Processor -level Selective Replication

Nithin Nakka, Karthik Pattabiraman, Ravishanker lyer
Center for Reliable and High Performance Computing
Coordinated Science Laboratory

{nakka, pattabir, iyer}@crhc.uiuc.edu

Abstract

Full duplication of an entire application
(through spatial or temporal redundancy) would dete
many errors that are benign to the application freine
perspective of the end-user. It has also been $ean
duplication has upto 30% performance overhead and
needs significant introduction of hardware to symetize
the replicas. In order to overcome the drawbacks of
performance overhead and detection of "benign"t&ul
we propose a processor-level technique called 8edec
Replication, which provides the application the abitity
to choose where in its application stream and taawh
degree it requires replication. Recent work on istat
analysis and fault-injection based experiments on
applications reveals that certain variables in the
application are critical to its crash- and hang-fre
execution. If it can be ensured that the computatb
these variables is error-free, then a high degrefe o
crash/hang coverage can be achieved at a low
performance overhead to the application. The Select
Replication technique provides an ideal platfornr fo
validating this claim. The technique is comparediagt
complete duplication as provided in current archbiteal-
level techniques. The results show that with ati9%
less overhead than full duplication selective regiion
detects 97% of the data errors and 87% of the irtsion
errors that were covered by full duplication. Itsal
reduces the detection of errors benign to the final
outcome of the application by 17.8% as comparefiiito
duplication.

1 I ntroduction

System level replication has been a widely used
technique to detect and possibly tolerate tranggmt's in
both commercial and research prototypes. Procdsgek-
replication has also been used recently [1]. Rapbo
can be introduced into the application at compiteetby
duplicating the instructions in the static souroele and
providing code for comparing the outputs of the
duplicated instructions [2]. This has the advanthge the
underlying hardware does not need to be modified.
Additionally, using compiler analysis techniques)lyo
critical portions of the application can be chogenbe
replicated, instead of the entire application. @hewback

of this approach is that it incurs a high memongd an
performance overhead.

The two basic approaches for processor-level
replication are hardware redundancy and time
redundancy (1) Hardware redundand$] — carrying out
the same computation on multiple, independent harew
at the same time and comparing the redundant seajt
Time redundancy [4][6] —executing the same opematio
multiple times on the same or idle hardware. Iinegit
type of redundancy, the underlying hardware is waraw
of the application executing on it. All instruct®mf the
application are replicated and checked for correct
execution. The application cannot choose to use
redundancy for a specific code section and run in a
normal, unreplicated mode for the rest of the cdde.
other words, it is adne size fits allapproach.

Another advantage of selectively replicating an
application is the reduction in detection of premdevel
errors that do not affect the final outcome of the
application. Fault-injection based experiments byoiC
[7], Wang [8] and Saggese [9] showed that 80%-8%% o
the errors did not manifest as errors in the appbo
outcome. Full replication at the hardware level siat
detecting all errors in the processor, even thbse are
benign to correct application outcomes. This le¢adalse
alarms to the operator, which are considered uratgsi
from a safety perspective.

We propose hardware-based selective replication
to achieve the advantages of both software- andivee-
implemented replication. The application can choose
which portions need to be replicated and the degfee
redundancy. This is achieved by compile-time
instrumentation of the application with special GEHE
instructions, an extension to the instruction set
architecture (ISA) to invoke a reconfiguration dfet
underlying hardware and provide the specified levkl
replication.

Recent work by Pattabiraman et al. [7][11] has
shown that it is feasible to identify some critizakiables
in an application, which when in error will cause
application/system failure with a high probabiliased
on this study it was concluded that protecting the
computation of these variables can provide a high

coverage against program failures (craShesd fail
silence Vviolations). Selective replication provides
platform to validate this claim because it allows
replication ofonly those portions of the application that
compute the critical variablesnstead of replicating the
entire application.

This work addresses the following two questions
to provide selective replication:

* Which sections of the code need to be
replicated?
 How can we modify the renaming, issue, and
commit mechanism to handle a specified level of
redundancy for portions of the code?
The mechanism of replication in a superscalar
processor has been detailed and a possible
implementation is presented. The results show that
even though Selective Replication detects about 87%
of the instruction errors and 97% of the data arror
detected by Full Duplication, it incurs only 59%
overhead. Moreover, the detection of errors betogn
the application outcome is reduced by about 18%.

2 What toreplicate

In order to identify thecritical variables we use
the approach similar to that described in [7]. The
criticality of the variables to error-free executiof the
program has been evaluated using metrics lifiedime,
and fanout (definition). It was shown that ideal detectors
placed at locations with high fanout gave higherecage,
where an ideal detector is one that is able toctietey
data error that propagates to the location at witidh
placed. The analysis was done on the program’srdina
dependency graph (DDG). For multiple inputs, faalts
injected into the points that are being evaluated f
criticality (with high fanout, lifetime etc.). Faach input,
the effect of each fault is traced, using the DG that
input, to locations of the program where the pragraay
crash. If the error led the program to a potenti@sh
location, a detector at the critical point can detan
impending program crash. The claim of this worlhat
if the computations of the critical variables cae b
replicated then this can enhance application degdality
very substantially for a small performance overhead
compared to full replication. Moreover, the typef
errors detected are, for the most part, those whuatid
need full duplication or extensive coding to detect

Extraction of the Critical Code Sectianény
part of the application that affects the value dfrigical
variable is a critical code section (consistingcatical
instructions). Any critical code section includes:

L Our aim is to preemptively detect program crastsethey are
not always benign [12].

* Instructions that defineritical variables.

e Instructions that produce a result that is
subsequently consumed bstical instructions.

A reversedepth-first searchalgorithm is used for
automated identification/extraction of instructiotisat
directly or indirectly affect the value of criticabriables.
Using selective replicatioanly these critical instructions
in the program are replicated whereas all other
instructions are executed normally. Due to a cairgtiof
space, we do not present the details of the revdpth-
first search algorithm here, but are presente®4j.[An
important point to note is that when using multiptéical
nodes, there may be an overlap in the instructibas
affect two or more nodes. All such instructionst thffiect
multiple critical nodes need to be replicated amtge for
all nodes, instead of being replicated for eactenod

In summary, the backward slice of the
instruction that defines a critical variable forlesgive
replication is extracted. Backward slicing in atista
program segment is known to be very time-consuming.
Using a dynamic dependency graph the executionfiime
backward slicing is reduced. In addition, callslibyary
functions have not been traced; rather, the efibrary
function is considered a single node in the dynamic
dependency graph.

Formally, let® be the set of critical variables,
and I be the set of all inputd~or an inputi O I, let the
dynamic dependency graph & = (V;, E;) where the
vertices inV; correspond to statements in the dynamic
execution of the program and there is an edge)(in E;
if statementu is executed before statemewtand u
produces a result that is usedvby

For every critical variabl@ 0 ©, letH; = (Vi 5
Ei ¢ be the subgraph @ which is the backward slice of
instructions that affect variablé For each dynamic
instructionw O V; 4 its counterparts, in the static code
segment is found (both of them have the same Pi@®. T
set of static instructions corresponding to the afyic
instructions inV; ¢ is the set of critical instruction$; g,
that need to be replicated for induand critical variable

6.S= U S gis the set of critical instructions for inpiut
600

andS = U S is the set of all instructions in the static
iol

code segment that need to be replicated for allittnp

considered.

In a real implementation a compiler places a
special CHECK instruction before and after each
duplicated instruction to notify the hardware ofeth
change in level of replication (in our simulatior wsert
the check instruction into the dynamic instructgiream

when the first replicated instruction and after tlast
replicated instruction are encoutered). Note thag¢ t
critical instructions can also be consequent tdasher.
In such a case, for each block of contiguous diitic
instructions, one CHECK instruction is placed befand
one after the block of instructions to notify theplication
module of ENTERING into and EXITING from
replication mode.

3 Overview of Selectivereplication

This section describes the selective replication
technique in detail and presents a possible haelwar
implementation in a superscalar processor. Instust
are fetched as in a normal pipeline. The dispatch
mechanism, which allocates reorder buffer entriethe
currently fetched instructions, broadly operatestwo
modes: the unreplicated mode and the replicatecemad
the unreplicated mode, a single copy of each ingStm is
dispatched, renamed, and allocated to the reondiéerb
(ROB). In the replicated moder copies of each
instruction are dispatched, whereis the degree of
replication. If any instructionij, in the replicated code
consumes a value produced by a preceding unregdicat
instruction,j, then all copies of receive their input from
j- If a replicated instructiom; is dependent on another
replicated instructioni,, then the copy of; in every
replica is dependent on the copyipin the same replica.
Thus, the register operands of the instructions are
renamed.

After instruction execution is complete the result
is stored in the ROB itself. When an instructionttze
head of the ROB is ready to commit, all copies & t
instruction are checked to see if they are readyotomit.

of them match the instruction is committed. In tlase of
even a single mismatch appropriate recovery acatem
be taken.

3.1 Mechanism of replication

An important aspect of this work is the
mechanism for selective replication that allows the
application to choose the extent and location of
replication it needs. In this section the impletagion of
selective replication in a modern superscalar dwrder
processor is described. Implementing selectivdaafbn
in a superscalar processor involves modifying the
instruction fetch and dispatch, register renamiaggd
commit mechanisms of the processor. The block dragr
in Figure 1 shows a processor pipeline (top offitpere)
with the modifications required for selective replion
(bottom of the figure).

Before describing the actual mechanism of
execution in the replicated mode, it is helpfuldiscribe
some key hardware data structures that would bé imse
the execution. Theegister alias table(RAT) is used in
dynamic scheduling in the rename state of pipelibe.
contains as many entries as the number of architdct
registers. Thé" entry in the RAT contains information of
the source of the most recent value of registdf the
most recent instruction producing registethas been
committed to architectural state, theentry in the RAT
contains a special sentinel value indicating thatvalue
of a register is ready and available in the archital
register file. If the most recent instruction proihg
registeri is still executing and is in the ROB, the entry in
the RAT contains the index of the ROB entry coritajn
the instruction. Thus the RAT holds information thé

If all copies are ready to commit, then their res@tored (read-after-writ§ ~ RAW dependencies among
in their corresponding ROB entries) are comparéall | instructions.
I-Cache H——3Fetch——F—{Rename —Issue— Exec — WB H—F3 Commit
Replicated| |Replicated Commit
Fetch Rename Augmentation

Figure 1: Modificationsto pipeline for selective replication

The load/store queue (LSQ) contains entries for
all the memory access instructions (loads and stdhat
are currently in-flight. The LSQ can be used toimjze
loads by forwarding the data from the immediately
previous store, if both generate the same effectildress
and are writing the same number of bytes.

The replicated fetch mechanism shown in Figure
1 provides multiple copies of a fetched instructiorthe
dispatcher. The detailed hardware implementatiothisf
mechanism is presented in Section 4.

Replicated Rename The mechanism for
renaming multiple copies of an instruction, basedtie
replica index, is shown in Figure 4. If a replichte

instructiond reads from registe®x, the RAT entry fordx
is looked up. If the value ofx is available in the
architectural register file then all copiesddet the value
for this source operand from the architecturalstegifile.
Otherwise, the value o$x is the result of an in-flight
instruction,p, that is allocated the ROB entky

REPL MORE

[1] o] 1] [ROB Instruction Entry |

REPL_INDEX

3—RAT#3

D -
-

— RAT#H2

0—|RAT#0| —*|RAT#1

Figure 2: Mechanism for register renaming of
multipleinstructions

If p is an unreplicated instruction (as indicated
by the REPL bit in entrk) for all replicasd,, dy, ..., d;
the source operand register is renamed to read érany
k. If p is a replicated instruction the register operérdf
d; is renamed to read the output from instrucpigrwhere
i=1,2,3...r.

Instructions issue to functional unityVith the
above renaming mechanism the issue of instructions
functional units can be done without any modifioatto
the already existing scheduling mechanism.

Execution and Storing the ResultThe
instructions in the unreplicated mode are alwayexceted
in a noral out-of-order fashion. The instructioms the
replicated mode also execute in an out-of-ordehidess
though it complicates the mechanism to detect the
completion of all copies of the instruction. It pides the
benefits of superscalar out-of-order execution by
exploiting the instruction level parallelism andii@asing
the utilization of the multiple functional units alable
for instruction execution.

The ROB need not be empty before switching
from the unreplicated mode to the replicated mddes
can be done by maintaining the information in thgister
alias table across the two modes. In other wofdmé of
the replicated instructions reads from a registhichv is
produced by a previous unreplicated instructioni¢ivlis
not committed and still holds an entry in the ROBEnN
all copies of the replicated instruction read frtiva result
of the same unreplicated instruction. For depenidsnc
among instructions within the replica, a replicated
instruction that is dependent on another replicated

instruction gets its input from the producing instion in
the same replica.

For switching from the replicated mode to the
unreplicated mode, however, the constraint thatRed
is empty before the switch is maintained. Thisesduse
an unreplicated instruction, that is dependent on an
instruction j in the preceding replicated code, is
effectively dependent on all the copieg.dBefore issuing
i, all copies of must have completed execution and their
results matched so as to forward the result toungoni.

After an instruction has completed execution in
the functional unit, the result is stored in the BR@ntry
corresponding to that instruction itself. For meynor
access instructions, the result of the addressrgtoe is
stored in the ROB entry.

Commit AugmentationAs shown in Figure 1,
the commit unit is augmented to vote on the resoits
multiple replicas to support selective replicatiobhe
commit stage is augmented to vote on the Each ROB
entry contains a field to indicate if the instroctiis ready
to commit or not. Committing unreplicated instrocts
follows the same procedure as committing an instroc
in a pipeline without support for replication.

Among replicated instructions two classes of
instructions, memory access instructions and tbg ege
treated separately. When a replicated memory access
instruction at the head of the ROB has completed
execution (generated effective address), all ofcdpies
are checked to see if they have completed execulion
not, the commit action is postponed to the nexiecyit
all r copies have generated their effective addresses
(which is stored in the result field of the ROB rgit
these results are compared against each othéerH ts a
mismatch, an error is raised and appropriate regove
action is taken. If the effective addresses ofratbpies
match, then a single memory access request igcene
memory subsystem, on behalf of all the replicasis Th
reduces the pressure on the memory bandwidthobesl|
the coverage over possible errors in memory access.
When this memory access is complete, all copiethef
instruction are ready to commit. In case of a ldaldata
read is written to the architectural register filde entries
from the ROB and the LSQ for all copies are dealied.
When any other replicated instruction is at thedhefthe
ROB, all of its copies are checked to see if theyraady
to commit. If allr copies are ready to commit, the result
fields in their ROB entries are compared to vetife
computation. If allr fields match, the instruction is
committed and the result is committed to the aechitral
register file.

4 Hardwar e implementation

The mechanism to dispatch multiple copies of
instructions is depicted in Figure 3. Instructioase
fetched into a temporary fetch buffer (temp_fetalf i
Figure 3). Depending on the degree of replication
different number of copies of the instruction shibble
dispatched. In a processor that does not support
replication the input to the dispatch mechanism ld/dae
the instructions in the temporary fetch buffer. Sde
instructions are dispatched to the reorder buféeseld on
the space available in the ROB and the dispatchhwid
(the maximum number of instructions that can be
dispatched in one clock cycle) of the processor.

In the processor with selective replication
depending on the degree of replication requestethby
3

2

temp_fetch_buf= |:3
+

application, the instructions that are dispatchedthie
current clock cycle need to be determined. Theicatd
instructions that can be dispatched in the curmdotk
cycle are placed in the real fetch buffer (fetcH_bu
Figure 3). The degree of replication is stored I t
register REP_LVL. REP_LVL - 1 (calculated using the
adder shown in Figure 3) is used as an index ihe t
combinational logic that starts with 0 when thesenb
replication. Consider a processor with

« fetch width, max. number of instructions fetched
in a clock cycle =4 and

e dispatch width, max. number of instructions
dispatched in a clock cycle = 4

1 0

1

|
1

fetch_buf=| 3 2

1 0

Figure 3: M echanism for dispatching multiple copies of instructions

Based on the value of REP_LVL, the entries in
the temp_fetch_buf are stored into the fetch_bughesvn
in Figure 3. The mechanism implements the follgvin
rules:

e If REP_LVL = 1 (no replication) all entries in
temp_fetch_buf are copied to corresponding entries
in fetch_buf.

 If REP_LVL = 2 (duplication) two copies of the
instructions in entry 0 are passed to the entriaad
1 in fetch_buf and two copies of entry 1 in
temp_fetch_buf are passed to the entries 2 and 3 in
fetch_buf. Only the entries 0 and 1 in the
temp_fetch_buf are invalidated and there is space i
temp_fetch_buf for 2 more instructions to be fetthe
in the next clock cycle.

This case is depicted in Figure 4. The red linesash
the duplicated instructions being routed from the
temp_fetch_buf to the fetch_buf. The cases for
REPL_LVL = 3 and 4 are similarly defined.

The ROB is augmented with a bit (referred to as
the REPL bit) to indicate whether it contains a
replicated or an unreplicated instruction. ROB
designs are of two types: one in which the resfilt o
the instruction in the ROB entry is written to segia
physical register file, and the other in which thsult
is written to the ROB entry itself. The replication
mechanism is presented assuming an ROB design
where the results are written to the ROB entnffitse
though it is possible to extend the technique Far t
design where a separate physical register filesesiu
to store the results of instructions. The additiona
hardware required in the context of RISC architextu
is described (A RISC architecture uses load/store
instructions to access memory and arithmetic
instructions whose destination is a register). The
RAT and commit control logic for the unreplicated
mode is the same as that used in the normal
superscalar out-of-order pipelines.

+

wNRo
-

REPL_LVL=2

fetch_buf={ 1 1 0 0

Figure 4: Example of selective replication with areplication level of 2

5 Evaluation Methodology

The software-implemented functional simulator
implements a MIPS-based SuperScalar processorsifttie
outorder processor performance simulator of the
SimpleScalar Tool Set [14] has been augmented to
simulate the RSE with embedded hardware modsies.
outorder simulates an out-of-order pipelined processor.
The main loop of the simulator is executed onceefach
target (simulated) machine cycle. Currently, CHECK
instructions are embedded at runtime, and not atpde
time, as mentioned in Section 2. At the time of an
instruction fetch, the simulator determines whether
insert a CHECK instruction before it into the insttion
stream. It does this either by decoding the insitvacor by
monitoring the fetched instruction address. This is
equivalent to the CHECK instruction being embedded
the static instruction stream of the program.

5.1 Workload for Evaluation

Evaluation of the performance overhead and error
coverage is based on the Siemens suite of bencemark
These benchmark applications are representativealf
world programs and contain a few hundred lines axfec
[15]. They provide a rich input set with an avera§&400
inputs for each benchmark. For each benchmark, we
choose the first 100 inputs from its input set. Each
inputi the dynamic dependency grafh, of the program
is generated. For each critical variable, its baakslice
in G; is calculated. The set of nodes (instructions)hia t
backward slice are critical instructions that ndedbe
replicated. In a similar manner, the set of crltica
instructions for each critical variable are exteact The
union of these different sets of critical instrocis is
calculated. This procedure is repeated for eachtinm
the chosen set of 100 inputs. The set of criticsiructions
that is replicated is the union of the sets ofiaalt

instructions for all the inputs. Table 1 gives aebr
description of the Siemens suite of benchmarks.

Table 1: Siemens suite of benchmar ks

Benchmark | #loc | Description
A priority scheduler for multiple job
tasks. Given a list of tasks finds an

optimal schedule

Same operation as Schedule but a
different implementation.

Breaks the input stream into a serie
of lexical tokens according to
prespecified rules.

Using the tokenizer interface Breaks
the input stream into a series of
lexical tokens according to

schedule 412

schedule2 373

n

print_tokens 727

print_tokens2| 569

prespecified rules.

5.2 Perfor mance Over head

The software-level implementation evaluates the
performance overhead incurred by the framework and
modules in terms of additional processor cycles.

5.2.1 Overhead categories

The experiments evaluate the following two kinds of
overheads:

1. Framework Overhead.This is the overhead incurred
by the processor due to the presence of the framkewo
without any modules instantiated. In such a cdse, t
framework does not perform any checking and is
decoupled from the pipeline. The overhead incuimed
the performance of the application is due to the
memory arbiter introduced to arbitrate memory
accesses of the processor and the RSE.

2. Performance Overhead Due to Selective Replication.
The performance overhead incurred by the applinatio
is measured in terms of the number of additional

cycles taken to execute the application in comparis

to the baseline processor (without the framewadrk).
order to show the need for selective replication, a
randomized replication mechanism (RANDOMREP)
is also evaluated where instructions are randomly
replicated. So as to make a fair comparison between
the randomized and selective replication approaches
the fraction of replicated instructions is maintdn
ensuring that the overheads are approximately equal

There can be other sources of overhead due to the
additional hardware introduced in the processoe Th
additional circuitry will increase the capacitiveatl

on pipeline nodes. This will in turn lead to a klig
increase in the clock cycle time. Because we airegdo

a functional simulation this factor of overheadnist
included in our experiments.

522 Results

Table 2 and Figure 5 show the overheads
incurred, for different applications, due to thanfrework
with selective replication (SELREP) in comparisoithw
full replication (FULLREP). The overhead of the
framework with no modules instantiated is also smow
(Framework). We observe that the overhead averaged
all applications and combinations of modules is1%3.
lower than the overhead due to full replication.

Table 2: Overhead for different configurations of

modules
Framework SELREP FULLREP
schedule 9.2% 11.9% 36.2%
schedule2 8.1% 11.5% 31.6%
print_tokens 6.9% 20.9% 47.7%
print_tokens2 7.9% 21.8% 46.1%

An average over all the Siemens benchmarks
shows that the overhead is 16.5% for SELREP. For
SELREP the overhead is due to the execution ofichtgl
instructions in replicated mode, and due to thetcdwi
between replicated and unreplicated modes. Theheaer
varied from application to application. For exampier
schedulethe overhead for SELREP was 67.1% lower
whereas forprint_tokens2it was 52.7% lower than full
replication (FULLREP).

5.3 Error Analysis

In this section we describe the fault-injection
analysis of the error coverage provided by Selectiv
Replication. Firstly, the fault model is describedd the
classification of the outcomes of each fault-inj@ect
experiment is presented. Independent experimergs ar
conducted for each benchmark from the Siemens. suite

50%

@ Framework BSELREP OFULLREP

40% -
30% -
20% —

10% -

Overhead

0%

schedule schedule2 print_tokens print_tokens2

Figure 5. Performance overhead for Selective
Replication

531

An important component of the design of a fault-
injection experiment to evaluate error coveragiésfault
model. It describes the faults that are being tadyby the
error-detection mechanisms and against which treese h
been evaluated. The faults considered in our exparis
are as follows:

Fault model

» Instruction Errors Errors in instruction binary while
the instruction is being executed in the pipelifleese
errors can occur during the transfer of the instonc
from the cache to the pipeline or while the indtiarc
is being decoded in the pipeline.

« Data Errors. Errors in the output of a functional unit
that may be written to a register or used as asttiie
address for a memory access instruction. ECC in
memory, cache, or registers does not protect agains
these errors. This is because the correct ECC warild
calculated on the wrong data and written to reggste

This fault model also includes some software
faults such asssignment/initializatiorfan uninitialized or
incorrectly initialized value is used) ahecking(a check
performed on the variable fails, which is equivaleman
incorrect value of a variable being used). The rerro
detection mechanisms detect the symptoms of errors,
irrespective of whether they occur in software ardware.

5.3.2 Fault Injection Outcomes

The SimpleScalar sim-outorder performance
simulator simulates the timing information for in&ttions
executing in a pipeline; i.e., it maintains theoimhation of
which instructions are present in each stage opipeline
in any given cycle. The simulator, however, compute
results of executing the instructions in the dispadtage,
when it allocates an entry in the reorder bufferttie
instruction. It detects and reports any exceptibas result
out of the execution of the instruction at the disp stage
itself, without waiting until the commit stage. Tdjuthe

processor simulator does not support precise except

The repli

when the instruction has arrived at the commitestaigd is

cation mechanism, however, performs trecks
into

the various categories tabulated in Table

Table 3: Fault Injection Outcomes

Outcome

Description

Error Impact

Replication-Detection

Errors leading to a mismatch between
replicas.

hBo not raise an exception, but are detected byaker in
the commit stage.

Exception Raised

Errors that raise a simulator exception in
same instruction (PC) as the injected PC.

hRaise an exception in the commit stage of the iag
instruction. Architected state would not be coraghby
these errors before the exception.

ready for commit. Considering this behavior of the
processor the fault injection outcomes have begarozed

L

Retrospectively-Detected

Errors that are not detected by replication,
are injected when the processor is in replicg
mode, and raise a simulator error in a differ
instruction than the one that was injected into.

b@an be detected by the replication if the instnrcthad
tdxben allowed to complete. However, the architestate
embight have been corrupted by then.

System Detection

Errors that are detected by the simulator
occur in a different instruction than the inject
instruction.

bltetected by the system, but the architected staggtn
ethiave been corrupted by the instruction before yistem
detects these errors.

Not Manifested Errors that do not cause simulator errors aridlo not cause any visible effect on the outcomeheaf
hangs, and the output files match. program.

Program Hang Errors in which the simulator times out and kijll<Cause the simulator to wait indefinitely for thegram to
the program complete

Fail-silent Violation Errors that do not cause simulator errors| @ystem does not detect these errors, but resulini

timeouts, but result in the output files, diffe
from that of the golden run.

rgncorrect program outcome. Potentially, most danger
of the error categories

Benign Error Detection

Errors that are “Not Manifested” in the baseli
case but are detected by the detection mechal

n®o not affect application outcome and hence neédead
nidetected

Translating the simulator behavior to that of a
real processor, let us assume that the simulates dot
raise an exception at the dispatch stage but alliwes
instruction to proceed to the commit stage.

For theException Raisedategory of errors the
exception must be reported when the injected instm
is about to commit. If the injected instruction was
replicated, the replication mechanism could havealed
a mismatch in the results of the instruction atabemit
stage before the exception is raised. Thereforea feal
processor system, the subsetExfception Raiseerrors
where the injected instruction is replicated can be
included into theReplication Detectiortategory. The rest
of the errors are detected by the system through an
exception. TheSystem Detectionategory also contains
errors that raise a system exception. However, we
continue to maintain the distinction between the
exceptions raised at the injected instruction dnde that
are raised at a later instruction. If the systefsera an
exception at the injected instruction itself, then
architectural state is not updated. We categorimset
outcomes ag&xception RaisedBut if the exception was
raised at a later instruction, the architecturatestwould
have been updated, possibly with incorrect dataes&h
outcomes arS&ystem Detection

For the errors belonging to thHeetrospectively
Detectedcategory the exception is raised in a different
instruction, even though the injected instructiog i

replicated. This is because after the injectedriicibn
completed execution and before it reached the commi
stage, the simulator dispatches and executes the
instructions following it and raises an exceptiarone of
these succeeding instructions. Again, in a reatgssor

the replication mechanism can detect this categdry
errors at the commit stage.

5.3.3 Error metrics

The two metrics derived from the fault injection
outcomes are the percentage of errors detectechdy t
technique and percentage of false positives, wisgre
error that is benign in the baseline is detectedthsy
technique. For any technique it is desirable toehthe
most sensitive detection possible and as few false
positives as possible, even though these are ctngi
goals.

534

Errors belonging to each type mentioned in Seciiénl
are injected. Table 4 presents the detection bgcBeé
replication (SELREP), averaged over the application
when 50 critical variables are used to select ttitécal
instructions to be replicated. The detection okst#le
replication is compared to the outcomes in the Ibsse
case, when randomized replication (RANDOMREP) is
used and when full duplication (FULLREP) is used.

Error coveragefor instruction errors

These results show that selective replication of
instructions affecting 50 critical variables degeetbout

87% percent of the faults detected by FULLREP. Yet benign error detection scenarios as compared tb ful
incurs 59.1% less overhead and leads to 17.8% fewer duplication.
Table 4: Resultsfor instruction error injection with SEL REP

o Configuration | paseline | RANDOMREP | SELREP FULLREP
utcome

Activated 489 449 504 500
Not Manifested 41.8% 30.3% 19.0% 18.0%
Replication Detection 0.0% 50.9% 62.5% 71.2%
Exception raised in same instruction 29.2% 24.8% 2.0% 0.0%
Exception raised in different instruction 40.1% 18.4% 4.2% 0.0%
Program Hang 8.8% 4.2% 1.7% 0.1%
Fail Silence Violation 21.9% 7.9% 1.9% 0.6%
Benign Error Detection 0.0% 45.9% 48.5% 59.0%

random replication is used, the system detects af7#hte
errors in a different instruction, which are difflt to
recover from. In the case of selective replicatithis
contributes to only 4.2% of the errors.

Figure 7 shows the percentage of fail silence
violations and program hangs that occur when ingtn
errors are injected and when different types ofication

In Figure 6, the y-axis shows the different
outcomes from the injection of instruction errorfie x-
axis shows the percentage of errors that fall ieséch
outcome category. From Figure 6 we can see that
FULLREP detects about 71.2% of the manifested srror
The rest of the errors raise an exception at thectied

instruction itself and hence can be detected bysylséem
and recovered easily. Even though selective repdica
has a much lower overhead than full duplicatiodgitects

62.5% of the manifested errors, whereas random
replication detects only 50.9% of the errors. When

[ZFull Rep MSELREP O Random O Baseline|

Benign Error 45.9%
Detection 48.5%

59.0%

Exception Raised in 17.0%
different instruction 4.2%

0.0%

46.9%

28.3%
Exception Raised in 5.9%
same instruction 2.0%
0.0%

— . 50.9%
Replication Detection 62.5%
71.2%

|
0% 10% 20% 30% 40% 50% 60% 70% 80%

Figure6: Instruction error injection results

5.35 Error coveragefor dataerrors

Table5 summarizes the results of injecting data

errors (errors into the output of a functional wwiiten it is
generating the result of an instruction). We seat th
FULLREP detects all the errors. This is becausénjest
the result of an instruction in only one of theliegs and
vote over the result of each replicated instructiBimce
all instructions are replicated in FULLREP it caetett
all data errors. However, it is important to ndiatteven

Fail Silence Violation

mechanisms are employed. Full Duplication is alole t
prevent most of the fail-silence violations and gyeon
hangs. Selective Replication is better than randedhi
replication but worse than full replication in detiag
both fail silence violations and program hangs.

14.5% ‘

10.4%

4.3%
Program Hang
1.2%

0.1%

0% 2% 4% 6% 8% 10% 12% 14% 16%

[Full Rep M SELREP ORandom ClBaseline|

Figure 7: Fail silenceviolationsand program hangs for

instruction errors

though only a fraction of the instructions are iegiked in
selective replication it detects about 97% of aliaderrors
also. From the last row in Table 5 we see thatHRepl
detects all the data errors that were Not Manitegtethe
Baseline case, whereas SelRep decreases thisicietef:t
errors benign to the application outcome by mownth
6%.

Table5: Fault injection resultsfor datainjection

Outcome Configuration Baseline | SELREP | FULLREP
Activated 490 477 477
Not Manifested 44.6% 3.0% 0.0%
Replication Detection 0.0% 97.4% 100.0%
Exception raised in different instruction 72.2% 1.6% 0.0%
Program Hang 2.3% 0.1% 0.0%
Fail Silence Violation 25.5% 0.9% 0.0%
Benign Error Detection 0.0% 93.8% 100.0%

6 Related work

Replicated execution for fault-detection and
tolerance has been investigated extensively botthet
application and hardware level. At the applicatievel,
instructions in the code segment are duplicated amed
expected to execute on the idle hardware in suplersc
processors. Error Detection Using Duplicated
Instructions (EDDI)[2] duplicates of original instructions
in the program but with different registers andiafles.
SWIFT [25] is an application-level duplication
mechanism based on EDDI. I&rror Detection by
Diverse Data and Duplicated Instructions (H]D [16]
two “different” programs with the same functionglibut
with different data sets, are executed and thdjpuis are
compared. The “different” programs are generated by
multiplying all variables and constants in the ora
program by a diversity factde

Duplicated at the application level increases the
code size of the application in memory. More impotty,
it reduces the instruction supply bandwidth fronmmey
to the processorEDDI can possibly be extended to
support selective replication by instructing thenmpier
which portions of the application need to be regibd.
EDY has to execute two versions of the same programs
and has an effective overhead of more than 10086esi
both the applications have to be executed and tesirts
collected and compared.

In the realm of commercial processors Tandem’s
(now HP) Integrity S2 [16] fault tolerance platform
provided triple modular redundancy (TMR) in all
hardware components and synchronizing the repticate
processors at the interrupt-level. The IBM G5 pssce
[17] provides duplicate |- and E- units to provide
duplicate execution of instructions. The procesgor
supported by a hierarchical recovery mechanisnm fitee
instruction-level extending upto the system levEéb
support the duplicate execution, the G5 is resttidb a
single-issue processor and incurred 35% hardware
overhead.

In experimental research simultaneous
multithreading (SMT) [19] and the chip multiprocess
(CMP) architectures have been ideal bases for spade

10

time redundant fault-tolerant designs because eir th
inherent redundancy. In the AR-SMT architectureltfau
tolerance is achieved by executing two copies efsime
program on an SMT processor [20]. A later work
develops similar concepts in the context of CMPH.[th
simultaneously and redundantly threaded processors
(SRT), AR-SMT s further enhanced by checking only
instructions whose side effects are visible beyadmel
boundaries of the processor core. This allows loose
coupling between the redundant threads [22]. This
modified SMT-based fault-tolerant design is subsediy
extended in simultaneously and redundantly threaded
processors with recovery (SRTR) to include reco\Bty
Another fault-tolerant processor architecture ispmsed

in the DIVA design [3][4]. DIVA comprises an
aggressive out-of-order superscalar processor alithga
simple in-order checker processor. The checkergssmr
verifies the output of the complex out-of-order qgassor
and triggers a recovery action when an inconsigtésic
found. Microprocessor-based introspection (MBB3] is

a time redundancy technique, to detect transienitsfa
MBI achieves time redundancy by scheduling the
redundant execution of a program during idle cyéfes
which a long-latency cache miss is being serviéaan
though full duplication at the processor-level Hsesen
believed to have little or no performance overhgad,
and [23] have reported upto 30% overhead. SLICHK |26

a SRT based approach to provide partial replicatioan
application, compared to this approach we do ngtor

a multi-threaded architecture for the replicatibrstead,
this paper presents modifications to a generalrsopkar
processor to support partial or selective replaratf the
application.

The basic principle of fault-tolerance employed
in all the previous techniques that have been diseli is
replication. This is also the focus of this papBut a
major difference is that none of the previous tégphes
provide a mechanism to dynamically configure thesle
of replication according to the application’s dehamfhe
application also does not have a choice of noficafg
part of its code. This requires providing an irded to the
application, either at the high-level programming
language or at the assembly level, to invoke amdigare
the replication mechanism at run-time. This is mh&or
contribution of this paper.

7 Conclusion

In this paper we have demonstrated an approach
to extract sensitive sections of code that carebergvely
replicated to enhance the reliability of the apgtiion,
instead of replicating the entire application. Wavd
given a detailed design and evaluation of the nmasha
to support this selective replication at the preoes
architecture level. The results show that with dt&E896
less overhead than full duplication of all instians we
can cover 97% of the data errors and 87% of the
instruction errors that were covered by full dugtion.

An important advantage of the selective replicat®othat
reduces the detection of errors benign to the finddome

of the application by 17.8% as compared to full
duplication.

REFERENCES

[1] R. K. lyer, N. Nakka, Z. T. Kalbarczyk, and S. Mitr
“Recent advances and new avenues in hardware-level
reliability support,”IEEE MICRQ vol. 25, no. 6, pp. 18-
29, Nov.-Dec. 2005.

[2] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Error
detection by duplicated instructions in super-gcala
processors,”|[EEE Transactions on Reliability vol.
51(1), pp. 63-75, Mar. 2002.

[3] C. Weaver and T. Austin. “A fault tolerant approgoh
microprocessordesign,” in Proceedings of the
International Conference on Dependable Systems and
Networks July 2001, pp. 411-420.

[4] T. Austin, “DIVA: A reliable substrate for deep
submicron microarchitecture design,” Rroceedings of
the Thirty-Second International Symposium on
Microarchitecture November 1999, pp. 196-207.

[5] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transien
fault recovery using simultaneous multithreading”
Proceedings of the Twenty-Ninth Annual Internationa
Symposium on Computer Architectuiday 2002, pp.
87-98.

[6] J. Ray, J. C. Hoe, and B. Falsafi, “Dual use of
superscalar datapath for transient-fault detectonl
recovery,” in Proceedings of the Thirty-Fourth Annual
International Symposium on Microarchitectur&ustin,
Texas, Dec. 2001, pp. 214-224.

[7] G. Choi, R. lyer, and V. Carreno, “FOCUS: An
experimental environment for validation of fault
sensitivity analysis,IEEE Transactions on Computers
vol. 41, no. 12, pp. 1515-1526, Dec. 1992.

[8] N. J. wang, J. Quek, T. M. Rafacz, and S. J. Patel,
“Characterizing the effects of transient faultsahigh-
performance processor pipeline,” iRroceedings of
Dependable Systems and Netwp2&04, pp. 61-70.

[9] G. Saggese, A. Vetteth, Z. T. Kalbarcyzk, and Rlyktr,
“Microprocessor Sensitivity to Failures: Control vs
Execution and Combinational vs Sequential Logig,” i
Proceedings of Dependable Systems and Networks
2005, pp. 760-769.

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

K. Pattabiraman, Z. T. Kalbarczyk, and R. K. lyer,
“Application-based metrics for strategic placemerfit
detectors,” inProceedings of Pacific Rim Dependability
Conference2005, pp. 8-15.

M. D. Ernst, “Dynamically detecting likely program
invariants,” Ph.D. dissertation, University of
Washington, Department of Computer Science and
Engineering, August 2000.

S. Bagchi, S. Narayanaswamy, Z. Kalbarcyzk, and. R.K
lyer, “Design and evaluation of preemptive control
signature (PECOS) checking for distributed
applications,” Submitted to IEEE Transactions on
Computers2002.

A.V. Aho, R. Sethi and J.D. UllmanCompilers —
Principles, Techniques, and ToplReading, MA:
Addison-Wesley Publishers, 1986.

D. Burger and T. M. Austin, “The SimpleScalar taet,
version 2.0,” University of Wisconsin-Madison,
Technical Report CS-1342, June 1997.

M. Hiller, A. Jhumka, and N. Suri, “On the placerheh
software mechanisms for detection of data erroirs,”
Proceedings of the International Conference on
Dependable Systems and Networks (DS2002, pp.
135-144.

D. Jewett, “Integrity S2: A fault-tolerant Unix pfarm,”
Digest of Papers Fault-Tolerant Computing: The
Twenty-First International Symposium Montreal,
Canada, pp. 512 - 519, June 25-27, 1991.

T. Slegel, et al. “IBM's S/390 G5 microprocessor
design,”IEEE Micro, vol. 19(2), pp. 12—-23, 1999.

N. Oh, S. Mitra, and E.J. McCluskey, “EDA4I: Error
Detection by Diverse Data and Duplicated Instrujd
IEEE Transactions on Computergol. 51(2), pp. 180-
199, Feb. 2002.

D. M. Tullsen, S. J. Eggers, and H. M. Levwy,
“Simultaneous multithreading: Maximizing on-chip
performance,” in Proceedings of the Twenty-Second
International Symposium on Computer Architecture
June 1995, pp. 392-403.

E. Rotenberg, “AR-SMT: A microarchitectural apprbac
to fault tolerance in microprocessors,”Pnoceedings of
the Twenty-Ninth International Symposium on Fault-
Tolerant Computing Systemkine 1999, pp. 84-91.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream processors: Improving both performasuce
fault tolerance,” InProceedings of the Thirty-Third
International ~ Symposium on Microarchitecture
December 2000, pp. 269-280.

S. K. Reinhardt and S. S. Mukherjee, “Transienttfau
detection via simultaneous multithreading,” in
Proceedings of the Twenty-Seventh International
Symposium on Computer Architectutkine 2000, pp.
25-36.

M. A. Qureshi, O. Mutlu, and Y. N. Patt,
“Microarchitecture-based introspection: A technidoe
transient-fault tolerance in microprocessors,” In

[24]

[25]

[26]

Proceedings of International Conference on Depefalab
Systems and Networkiine 2005, pp. 434-443.

N. Nakka. “Reliability and Security Engine: A
Processor-level framework for Application-Aware
detection and recovery,” PhD dissertation, Depantroé
Electrical and Computer Engineering, University of
lllinois at Urban-Champaign, USA, 2006.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangad, a
D. I. August. SWIFT: Software implemented fault
tolerance. In Proceedings of the3rd International
Symposium on Code Generation and Optimization
March 2005.

A. Parashar, A. Sivasubramaniam, S. Gurumurthi.
“SlicK: slice-based locality exploitation for effent
redundant multithreading,” in Proceedings of theéhl2
Intl., conference on ASPLOS, 2006.

12

