 

generic correlated failures. Both are modeled by appropri-

ately increasing the node/processor failure rates. This section 

describes how these increased rates are derived. 

Correlated failures due to error propagation. When an 

independent failure occurs in the system, with some probabil-

ity pe there is a conditional probability of a second failure due 

to the first. This results in an increased failure rate. We com-

pute this failure rate increase for all nodes by multiplying the 

independent failure rate with a constant parameter called 

frate_correlated_factor.

Figure 3 shows the birth-death Markov process of corre-

lated failures due to error propagation. i and c denote the 

rates of the system-wide independent failures and successive 

correlated failures, respectively. is the independent failure 

rate of a single node. µ denotes the recovery rate of the sys-

tem. Fi is the system state in which i failures have occurred 

before a successful recovery (three states, F0, F1 and F2, are

shown as examples in Figure 3). As we assume that any suc-

cessful recovery wipes off all latent errors, all the Fi states 

transit directly to F0 with the recovery rate. It is also assumed 

that the failure rates at all the Fi states (i > 0) are the same. 

So, the conditional probability of another failure occurrence 

provided that a failure occurs is, 

p= c/( c +µ)  =>  c=pµ/(1-p).

Let n denote the number of nodes, and r denote the multi-

ple frate_correlated_factor. Then according to the model, 

c= i+rn =n (1+r)  =>  r=pµ/((1-p)n )-1. 

For a given set of n, and µ, r, i.e. 

frate_correlated_factor, actually represents the conditional 

probability p. As long as c> i, r can be chosen independently 

to study a range of correlated failure effects. For example, 

when n=1024, p=0.3, MTTR=10min, and MTTF=25yrs, r is

about 600. 

F0 F1 F2

i c c

µ
µ

µ

Figure 3: Birth-death Markov process of correlated failures 

Generic correlated failures. The system may suffer from 

generic correlated failures at any instant of the system life. A 

correlated failure coefficient  is assumed to model generic 

correlated failures, which is the unconditional probability of a 

correlated failure occurring at any time. Table 2 lists the pa-

rameters used for modeling generic correlated failures. Then, 

the failure rate of generic correlated failures is given by, 

s = si + sc = n  + rn  = n (1 + r).  

Note that si, sc, and  are not the same as the i, c, and e

in the discussion of correlated failures due to error propaga-

tion, because they model different probabilities. The symbols 

n,  and r have the same meanings in both models. 

Table 2: Parameters for modeling generic correlated failures 

s Failure rate of the entire system 

si Rate of independent failures in the system 

sc Rate of correlated failures in the system 

 Independent failure per node 

r Increased failure rate due to correlated failures 

 Correlated failure coefficient 

n Number of nodes 

7. Experimental Setup and Results 
We use the Mobius modeling environment [21] to create 

and simulate the SANs. Steady-state simulation is used with 

an initial transient period of 1000 hours to allow the system 

to enter the steady state. The confidence level is 95%. Unless 

otherwise specified, the parameter values are as in Table 3. 

These parameters are based on field data or projections of 

future systems. 

As the modeled system is complicated and multiple 

mechanisms/parameters are present, we study the system by 

analyzing the effect of one feature at a time. Hence, the base 

model without coordination or correlated failures (but with 

failures during checkpointing and recovery) is first studied to 

understand the basic system behavior. Then we study the ef-

fects of coordination and correlated failures. The following 

two metrics are used to evaluate system performance.  

• Useful work fraction: Fraction of time the system makes 

forward progress towards the completion of the job. It does 

not include work that is repeated due to failures. 

• Total useful work: The product of the useful work frac-

tion and the number of compute processors. It indicates how 

many processors of the same kind are required to achieve the 

same performance, assuming failure-free computation. 

7.1 Study of Base Model 

For the base model, we assume independent failures and 

consider the coordination time to be a fixed quiesce time. The 

system performance is analyzed for a range of parameters, 

including the number of processors, checkpoint interval, 

MTTF per node, and MTTR of the system, as follows:  

• Number of processors per node: 8 

• MTTF per node: 1 year 

• MTTR of the system: 10 minutes
2

• Number of processors: 64K 

• Checkpoint interval: varied from 15 minutes to 4 hours 

                                                          
2

If permanent failures are considered, the overhead of the system 

reconfiguration will result in a larger MTTR. 
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Table 3: Model Parameters

We report results for the number of processors, not the 

number of nodes, so that they can be easily scaled to a dif-

ferent number of processors per node. The major results are: 

For a given checkpoint interval (30 min), MTTR (10 

min), and MTTF (1 yr per node), there is an optimum number 

of processors (128 K) for which total useful work done by the 

system is maximized. Adding more processors than this op-

timum value will hurt system performance due to failure ef-

fects
3
. The range of processors considered in this analysis is 

from 8K to 256K, and the optimum value of the number of 

processors varies from 128K to 32K as the MTTR varies 

from 10 minutes to 80 minutes. 

                                                          
3 Elnozahy et al. [11] also make a conjecture that increasing the 

number of nodes beyond a certain extent hurts performance, but they 

do not quantify the extent of the performance loss.

For the system to be scalable, checkpoints should be 

taken on the granularity of minutes (15-30 min), rather than 

hours, as is the current practice [26]. While in theory there is 

an optimal checkpoint interval, for any practical range there 

is no optimal checkpoint interval for which the useful work is 

maximized, contrary to what several other studies have 

shown [7, 8]. This is because the overhead of checkpointing 

is relatively low in our system, as the checkpoint writing is 

done in the background, and the effect of failures dominates 

the effect of taking checkpoints frequently.  

Even when the useful work is maximized, the overall 

useful work fraction is no more than 50% for an MTTF per 

node of 1 year. Hence, more than 50% of system resources 

are spent in checkpointing and recovering from failure. 

If the number of processors per node is increased to 32 

from 8 and the per-node MTTF is maintained the same as 1 

year, it is possible to increase the total useful work for the 

same number of nodes. This is because more compute power 

is provided per node, while maintaining the same failure rate. 

The optimum number of processors is in the range of 500K. 

However, the useful work fraction is unaltered, as the system 

failure rate, which depends only on the number of nodes and 

the per-node failure rate, is the same. 

Variation of total useful work with number of proces-

sors. Figure 4a, c, and e show the variation of total useful 

work with different number of processors. In all the three 

figures, there is an optimum value of the number of proces-

sors for which total useful work is maximized. The rationale 

behind this is as follows: On one hand, more processors pro-

vide higher computing power for the job; on the other hand, 

more processors incur more frequent failures and hence more 

computation is wasted due to failures. For small numbers of 

processors, the former factor dominates, while for sufficiently 

large numbers of processors, the latter outweighs the former. 

Consider how the optimum number of processors varies with 

the MTTF, MTTR, and checkpoint interval.  

• The optimum value decreases with smaller MTTFs, as 

shown in Figure 4a (from 128K processors for an MTTF of 1 

year per node to 64K processors for an MTTF of 0.5 years 

per node).  

• The optimum value decreases with larger MTTRs 

(from 128K processors for an MTTR of 20 minutes to 64K 

processors for an MTTR of 40 minutes), as shown in Figure 

4c.

• The optimum value decreases with larger checkpoint 

intervals, as shown in Figure 4e (from 128K processors for a 

checkpoint interval of 30 minutes to 64K processors for a 

checkpoint interval of 60 minutes).  

This is because, smaller MTTFs increase the failure rate, 

larger MTTRs increase the penalty of a failure, and the larger 

checkpoint intervals cause more work to be lost upon a fail-

ure. All the three aggravate the effects of failures, thus low-

ering the equilibrium point between the computing power and 

the failure effect.  

Variation of total useful work with checkpoint intervals. 

Figure 4b, d, and f show the variation of total useful work for 

different checkpoint intervals. The results indicate that for a 

large-scale supercomputing system there is no optimum value 

Parameter Value 

/Range 

Comments 

Checkpoint interval 15 min to 

4 hr 

Derived from other studies [1], and 

private communication with vendors 

MTTF (Mean Time 

To Failure per node) 

1 – 25 yr Including software and hardware fail-

ures recovered from checkpoint. 1 year 
for ASCI Q and 25 years for IBM 

mainframes 

MTTR (sys-
tem-wide Mean 

Time To Recovery 

of compute nodes) 

10 min Average time for all compute nodes to 
read checkpoint and reinitialize them-

selves 

MTTR of IO nodes 1 min Time to restart the I/O nodes 

Number of compute 

processors 

8K to 

256K 

Projection of current and future super-

computers 

MTTQ (per-node 

Mean Time to Qui-
esce) 

0.5-10 s Time to close I/O and network file 

handles, clean up states, and perform 
computation until reaching a safe point 

Broadcast overhead 1 ms E.g. data for hardware broadcast trees 

in Blue-Gene/L [1] 

Software overhead 

for transmission 

1 ms Measurement of message latency in 

TCP/IP and UDP 

Period of I/O – 

compute cycle in 
application 

3 min Experimental data on I/O characteris-

tics of parallel applications [15] 

Fraction of compu-

tation 

0.88 – 1.0 Experimental data on I/O characteris-

tics of parallel applications [1] 

Timeout value 20 sec to 
2 min 

The period for the master to timeout 
and cancel the checkpointing 

Probability of  

correlated failure 

0 to 0.2 Experimental data on correlated fail-

ures, e.g., [6 ] 

Correlated failure 
rate 

1/MTTF* 
(100~160

0)  

Projections on error propagation within 
a locally-federated cluster of nodes in 

the supercomputer 

Correlated failure 
window 

3 min Experimental data for persistence of 
correlated failures in the system due to 

error propagation 

System reboot time 1 hr Anecdotal evidence for startup time of 

a large cluster 

Aggregate band-

width between 

compute nodes and 
one I/O node 

350 MBps 

Number of compute 

nodes per I/O node 

64

File system band-
width per I/O node 

1 Gbps 

Checkpoint size per 

node 

256 MB 

E.g., Blue-Gene/L field data [1] 

Average size of I/O 
data per node 

10 MB Experimental data on typical charac-
teristics of parallel applications [15] 
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of the checkpoint interval within the range of values consid-

ered (15 minutes to 4 hours). This contradicts previous stud-

ies [7, 8], which have shown the existence of an optimum 

value of the checkpoint interval. This is because the loss of 

job computation due to failures in large-scale systems out-

weighs the overhead of frequent checkpointing, as our 

checkpoint overhead is low. The theoretical optimum value 

of the checkpointing interval is less than 15 minutes. How-

ever, checkpoint intervals less than 15 minutes are not con-

sidered because checkpoints as frequent as that may over-

whelm the I/O subsystem and network and hence are not 

practical.

Useful Work Vs Number of Processors for 

different MTTFs   (MTTR = 10 mins hrs, 

checkpoint interval = 30 mins)
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Figure 4: Sensitivity Study of the Base Model

Further, the total useful work is approximately constant 

for checkpoint intervals between 15 and 30 minutes but de-

creases sharply as the checkpoint interval is increased beyond 

30 minutes. (For an MTTF of 8 years, the total useful work 

only decreases from 43000 job units
4
 to 40000 job units 

when the checkpoint interval is increased from 15 minutes to 

                                                          
4

One job unit is the amount of work done by a failure-free proces-

sor without checkpointing in unit time. 

30 minutes, but it drops to 30000 job units when the check-

point interval is increased to 60 minutes). This suggests that 

current checkpoint intervals in the granularity of hours are 

not appropriate for large-scale systems because of the high 

system failure rate. Rather, the checkpoint intervals should be 

between 15 and 30 minutes.  

Useful work fraction. The discussion above only uses to-

tal useful work as the performance metric. The useful work 

fraction steadily decreases as the number of processors in-

creases. This is because the greater number of processors 

does not contribute to the useful work fraction, and the failure 

effect degrades the useful work fraction. So, even when the 

maximum total useful work is achieved at the optimum num-

ber of processors, the useful work fraction is still small. For 

example, for an MTTF of 1 year per node in Figure 4a, the 

peak of total useful work is obtained with 128K processors, 

for which the useful work fraction is only about 

56000/131072=42.7%, i.e., over 50% of system time is spent 

in handing failures. Thus, the overall failure rate of the sys-

tem must substantially decrease for the useful work fraction 

to improve significantly.

Effect of increasing the number of processors per node.

So far, we have assumed that each node has 8 processors and 

that the MTTF of a node is 1 year. In the future, advances in 

semiconductor and processor technology may allow 16 or 32 

processor cores to be integrated on a single node while main-

taining the same MTTF per node of 1 year. We studied the 

variation of total useful work with the number of nodes when 

each node has 32 and 16 processors, respectively for a 

per-node MTTF of 1 and 2 years. For a fair comparison, the 

number of processors is fixed at 1000K. The results are 

shown in Figure 4g and 4h and are summarized as follows: 

• The optimum number of processors is obtained by 

multiplying the number of nodes by the number of processors 

per node. The optimum number of processors is now in the 

range of 500K to 1000K. 

• For a given MTTF, the optimum number of nodes in-

creases with the number of processors per node, as more 

compute power is provided at the same failure rate. 

• For a given number of processors per node, the opti-

mum number of nodes increases as the MTTF increases be-

cause the failure effect is less dominant 

This reinforces the earlier observation that integrating 

more processors per node and maintaining the same node 

failure rate increases total useful work. However, the useful 

work fraction remains the same (still less than 50%), as it 

depends only on the system failure rate, which in turn de-

pends only on the number of nodes and the MTTF per node. 

Effect of failures during checkpointing/recovery. We 

also studied the effects of failures during checkpoint-

ing/recovery on system performance. We observed that they 

do not exert as significant an effect on the useful work frac-

tion as do failures during computation. This is because the 

duration of checkpointing/recovery is much smaller than that 

of computation and hence incurs less loss of useful work. 

Detailed analysis of failures during checkpointing/recovery is 

not presented. 
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For the remainder of Section 7, we assume an increased 

per-node MTTF of 3 years, as otherwise the failure effects 

dominate the system performance for large numbers of nodes. 

An MTTF of 3 years corresponds to a per-processor MTTF of 

24 years for our system consisting of 8-processors per node, 

which is close to the 25-year MTTF of IBM mainframes re-

ported in the literature [22]. 

7.2 Effect of Coordination 

The coordinated checkpointing protocol requires that all 

the compute processors arrive at a safe point to take the 

checkpoint, and a timeout is used to avoid waiting indefi-

nitely. This is not considered in the base model. This section 

first investigates the pure coordination effect without the 

timeout mechanism or failures and then combines them into 

the study. Three main points are observed from the results: 

Coordination does not affect system performance sig-

nificantly, as the coordination effect is logarithmic in the 

number of compute processors (Figure 5) because we assume 

the processors have identical exponentially-distributed qui-

esce times. So coordination scales well for practical systems. 

Combination of timeout and coordination behaves like 

a probabilistic checkpoint-abort. Small timeouts (80s or less 

in Figure 6) hurt the useful work fraction, whereas large 

timeouts (100s or larger) do not significantly degrade the 

useful work fraction.  

As long as the coordination timeout is equal to or lar-

ger than a threshold value, the system performance is insen-

sitive to the timeout value. The threshold value is fairly 

small for practical systems (100s in our experiment). 

Coordination only. We assume that all the processors 

have identical, exponentially distributed quiesce times with 

a mean of MTTQ (Mean Time To Quiesce per processor). 

Figure 5 illustrates the pure coordination effect on the useful 

work fraction for different MTTQs. Failures and timeouts 

are not considered. According to the figure, the coordination 

effects are logarithmic in the number of compute processors. 

This is because an identical exponential distribution is as-

sumed for each processor. Moreover, the rate of increase of 

coordination time (or overall quiesce time) is proportional to 

the MTTQ, and the coordination effect is also proportional 

to the checkpoint frequency (figures not shown here). 

Effects of failures and timeouts. Figure 6 shows the sys-

tem performance in the presence of failures with an MTTF 

of 3 years per node, checkpoint interval of 30 minutes, and 

MTTQ of 10 seconds. We use “no coordination” to indicate 

the case when no variation in the quiesce times among the 

compute processors is assumed and the quiesce time of the 

system as a whole is exponentially distributed with a mean 

of 10 seconds. 

Figure 6 shows that the coordination without a timeout 

mechanism does not significantly degrade system perform-

ance, because the only additional overhead is the small coor-

dination time. If a timeout is applied, the master may time out 

before the coordination is completed and abort the check-

pointing. Then, if a failure occurs in the next computation 

interval, it causes the computation completed in the last in-

terval to be lost. So the combination of coordination and 

timeout actually behaves like a probabilistic checkpoint-abort 

mechanism. The probability depends on the coordination time 

(MTTQ and number of compute processors) and the timeout. 

Small timeouts incur large probabilities of checkpoint abor-

tion, and the benefit of limiting the processors’ waiting time 

is offset by the loss of work due to frequent checkpoint abor-

tions. The drastic curve drops for timeouts of 20-100 seconds 

in Figure 6 clearly show the performance degradation.  

Figure 6 also shows that the system is insensitive to time-

outs, provided they are large enough, because the overall co-

ordination time increases slowly with the number of proces-

sors. For example, the 8192-processor system’s performance 

with a timeout of 100s is only slightly better than a timeout of 

120s and no timeout. 

7.3 Effect of Correlated Failures 

We recall that there are two categories of correlated fail-

ures considered in the paper.  

Correlated failures due to error propagation only. Corre-

lated failures due to error propagation are modeled with three 

parameters: probability of correlated failure (pe),

frate_correlated_factor (r,) and correlated failure window.

As shown in Section 6, a typical value of r in real systems is 

on the order of a few hundred. In our experiments, r values of 

400, 800, and 1600 are used for various pe values, with a cor-

related failure window of 3 minutes.  

The results of correlated failures in Figure 7 show that the 

useful work fraction is not susceptible to correlated failures 

due to error propagation (ranging between 0.51 and 0.56 in 

the figure).  This is because we assume these failures only 

occur during recovery, and we observed that failures during 

recovery do not exert a significant effect on the useful work 

fraction.  
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(checkpoint interval=30min)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1 4 16 64 25
6

102
4

409
6

16
38

4

655
36

26
21

44

104
857

6

419
430

4

16
77

72
16

671
088

64

26
84

35
45

6

1.
07

4E+0
9

number of processors

U
s

e
fu

l 
w

o
rk

 f
ra

c
ti

o
n

MTTQ=10s

MTTQ=2s

MTTQ=0.5s

Figure 5 : Effects of coordination 

on system performance and scal-

ability (no timeouts or failures) 

Useful work fraction with coordination and timeout 

(MTTF per node=3yrs, checkpoint interval=30min)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

8192 16384 32768 65536 131072 262144

number of processors
U

s
e

fu
l 
w

o
rk

 f
ra

c
ti

o
n

no coordination

no timeout

timeout=
120s

timeout=
100s

timeout=
80s

timeout=60s

40s
20s

Figure 6 : Effects of coordination 

timeout on system performance 

and scalability (with failures)

Useful work fraction (MTTF per node=3yrs, number of 

processors=256K, correlated failure window=3min)

0.490

0.500

0.510

0.520

0.530

0.540

0.550

0.560

0.000 0.050 0.100 0.150 0.200

Prob. of correlated failure

U
s

e
fu

l 
w

o
rk

 f
ra

c
ti

o
n

frate_correlated_times=400

frate_correlated_times=800

frate_correlated_times=1600

Figure 7 : Impact of correlated 

failures due to error propagation 

Useful work fraction (MTTF per node=3yrs, 

correlated failure 

coefficient=0.0025,correlated failure 

factor=400, checkpoint interval=30min)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

8192 16384 32768 65536 131072 262144

number of processors

U
s

e
fu

l 
w

o
rk

 f
ra

c
ti

o
n

without correlated 

failure

with correlated 

failure

Figure 8 : Impact of generic cor-

related failures 

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05) 

0-7695-2282-3/05 $20.00 © 2005 IEEE



Generic correlated failures. Generic correlated failures 

are modeled with two parameters: correlated failure factor 

(r) and correlated failure coefficient ( ). An r value of 400 

and  value of 0.0025 are used in our experiment. Therefore, 

the entire system failure rate gets doubled because of generic 

correlated failures. The results illustrated in Figure 8 show 

that, unlike correlated failures due to error propagation, there 

is a large performance degradation when generic correlated 

failures are present, and the performance degradation pre-

vents the system from scaling well. For a system consisting 

of 256K processors with an MTTF of 3 years per node, the 

useful work fraction is reduced by 0.24 (51%). 

8. Conclusions  

This paper models a large-scale supercomputing system 

with coordinated checkpointing and rollback recovery. 

Unlike existing models in the literature, failures during 

checkpointing/recovery, coordination for checkpointing, and 

correlated failures are included in the model. The impact of 

these factors on system performance (measured as the useful 

work fraction and total useful work) as well as the scalability 

of systems with several hundred thousand processors is stud-

ied by simulating the model. The major conclusions from this 

study include: 

• For a given checkpoint interval, MTTR, and MTTF, 

there is an optimum number of processors for which total 

useful work done by the system is maximized, e.g., for 

an MTTF per node of 1 year and an MTTR of 10 min-

utes, it is around 128K. 

• The overall the useful work fraction is relatively low due 

to the effect of failures in large-scale systems. 

• Correlated failures must be taken into account, as they 

degrade the performance and limit system scalability. 
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