
Modeling Coordinated

Checkpointing for

Large-Scale Supercomputers

Long Wang, Karthik Pattabiraman,

Zbigniew Kalbarczyk, Ravishankar K. Iyer

Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Lawrence Votta,

Christopher Vick, Alan Wood

Sun Microsystems

Motivation

 New generation of supercomputers emerge to meet

computational demands of high-performance scientific

applications

 IBM BlueGene/L scales up to 64K dual-processor nodes

 Large number of nodes makes system more vulnerable to

errors

 Synchronous checkpointing (and rollback) widely used in

supercomputers to recover from failures

 How does checkpointing scale to several hundred thousand

processors?

 Some usual assumptions no longer hold for large-scale

supercomputers

 Computation interval and checkpoint overhead much smaller than MTBF

 Failure independence

 Negligible overhead of checkpointing coordination

Contribution

 Model (SAN) of a coordinated checkpointing for a large-scale

(hundreds of thousands of nodes) supercomputer

 Study system scalability, reliability, and performance

 Analyze impacts of: (i) transient failures during computation and

checkpointing/recovery, (ii) correlated failures, (iii) coordination overhead

 Major findings

 There exist an optimum number of processors for which useful work is

maximized

 e.g., 128K processors (for MTTF per node of 1 year and MTTR of 10 minutes)

 Useful work fraction is relatively low due to the effect of failures

 e.g., over 50% of the time is spent on handling failures (128K processors

and MTTF per node of 1 year)

 Correlated failures degrade the performance and limit system

scalability

Target System (1)

 Architecture

 Multi-processor nodes

 Compute nodes and I/O nodes

 Two-step data transfers: file system <-> I/O nodes <-> compute nodes

 Checkpoint protocol

 System-driven, synchronous, globally coordinated

 Checkpoint data: memory image of application and OS (files not preserved)

 Timeout-abort

 No overwrite of the previous checkpoint unless current checkpoint

completes successfully

master

node1

node2

node n

quiesce

ready

chkpt

done

proceed

Target System (2)

 Application

 Each processor runs one task of a parallel application

 Bulk Synchronous Parallel model: multiple tasks behave as a single unit

 I/O write cannot be quiesced until it completes

 Failure model and assumptions

 Transient failures of compute and/or I/O nodes recoverable from a checkpoint

 On a processor failure the whole system rollbacks to the last checkpoint and

resumes the computation

 Checkpointing coordinated by a maser node

 On master failure, checkpoint protocol is aborted (if it was in progress) and the

master resumes from the initial state

 Correlated failures

 Due to error propagation (only)

 Due to common cause, e.g., increase of environment temperature

Model Composition

app_workload

compute_nodes io_nodescoordination

comp_node_failure io_node_failure
comp_node

_recovery
io_node_recovery

correlated_failures

system_reboot

useful_work

checkpointing control

detail

expansion I/O operation

checkpoint

dump/

read

failure failure

useful work

computation

useful work

computation useful work

computation

recovery

starts

recovery completes

I/O

failure

recovery

starts

recovery

completes

severe failures

severe failures
reboot

completes

reboot

completes

failure rate

control

failure rate

control
failure rate

control
failure rate control

computing & checkpointing
useful

work

failure &

recovery

correlated

failure

master

detail

expansion

useful work

computation

comp_node_failure

useful work

computation

Model Composition

app_workload

compute_nodes io_nodescoordination

comp_node_failure io_node_failure
comp_node

_recovery
io_node_recovery

correlated_failures

system_reboot

useful_work

checkpointing control

detail

expansion I/O operation

checkpoint

dump/

read

failure failure

useful work

computation

useful work

computation useful work

computation

recovery

starts

recovery completes

I/O

failure

recovery

starts

recovery

completes

severe failures

severe failures
reboot

completes

reboot

completes

failure rate

control

failure rate

control
failure rate

control
failure rate control

computing & checkpointing
useful

work

failure &

recovery

correlated

failure

master

detail

expansion

useful work

computation

comp_node_failure

useful work

computation

Simulation Experiment Setup

 Modeling and simulation environment: Mobius

 Steady-state simulation (transient period of 1000 hours)

 Simulation experiments

 Base model (without considering coordination or correlated failures)

 Effect of checkpoint coordination

 Impact of correlated failures

 Performance metrics

 • Useful work fraction:

 Fraction of time the system makes progress towards job completion

Work repeated due to failures is excluded

 • Total useful work:

 (useful work fraction) x (number of compute processors)

 Indicates how many processors are required to achieve the same

performance assuming failure-free computation

Results – Base Model (1)

 There exist an optimum number of processors for which
total useful work is maximized

 e.g., 128 K processors for Chkpt interval 30 min, MTTR 10 min,
and MTTF 1 yr per node

 adding more processors hurts system performance due to failure
effects .

 The useful work fraction
is relatively small

 Less than 50%, for MTTF

per node of 1 year

 i.e., more than 50% of
system resources used
in checkpointing and
recovering from failures

Results – Base Model (2)

 For any practical range there is no optimal checkpoint interval

for which total useful work is maximized

 the theoretical optimum

is too short for practical

purposes

 A better approach is to

partition the system (if

possible) and checkpoint

each partition

Useful Work Vs Checkpoint Interval for different

numbers of processors (MTTF per node=1 yrs,

MTTR = 10 mins)

0

20000

40000

60000

80000

15 30 60 120 240

Checkpoint Interval (mins)

T
o

ta
l

U
s
e
fu

l

W
o

r
k

 processors = 8192 processors = 16384
 processors = 32768 processors = 65536
 processors = 131072 processors = 262144

Results – Base Model (3)

 Useful work increases as number of processors per node

increases

 Number of nodes and the per-node failure rate remain the same

 Use of advanced design and error handling techniques (multiple cores

on a chip) may maintain low per-node failure rate with more

processors per node

 Failures during checkpointing/recovery do not have a

significant effect

 Duration of checkpointing/recovery is much smaller than computation

interval

 Effects of failures during computation/recomputation dominate in

large-scale systems

Results – Coordination Effect (1)

 Coordination does not affect system performance

significantly

 Identical exponentially

distributed quiesce times

assumed for all processors

 Impact of coordination is

logarithmic in the number

of processors and scales well

Useful work fraction with coordination

(checkpoint interval=30min)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

16
77

72
16

67
10

88
64

26
84

35
45

6

1.
07

4E+0
9

number of processors

U
s

e
fu

l
w

o
rk

 f
ra

c
ti

o
n

MTTQ=10s

MTTQ=2s

MTTQ=0.5s

Results – Coordination Effect (2)

Useful work fraction with coordination and timeout

(MTTF per node=3yrs, checkpoint interval=30min)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

8192 16384 32768 65536 131072 262144

number of processors

U
s

e
fu

l
w

o
rk

 f
ra

c
ti

o
n

no coordination

no timeout

timeout=

120s

timeout=

100s

timeout=

80s

timeout=60s

40s

20s

 Combination of timeout and coordination behaves like a

probabilistic checkpoint-abort

 Small timeouts hurt the useful

work fraction

 Large timeouts do not significantly

degrade performance

 System performance insensitive

to timeout value, when timeout

is not less than a threshold value

(120s in our experiment)

Results – Correlated Failures

Due to Error Propagation

 No significant performance

degradation

 Correlated failures occur during

recovery

 Recovery time much shorter

than computation interval

Due to common cause

 Large performance degradation

 e.g., ~51% reduction in useful work

fraction for system with 256K

processors and MTTF of 3 years per

node

Useful work fraction (MTTF per node=3yrs,

correlated failure

coefficient=0.0025,correlated failure

factor=400, checkpoint interval=30min)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

8192 16384 32768 65536 131072 262144

number of processors

U
s

e
fu

l
w

o
rk

 f
ra

c
ti

o
n

without correlated

failure

with correlated

failure

Useful work fraction (MTTF per node=3yrs, number of

processors=256K, correlated failure window=3min)

0.490

0.500

0.510

0.520

0.530

0.540

0.550

0.560

0.000 0.050 0.100 0.150 0.200

Prob. of correlated failure

U
s

e
fu

l
w

o
rk

 f
ra

c
ti
o

n

frate_correlated_times=400

frate_correlated_times=800

frate_correlated_times=1600

Conclusions

 A model of coordinated checkpointing for supercomputers

 There exist an optimum number of processors for which total

useful work is maximized

 Useful work fraction is relatively small due to failure effects

 Failures during checkpointing/recovery do not have a

significant effect

 Correlated failures degrade the performance and limit system

scalability

 Coordination effect

 System performance insensitive to the timeout value unless timeout is less than a

threshold value

Related Work

 Checkpointing Models
 [Young74]: assumes MTBF is very large compared to the checkpoint and

recovery time

 [Daly03]: does not model the coordination overhead

 [Kavanagh97]: does not consider failures during checkpointing and recovery

 [Plank99]: considers permanent failures

 [Elnozahy04]: does not consider coordination failure or correlated failure

 [Vaidya95]: does not consider scalability of checkpointing protocol

 Checkpointing in Large-Scale Systems
 [Bronevetsky03]: compiler-based technique for coordinated checkpointing

 [Agarwal04]: adaptive incremental checkpointing for scientific applications

 Failure Study in Large-Scale Systems
 [Zhang04]: shows existence of temporal and spatial failure correlation

