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Motivation

 New generation of supercomputers emerge to meet  

computational demands of high-performance scientific 

applications

 IBM BlueGene/L scales up to 64K dual-processor nodes

 Large number of nodes makes system more vulnerable to 

errors

 Synchronous checkpointing (and rollback) widely used in 

supercomputers to recover from failures

 How does checkpointing  scale to several hundred thousand 

processors?

 Some usual assumptions no longer hold for large-scale 

supercomputers

 Computation interval and checkpoint overhead much smaller than MTBF

 Failure independence

 Negligible overhead of checkpointing coordination



Contribution

 Model (SAN) of a coordinated checkpointing for a large-scale 

(hundreds of thousands of nodes) supercomputer 

 Study system scalability, reliability, and performance

 Analyze impacts of: (i) transient failures during computation and 

checkpointing/recovery, (ii) correlated failures, (iii) coordination overhead

 Major findings

 There exist an optimum number of processors for which useful work is 

maximized

 e.g., 128K processors (for MTTF per node of 1 year and MTTR of 10 minutes)

 Useful work fraction is relatively low due to the effect of failures

 e.g., over 50% of the time is spent on handling failures (128K processors 

and MTTF per node of 1 year)

 Correlated failures degrade the performance and limit system 

scalability



Target System (1)

 Architecture

 Multi-processor nodes

 Compute nodes and I/O nodes

 Two-step data transfers: file system <-> I/O nodes <-> compute nodes

 Checkpoint protocol

 System-driven, synchronous, globally coordinated

 Checkpoint data: memory image of application and OS (files not preserved)

 Timeout-abort

 No overwrite of the previous checkpoint unless current checkpoint 

completes successfully

master

node1

node2

node n

quiesce

ready

chkpt

done

proceed



Target System (2)

 Application

 Each processor runs one task of a parallel application

 Bulk Synchronous Parallel model: multiple tasks behave as a single unit

 I/O write cannot be quiesced until it completes

 Failure model and assumptions

 Transient failures of compute and/or I/O nodes recoverable from a checkpoint

 On a processor failure the whole system rollbacks to the last checkpoint and 

resumes the computation

 Checkpointing  coordinated by a maser node

 On master failure, checkpoint protocol is aborted (if it was in progress) and the 

master resumes from the initial state

 Correlated failures  

 Due to error propagation (only)

 Due to common cause, e.g., increase of environment temperature



Model Composition
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Simulation Experiment Setup

 Modeling and simulation environment: Mobius

 Steady-state simulation (transient period of 1000 hours) 

 Simulation experiments

 Base model (without considering coordination or correlated failures)

 Effect of checkpoint coordination

 Impact of correlated failures

 Performance metrics

 • Useful work fraction:

 Fraction of time the system makes progress towards job completion 

Work repeated due to failures is excluded

 • Total useful work: 

 (useful work fraction) x (number of compute processors)

 Indicates how many processors are required to achieve the same 

performance assuming failure-free computation



Results – Base Model (1)

 There exist an optimum number of processors for which 
total useful work is maximized

 e.g., 128 K processors for Chkpt interval 30 min, MTTR 10 min, 
and MTTF 1 yr per node

 adding more processors hurts system performance due to failure 
effects . 

 The useful work fraction 
is relatively small

 Less than 50%, for MTTF 

per node of 1 year

 i.e., more than 50% of 
system resources used 
in checkpointing and 
recovering from failures



Results – Base Model (2)

 For any practical range there is no optimal checkpoint interval 

for which total useful work is maximized

 the theoretical optimum 

is too short for practical 

purposes

 A better approach is to 

partition the system (if 

possible) and checkpoint 

each partition

Useful Work Vs Checkpoint Interval for different 

numbers of processors  (MTTF per node=1 yrs, 

MTTR = 10 mins)

0

20000

40000

60000

80000

15 30 60 120 240

Checkpoint Interval (mins)

T
o

ta
l 

U
s
e
fu

l 

W
o

r
k

  processors = 8192   processors = 16384
  processors = 32768   processors = 65536
  processors = 131072   processors = 262144



Results – Base Model (3)

 Useful work increases as number of processors per node 

increases

 Number of nodes and the per-node failure rate remain the same

 Use of advanced design and error handling techniques (multiple cores 

on a chip) may maintain low per-node failure rate with more 

processors per node

 Failures during checkpointing/recovery do not have a 

significant effect 

 Duration of checkpointing/recovery is much smaller than computation 

interval

 Effects of failures during computation/recomputation dominate in 

large-scale systems



Results – Coordination Effect (1)

 Coordination does not affect system performance 

significantly 

 Identical exponentially 

distributed quiesce times 

assumed for all processors

 Impact of coordination is 

logarithmic in the number 

of processors and scales well
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Results – Coordination Effect (2)

Useful work fraction with coordination and timeout 

(MTTF per node=3yrs, checkpoint interval=30min)
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 Combination of timeout and coordination behaves like a 

probabilistic checkpoint-abort 

 Small timeouts hurt the useful 

work fraction 

 Large timeouts do not significantly 

degrade performance

 System performance insensitive 

to timeout value, when timeout 

is not less than a threshold value 

(120s in our experiment) 



Results – Correlated Failures 

Due to Error Propagation

 No significant performance 

degradation 

 Correlated failures occur during 

recovery

 Recovery time much shorter 

than computation interval

Due to common cause

 Large performance degradation

 e.g., ~51% reduction in useful work 

fraction for system with 256K 

processors and MTTF of 3 years per 

node
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Conclusions

 A model of coordinated checkpointing for supercomputers

 There exist an optimum number of processors for which total 

useful work is maximized

 Useful work fraction is relatively small due to failure effects 

 Failures during checkpointing/recovery do not have a 

significant effect

 Correlated failures degrade the performance and limit system 

scalability

 Coordination effect

 System performance insensitive to the timeout value unless timeout is less than a 

threshold value



Related Work

 Checkpointing Models
 [Young74]: assumes MTBF is very large compared to the checkpoint and 

recovery time

 [Daly03]: does not model the coordination overhead

 [Kavanagh97]: does not consider failures during checkpointing and recovery

 [Plank99]: considers permanent failures

 [Elnozahy04]: does not consider coordination failure or correlated failure

 [Vaidya95]: does not consider scalability of checkpointing protocol

 Checkpointing in Large-Scale Systems
 [Bronevetsky03]: compiler-based technique for coordinated checkpointing

 [Agarwal04]: adaptive incremental checkpointing for scientific applications

 Failure Study in Large-Scale Systems
 [Zhang04]: shows existence of temporal and spatial failure correlation


