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Abstract 

Full duplication of an entire application 
(through spatial or temporal redundancy) would detect 
many errors that are benign to the application from the 
perspective of the end-user. It has also been seen that 
duplication has upto 30% performance overhead and 
needs significant introduction of hardware to synchronize 
the replicas. In order to overcome the drawbacks of 
performance overhead and detection of "benign" faults, 
we propose a processor-level technique called Selective 
Replication, which provides the application the capability 
to choose where in its application stream and to what 
degree it requires replication. Recent work on static 
analysis and fault-injection based experiments on 
applications reveals that certain variables in the 
application are critical to its crash- and hang-free 
execution. If it can be ensured that the computation of 
these variables is error-free, then a high degree of 
crash/hang coverage can be achieved at a low 
performance overhead to the application. The Selective 
Replication technique provides an ideal platform for 
validating this claim. The technique is compared against 
complete duplication as provided in current architectural-
level techniques. The results show that with about 59% 
less overhead than full duplication selective replication 
detects 97% of the data errors and 87% of the instruction 
errors that were covered by full duplication. It also 
reduces the detection of errors benign to the final 
outcome of the application by 17.8% as compared to full 
duplication. 

1 Introduction 

System level replication has been a widely used 
technique to detect and possibly tolerate transient errors in 
both commercial and research prototypes. Processor-level 
replication has also been used recently [1]. Replication 
can be introduced into the application at compile time by 
duplicating the instructions in the static source code and 
providing code for comparing the outputs of the 
duplicated instructions [2]. This has the advantage that the 
underlying hardware does not need to be modified. 
Additionally, using compiler analysis techniques, only 
critical portions of the application can be chosen to be 
replicated, instead of the entire application. The drawback 

of this approach is that it incurs a high memory and 
performance overhead. 

The two basic approaches for processor-level 
replication are hardware redundancy and time 
redundancy. (1) Hardware redundancy [3] – carrying out 
the same computation on multiple, independent hardware 
at the same time and comparing the redundant results. (2) 
Time redundancy [4][6] –executing the same operation 
multiple times on the same or idle hardware. In either 
type of redundancy, the underlying hardware is unaware 
of the application executing on it. All instructions of the 
application are replicated and checked for correct 
execution. The application cannot choose to use 
redundancy for a specific code section and run in a 
normal, unreplicated mode for the rest of the code. In 
other words, it is a “one size fits all” approach.  

Another advantage of selectively replicating an 
application is the reduction in detection of processor-level 
errors that do not affect the final outcome of the 
application. Fault-injection based experiments by Choi 
[7], Wang [8] and Saggese [9] showed that 80%-85% of 
the errors did not manifest as errors in the application 
outcome. Full replication at the hardware level aims at 
detecting all errors in the processor, even those that are 
benign to correct application outcomes. This leads to false 
alarms to the operator, which are considered undesirable 
from a safety perspective. 

We propose hardware-based selective replication 
to achieve the advantages of both software- and hardware-
implemented replication. The application can choose 
which portions need to be replicated and the degree of 
redundancy. This is achieved by compile-time 
instrumentation of the application with special CHECK 
instructions, an extension to the instruction set 
architecture (ISA) to invoke a reconfiguration of the 
underlying hardware and provide the specified level of 
replication. 

Recent work by Pattabiraman et al. [7][11] has 
shown that it is feasible to identify some critical variables 
in an application, which when in error will cause 
application/system failure with a high probability. Based 
on this study it was concluded that protecting the 
computation of these variables can provide a high 
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coverage against program failures (crashes1 and fail 
silence violations). Selective replication provides a 
platform to validate this claim because it allows 
replication of only those portions of the application that 
compute the critical variables, instead of replicating the 
entire application. 

This work addresses the following two questions 
to provide selective replication: 

• Which sections of the code need to be 
replicated? 

• How can we modify the renaming, issue, and 
commit mechanism to handle a specified level of 
redundancy for portions of the code? 

The mechanism of replication in a superscalar 
processor has been detailed and a possible 
implementation is presented. The results show that 
even though Selective Replication detects about 87% 
of the instruction errors and 97% of the data errors 
detected by Full Duplication, it incurs only 59% 
overhead. Moreover, the detection of errors benign to 
the application outcome is reduced by about 18%. 

2 What to replicate 

In order to identify the critical variables we use 
the approach similar to that described in [7]. The 
criticality of the variables to error-free execution of the 
program has been evaluated using metrics like lifetime, 
and fanout (definition). It was shown that ideal detectors 
placed at locations with high fanout gave higher coverage, 
where an ideal detector is one that is able to detect any 
data error that propagates to the location at which it is 
placed. The analysis was done on the program’s dynamic 
dependency graph (DDG). For multiple inputs, faults are 
injected into the points that are being evaluated for 
criticality (with high fanout, lifetime etc.). For each input, 
the effect of each fault is traced, using the DDG for that 
input, to locations of the program where the program may 
crash. If the error led the program to a potential crash 
location, a detector at the critical point can detect an 
impending program crash. The claim of this work is that 
if the computations of the critical variables can be 
replicated then this can enhance application dependability 
very substantially for a small performance overhead 
compared to full replication.  Moreover, the types of 
errors detected are, for the most part, those that would 
need full duplication or extensive coding to detect.  

Extraction of the Critical Code Sections. Any 
part of the application that affects the value of a critical 
variable is a critical code section (consisting of critical 
instructions). Any critical code section includes: 

                                                 
1 Our aim is to preemptively detect program crashes as they are 
not always benign [12]. 

• Instructions that define critical variables. 

• Instructions that produce a result that is 
subsequently consumed by critical instructions. 

A reverse depth-first search algorithm is used for 
automated identification/extraction of instructions that 
directly or indirectly affect the value of critical variables. 
Using selective replication only these critical instructions 
in the program are replicated whereas all other 
instructions are executed normally. Due to a constraint of 
space, we do not present the details of the reverse depth-
first search algorithm here, but are presented in [24]. An 
important point to note is that when using multiple critical 
nodes, there may be an overlap in the instructions that 
affect two or more nodes. All such instructions that affect 
multiple critical nodes need to be replicated only once for 
all nodes, instead of being replicated for each node. 

In summary, the backward slice of the 
instruction that defines a critical variable for selective 
replication is extracted. Backward slicing in a static 
program segment is known to be very time-consuming. 
Using a dynamic dependency graph the execution time for 
backward slicing is reduced. In addition, calls to library 
functions have not been traced; rather, the entire library 
function is considered a single node in the dynamic 
dependency graph. 

Formally, let 
Θ

 be the set of critical variables, 
and Ι  be the set of all inputs. For an input i ∈ Ι , let the 
dynamic dependency graph be Gi = (Vi, Ei) where the 
vertices in Vi correspond to statements in the dynamic 
execution of the program and there is an edge (u, v) in Ei 
if statement u is executed before statement v and u 
produces a result that is used by v. 

For every critical variable θ ∈ Θ, let Hi,θ = (Vi,θ, 
Ei,θ) be the subgraph of Gi which is the backward slice of 
instructions that affect variable θ. For each dynamic 
instruction w ∈ Vi,θ its counterpart, s, in the static code 
segment is found (both of them have the same PC). The 
set of static instructions corresponding to the dynamic 
instructions in Vi,θ  is the set of critical instructions, Si,θ, 
that need to be replicated for input i and critical variable 

θ. Si = U
Θ∈θ

Si,θ is the set of critical instructions for input i 

and S = U
Ii∈

Si is the set of all instructions in the static 

code segment that need to be replicated for all inputs 
considered. 

In a real implementation a compiler places a 
special CHECK instruction before and after each 
duplicated instruction to notify the hardware of the 
change in level of replication (in our simulation we insert 
the check instruction into the dynamic instruction stream 
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when the first replicated instruction and after the last 
replicated instruction are encoutered). Note that the 
critical instructions can also be consequent to each other. 
In such a case, for each block of contiguous critical 
instructions, one CHECK instruction is placed before and 
one after the block of instructions to notify the replication 
module of ENTERING into and EXITING from 
replication mode. 

3 Overview of Selective replication 

This section describes the selective replication 
technique in detail and presents a possible hardware 
implementation in a superscalar processor. Instructions 
are fetched as in a normal pipeline. The dispatch 
mechanism, which allocates reorder buffer entries to the 
currently fetched instructions, broadly operates in two 
modes: the unreplicated mode and the replicated mode. In 
the unreplicated mode, a single copy of each instruction is 
dispatched, renamed, and allocated to the reorder buffer 
(ROB). In the replicated mode, r copies of each 
instruction are dispatched, where r is the degree of 
replication. If any instruction, i, in the replicated code 
consumes a value produced by a preceding unreplicated 
instruction, j, then all copies of i receive their input from 
j. If a replicated instruction i1 is dependent on another 
replicated instruction i2, then the copy of i1 in every 
replica is dependent on the copy of i2 in the same replica. 
Thus, the register operands of the instructions are 
renamed. 

After instruction execution is complete the result 
is stored in the ROB itself. When an instruction at the 
head of the ROB is ready to commit, all copies of the 
instruction are checked to see if they are ready to commit. 
If all copies are ready to commit, then their results (stored 
in their corresponding ROB entries) are compared. If all 

of them match the instruction is committed. In the case of 
even a single mismatch appropriate recovery action can 
be taken. 

3.1 Mechanism of replication 

An important aspect of this work is the 
mechanism for selective replication that allows the 
application to choose the extent and location of 
replication it needs.  In this section the implementation of 
selective replication in a modern superscalar out-of-order 
processor is described. Implementing selective replication 
in a superscalar processor involves modifying the 
instruction fetch and dispatch, register renaming, and 
commit mechanisms of the processor. The block diagram 
in Figure 1 shows a processor pipeline (top of the figure) 
with the modifications required for selective replication 
(bottom of the figure). 

Before describing the actual mechanism of 
execution in the replicated mode, it is helpful to describe 
some key hardware data structures that would be used in 
the execution. The register alias table (RAT) is used in 
dynamic scheduling in the rename state of pipeline. It 
contains as many entries as the number of architectural 
registers. The i th entry in the RAT contains information of 
the source of the most recent value of register i. If the 
most recent instruction producing register i has been 
committed to architectural state, the i th entry in the RAT 
contains a special sentinel value indicating that the value 
of a register is ready and available in the architectural 
register file. If the most recent instruction producing 
register i is still executing and is in the ROB, the entry in 
the RAT contains the index of the ROB entry containing 
the instruction. Thus the RAT holds information of the 
(read-after-write) RAW dependencies among 
instructions. 

I-Cache Fetch Rename

Replicated
Rename

Issue Exec WB Commit

Commit
Augmentation

Replicated
Fetch

 
Figure 1: Modifications to pipeline for selective replication 

The load/store queue (LSQ) contains entries for 
all the memory access instructions (loads and stores) that 
are currently in-flight. The LSQ can be used to optimize 
loads by forwarding the data from the immediately 
previous store, if both generate the same effective address 
and are writing the same number of bytes. 

The replicated fetch mechanism shown in Figure 
1 provides multiple copies of a fetched instruction to the 
dispatcher. The detailed hardware implementation of this 
mechanism is presented in Section 4. 

Replicated Rename. The mechanism for 
renaming multiple copies of an instruction, based on the 
replica index, is shown in Figure 4. If a replicated 
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instruction d reads from register $x, the RAT entry for $x 
is looked up. If the value of $x is available in the 
architectural register file then all copies of d get the value 
for this source operand from the architectural register file. 
Otherwise, the value of $x is the result of an in-flight 
instruction, p, that is allocated the ROB entry k. 

ROB Instruction Entry1 0
MOREREPL

REPL_INDEX

RAT#0

RAT#2

RAT#1

RAT#3

1

0

1

2

3

 
Figure 2: Mechanism for register renaming of 

multiple instructions 

If p is an unreplicated instruction (as indicated 
by the REPL bit in entry k) for all replicas d1, d2, …, dr 
the source operand register is renamed to read from entry 
k. If p is a replicated instruction the register operand $x of 
di is renamed to read the output from instruction pi, where 
i= 1, 2, 3…, r. 

Instructions issue to functional units. With the 
above renaming mechanism the issue of instructions to 
functional units can be done without any modification to 
the already existing scheduling mechanism. 

Execution and Storing the Result. The 
instructions in the unreplicated mode are always executed 
in a noral out-of-order fashion. The instructions in the 
replicated mode also execute in an out-of-order fashion, 
though it complicates the mechanism to detect the 
completion of all copies of the instruction. It provides the 
benefits of superscalar out-of-order execution by 
exploiting the instruction level parallelism and increasing 
the utilization of the multiple functional units available 
for instruction execution. 

The ROB need not be empty before switching 
from the unreplicated mode to the replicated mode. This 
can be done by maintaining the information in the register 
alias table across the two modes. In other words, if one of 
the replicated instructions reads from a register which is 
produced by a previous unreplicated instruction (which is 
not committed and still holds an entry in the ROB), then 
all copies of the replicated instruction read from the result 
of the same unreplicated instruction. For dependencies 
among instructions within the replica, a replicated 
instruction that is dependent on another replicated 

instruction gets its input from the producing instruction in 
the same replica. 

For switching from the replicated mode to the 
unreplicated mode, however, the constraint that the ROB 
is empty before the switch is maintained. This is because 
an unreplicated instruction i, that is dependent on an 
instruction j in the preceding replicated code, is 
effectively dependent on all the copies of j. Before issuing 
i, all copies of j must have completed execution and their 
results matched so as to forward the result to instruction i. 

After an instruction has completed execution in 
the functional unit, the result is stored in the ROB entry 
corresponding to that instruction itself. For memory 
access instructions, the result of the address generation is 
stored in the ROB entry. 

Commit Augmentation. As shown in Figure 1, 
the commit unit is augmented to vote on the results of 
multiple replicas to support selective replication. The 
commit stage is augmented to vote on the Each ROB 
entry contains a field to indicate if the instruction is ready 
to commit or not. Committing unreplicated instructions 
follows the same procedure as committing an instruction 
in a pipeline without support for replication.  

Among replicated instructions two classes of 
instructions, memory access instructions and the rest, are 
treated separately. When a replicated memory access 
instruction at the head of the ROB has completed 
execution (generated effective address), all of its copies 
are checked to see if they have completed execution. If 
not, the commit action is postponed to the next cycle. If 
all r copies have generated their effective addresses 
(which is stored in the result field of the ROB entry), 
these results are compared against each other. If there is a 
mismatch, an error is raised and appropriate recovery 
action is taken. If the effective addresses of all r copies 
match, then a single memory access request is sent to the 
memory subsystem, on behalf of all the replicas. This 
reduces the pressure on the memory bandwidth, but loses 
the coverage over possible errors in memory access. 
When this memory access is complete, all copies of the 
instruction are ready to commit. In case of a load the data 
read is written to the architectural register file. The entries 
from the ROB and the LSQ for all copies are deallocated. 
When any other replicated instruction is at the head of the 
ROB, all of its copies are checked to see if they are ready 
to commit. If all r copies are ready to commit, the result 
fields in their ROB entries are compared to verify the 
computation. If all r fields match, the instruction is 
committed and the result is committed to the architectural 
register file. 
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4 Hardware implementation 

The mechanism to dispatch multiple copies of 
instructions is depicted in Figure 3. Instructions are 
fetched into a temporary fetch buffer (temp_fetch_buf in 
Figure 3). Depending on the degree of replication 
different number of copies of the instruction should be 
dispatched. In a processor that does not support 
replication the input to the dispatch mechanism would be 
the instructions in the temporary fetch buffer. These 
instructions are dispatched to the reorder buffer based on 
the space available in the ROB and the dispatch width 
(the maximum number of instructions that can be 
dispatched in one clock cycle) of the processor. 

In the processor with selective replication 
depending on the degree of replication requested by the 

application, the instructions that are dispatched in the 
current clock cycle need to be determined. The replicated 
instructions that can be dispatched in the current clock 
cycle are placed in the real fetch buffer (fetch_buf in 
Figure 3). The degree of replication is stored in the 
register REP_LVL. REP_LVL – 1 (calculated using the 
adder shown in Figure 3) is used as an index into the 
combinational logic that starts with 0 when there is no 
replication. Consider a processor with  

• fetch width, max. number of instructions fetched 
in a clock cycle = 4 and 

• dispatch width, max. number of instructions 
dispatched in a clock cycle = 4 

3

12

0123

temp_fetch_buf 0123

0123

REP_LVL

+

-1

Z Z

01230123

0123

Z

Z

fetch_buf  
Figure 3: Mechanism for dispatching multiple copies of instructions 

Based on the value of REP_LVL, the entries in 
the temp_fetch_buf are stored into the fetch_buf as shown 
in Figure 3.  The mechanism implements the following 
rules: 

• If REP_LVL = 1 (no replication) all entries in 
temp_fetch_buf are copied to corresponding entries 
in fetch_buf. 

• If REP_LVL = 2  (duplication) two copies of the 
instructions in entry 0 are passed to the entries 0 and 
1 in fetch_buf and two copies of entry 1 in 
temp_fetch_buf are passed to the entries 2 and 3 in 
fetch_buf. Only the entries 0 and 1 in the 
temp_fetch_buf are invalidated and there is space in 
temp_fetch_buf for 2 more instructions to be fetched 
in the next clock cycle. 

This case is depicted in Figure 4. The red lines show 
the duplicated instructions being routed from the 
temp_fetch_buf to the fetch_buf. The cases for 
REPL_LVL = 3 and 4 are similarly defined. 

The ROB is augmented with a bit (referred to as 
the REPL bit) to indicate whether it contains a 
replicated or an unreplicated instruction. ROB 
designs are of two types: one in which the result of 
the instruction in the ROB entry is written to separate 
physical register file, and the other in which the result 
is written to the ROB entry itself. The replication 
mechanism is presented assuming an ROB design 
where the results are written to the ROB entry itself, 
though it is possible to extend the technique for the 
design where a separate physical register file is used 
to store the results of instructions. The additional 
hardware required in the context of RISC architecture 
is described (A RISC architecture uses load/store 
instructions to access memory and arithmetic 
instructions whose destination is a register). The 
RAT and commit control logic for the unreplicated 
mode is the same as that used in the normal 
superscalar out-of-order pipelines. 
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Figure 4: Example of selective replication with a replication level of 2 

5 Evaluation Methodology 

The software-implemented functional simulator 
implements a MIPS-based SuperScalar processor. The sim-
outorder processor performance simulator of the 
SimpleScalar Tool Set [14] has been augmented to 
simulate the RSE with embedded hardware modules. sim-
outorder simulates an out-of-order pipelined processor. 
The main loop of the simulator is executed once for each 
target (simulated) machine cycle. Currently, CHECK 
instructions are embedded at runtime, and not at compile 
time, as mentioned in Section 2. At the time of an 
instruction fetch, the simulator determines whether to 
insert a CHECK instruction before it into the instruction 
stream. It does this either by decoding the instruction or by 
monitoring the fetched instruction address. This is 
equivalent to the CHECK instruction being embedded in 
the static instruction stream of the program. 

5.1 Workload for Evaluation 

Evaluation of the performance overhead and error 
coverage is based on the Siemens suite of benchmarks. 
These benchmark applications are representative of real-
world programs and contain a few hundred lines of code 
[15]. They provide a rich input set with an average of 3400 
inputs for each benchmark. For each benchmark, we 
choose the first 100 inputs from its input set. For each 
input i the dynamic dependency graph, Gi of the program 
is generated. For each critical variable, its backward slice 
in Gi

 is calculated. The set of nodes (instructions) in the 
backward slice are critical instructions that need to be 
replicated. In a similar manner, the set of critical 
instructions for each critical variable are extracted. The 
union of these different sets of critical instructions is 
calculated. This procedure is repeated for each input i in 
the chosen set of 100 inputs. The set of critical instructions 
that is replicated is the union of the sets of critical 

instructions for all the inputs. Table 1 gives a brief 
description of the Siemens suite of benchmarks. 

Table 1: Siemens suite of benchmarks 

Benchmark #loc Description 

schedule 412 
A priority scheduler for multiple job 
tasks. Given a list of tasks finds an 
optimal schedule 

schedule2 373 
Same operation as Schedule but a 
different implementation. 

print_tokens 727 
Breaks the input stream into a series 
of lexical tokens according to 
prespecified rules. 

print_tokens2 569 

Using the tokenizer interface Breaks 
the input stream into a series of 
lexical tokens according to 
prespecified rules. 

5.2 Performance Overhead 

The software-level implementation evaluates the 
performance overhead incurred by the framework and 
modules in terms of additional processor cycles. 

5.2.1 Overhead categories 

The experiments evaluate the following two kinds of 
overheads: 

1. Framework Overhead.  This is the overhead incurred 
by the processor due to the presence of the framework 
without any modules instantiated. In such a case, the 
framework does not perform any checking and is 
decoupled from the pipeline. The overhead incurred in 
the performance of the application is due to the 
memory arbiter introduced to arbitrate memory 
accesses of the processor and the RSE. 

2. Performance Overhead Due to Selective Replication. 
The performance overhead incurred by the application 
is measured in terms of the number of additional 
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cycles taken to execute the application in comparison 
to the baseline processor (without the framework). In 
order to show the need for selective replication, a 
randomized replication mechanism (RANDOMREP) 
is also evaluated where instructions are randomly 
replicated. So as to make a fair comparison between 
the randomized and selective replication approaches 
the fraction of replicated instructions is maintained, 
ensuring that the overheads are approximately equal. 

There can be other sources of overhead due to the 
additional hardware introduced in the processor. The 
additional circuitry will increase the capacitive load 
on pipeline nodes. This will in turn lead to a slight 
increase in the clock cycle time. Because we are doing 
a functional simulation this factor of overhead is not 
included in our experiments. 

5.2.2 Results 

Table 2 and Figure 5 show the overheads 
incurred, for different applications, due to the framework 
with selective replication (SELREP) in comparison with 
full replication (FULLREP). The overhead of the 
framework with no modules instantiated is also shown 
(Framework). We observe that the overhead averaged over 
all applications and combinations of modules is 53.1% 
lower than the overhead due to full replication. 

Table 2: Overhead for different configurations of 
modules 

 Framework SELREP FULLREP 
schedule 9.2% 11.9% 36.2% 
schedule2 8.1% 11.5% 31.6% 
print_tokens 6.9% 20.9% 47.7% 
print_tokens2 7.9% 21.8% 46.1% 

An average over all the Siemens benchmarks 
shows that the overhead is 16.5% for SELREP. For 
SELREP the overhead is due to the execution of duplicate 
instructions in replicated mode, and due to the switch 
between replicated and unreplicated modes. The overhead 
varied from application to application. For example, for 
schedule the overhead for SELREP was 67.1% lower 
whereas for print_tokens2 it was 52.7% lower than full 
replication (FULLREP). 

5.3 Error Analysis 

In this section we describe the fault-injection 
analysis of the error coverage provided by Selective 
Replication. Firstly, the fault model is described and the 
classification of the outcomes of each fault-injection 
experiment is presented. Independent experiments are 
conducted for each benchmark from the Siemens suite.  
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Figure 5: Performance overhead for Selective 

Replication 

5.3.1 Fault model 

An important component of the design of a fault-
injection experiment to evaluate error coverage is the fault 
model. It describes the faults that are being targeted by the 
error-detection mechanisms and against which they have 
been evaluated. The faults considered in our experiments 
are as follows: 

• Instruction Errors. Errors in instruction binary while 
the instruction is being executed in the pipeline. These 
errors can occur during the transfer of the instruction 
from the cache to the pipeline or while the instruction 
is being decoded in the pipeline. 

• Data Errors. Errors in the output of a functional unit 
that may be written to a register or used as an effective 
address for a memory access instruction. ECC in 
memory, cache, or registers does not protect against 
these errors. This is because the correct ECC would be 
calculated on the wrong data and written to registers. 

This fault model also includes some software 
faults such as assignment/initialization (an uninitialized or 
incorrectly initialized value is used) or checking (a check 
performed on the variable fails, which is equivalent to an 
incorrect value of a variable being used). The error-
detection mechanisms detect the symptoms of errors, 
irrespective of whether they occur in software or hardware. 

5.3.2 Fault Injection Outcomes 

The SimpleScalar sim-outorder performance 
simulator simulates the timing information for instructions 
executing in a pipeline; i.e., it maintains the information of 
which instructions are present in each stage of the pipeline 
in any given cycle. The simulator, however, computes the 
results of executing the instructions in the dispatch stage, 
when it allocates an entry in the reorder buffer to the 
instruction. It detects and reports any exceptions that result 
out of the execution of the instruction at the dispatch stage 
itself, without waiting until the commit stage. Thus, the 
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processor simulator does not support precise exceptions. 
The replication mechanism, however, performs the checks 
when the instruction has arrived at the commit stage and is 

ready for commit. Considering this behavior of the 
processor the fault injection outcomes have been organized 
into the various categories tabulated in Table 3.

Table 3: Fault Injection Outcomes 

Outcome Description Error Impact 

Replication-Detection Errors leading to a mismatch between the 
replicas.  

Do not raise an exception, but are detected by the voter in 
the commit stage. 

Exception Raised Errors that raise a simulator exception in the 
same instruction (PC) as the injected PC.  

Raise an exception in the commit stage of the injected 
instruction. Architected state would not be corrupted by 
these errors before the exception. 

Retrospectively-Detected Errors that are not detected by replication, but 
are injected when the processor is in replicated 
mode, and raise a simulator error in a different 
instruction than the one that was injected into. 

Can be detected by the replication if the instruction had 
been allowed to complete. However, the architected state 
might have been corrupted by then. 

System Detection Errors that are detected by the simulator but 
occur in a different instruction than the injected 
instruction. 

Detected by the system, but the architected state might 
have been corrupted by the instruction before the system 
detects these errors. 

Not Manifested Errors that do not cause simulator errors and 
hangs, and the output files match. 

Do not cause any visible effect on the outcome of the 
program. 

Program Hang Errors in which the simulator times out and kills 
the program 

Cause the simulator to wait indefinitely for the program to 
complete 

Fail-silent Violation Errors that do not cause simulator errors or 
timeouts, but result in the output files, differs 
from that of the golden run. 

System does not detect these errors, but results in an 
incorrect program outcome. Potentially, most dangerous 
of the error categories 

Benign Error Detection Errors that are “Not Manifested” in the baseline 
case but are detected by the detection mechanism 

Do not affect application outcome and hence need not be 
detected 

Translating the simulator behavior to that of a 
real processor, let us assume that the simulator does not 
raise an exception at the dispatch stage but allows the 
instruction to proceed to the commit stage.  

For the Exception Raised category of errors the 
exception must be reported when the injected instruction 
is about to commit. If the injected instruction was 
replicated, the replication mechanism could have detected 
a mismatch in the results of the instruction at the commit 
stage before the exception is raised. Therefore, for a real 
processor system, the subset of Exception Raised errors 
where the injected instruction is replicated can be 
included into the Replication Detection category. The rest 
of the errors are detected by the system through an 
exception. The System Detection category also contains 
errors that raise a system exception.  However, we 
continue to maintain the distinction between the 
exceptions raised at the injected instruction and those that 
are raised at a later instruction. If the system raises an 
exception at the injected instruction itself, then 
architectural state is not updated. We categorize these 
outcomes as Exception Raised. But if the exception was 
raised at a later instruction, the architectural state would 
have been updated, possibly with incorrect data. These 
outcomes are System Detection.  

For the errors belonging to the Retrospectively 
Detected category the exception is raised in a different 
instruction, even though the injected instruction is 

replicated. This is because after the injected instruction 
completed execution and before it reached the commit 
stage, the simulator dispatches and executes the 
instructions following it and raises an exception in one of 
these succeeding instructions. Again, in a real processor 
the replication mechanism can detect this category of 
errors at the commit stage. 

5.3.3 Error metrics 

The two metrics derived from the fault injection 
outcomes are the percentage of errors detected by the 
technique and percentage of false positives, where an 
error that is benign in the baseline is detected by the 
technique. For any technique it is desirable to have the 
most sensitive detection possible and as few false 
positives as possible, even though these are conflicting 
goals. 

5.3.4 Error coverage for instruction errors  

Errors belonging to each type mentioned in Section 5.3.1 
are injected. Table 4 presents the detection by selective 
replication (SELREP), averaged over the applications, 
when 50 critical variables are used to select the critical 
instructions to be replicated. The detection of selective 
replication is compared to the outcomes in the baseline 
case, when randomized replication (RANDOMREP) is 
used and when full duplication (FULLREP) is used. 

These results show that selective replication of 
instructions affecting 50 critical variables detects about 



 9 

87% percent of the faults detected by FULLREP. Yet it 
incurs 59.1% less overhead and leads to 17.8% fewer 

benign error detection scenarios as compared to full 
duplication.  

Table 4: Results for instruction error injection with SELREP 

 Configuration 
Outcome Baseline RANDOMREP SELREP FULLREP 

Activated 489 449 504 500 

Not Manifested 41.8% 30.3% 19.0% 18.0% 

Replication Detection 0.0% 50.9% 62.5% 71.2% 

Exception raised in same instruction 29.2% 24.8% 2.0% 0.0% 

Exception raised in different instruction 40.1% 18.4% 4.2% 0.0% 

Program Hang 8.8% 4.2% 1.7% 0.1% 

Fail Silence Violation 21.9% 7.9% 1.9% 0.6% 
Benign Error Detection 0.0% 45.9% 48.5% 59.0% 

 
In Figure 6, the y-axis shows the different 

outcomes from the injection of instruction errors. The x-
axis shows the percentage of errors that fall into each 
outcome category. From Figure 6 we can see that 
FULLREP detects about 71.2% of the manifested errors. 
The rest of the errors raise an exception at the injected 
instruction itself and hence can be detected by the system 
and recovered easily. Even though selective replication 
has a much lower overhead than full duplication, it detects 
62.5% of the manifested errors, whereas random 
replication detects only 50.9% of the errors. When 

random replication is used, the system detects 17% of the 
errors in a different instruction, which are difficult to 
recover from. In the case of selective replication, this 
contributes to only 4.2% of the errors. 

Figure 7 shows the percentage of fail silence 
violations and program hangs that occur when instruction 
errors are injected and when different types of replication 
mechanisms are employed. Full Duplication is able to 
prevent most of the fail-silence violations and program 
hangs. Selective Replication is better than randomized 
replication but worse than full replication in detecting 
both fail silence violations and program hangs. 

71.2%

0.0%

0.0%

59.0%

62.5%
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Figure 6: Instruction error injection results 
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Figure 7: Fail silence violations and program hangs for 

instruction errors 

5.3.5 Error coverage for data errors 

Table 5 summarizes the results of injecting data 
errors (errors into the output of a functional unit when it is 
generating the result of an instruction). We see that 
FULLREP detects all the errors. This is because we inject 
the result of an instruction in only one of the replicas and 
vote over the result of each replicated instruction. Since 
all instructions are replicated in FULLREP it can detect 
all data errors. However, it is important to note that even 

though only a fraction of the instructions are replicated in 
selective replication it detects about 97% of all data errors 
also. From the last row in Table 5 we see that FullRep 
detects all the data errors that were Not Manifested in the 
Baseline case, whereas SelRep decreases this detection of 
errors benign to the application outcome by more than 
6%. 
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Table 5: Fault injection results for data injection 

Configuration 
Outcome Baseline SELREP FULLREP 

Activated 490 477 477 
Not Manifested 44.6% 3.0% 0.0% 
Replication Detection 0.0% 97.4% 100.0% 
Exception raised in different instruction 72.2% 1.6% 0.0% 
Program Hang 2.3% 0.1% 0.0% 
Fail Silence Violation 25.5% 0.9% 0.0% 
Benign Error Detection 0.0% 93.8% 100.0% 

6 Related work 

Replicated execution for fault-detection and 
tolerance has been investigated extensively both at the 
application and hardware level. At the application-level, 
instructions in the code segment are duplicated and are 
expected to execute on the idle hardware in superscalar 
processors. Error Detection Using Duplicated 
Instructions (EDDI) [2] duplicates of original instructions 
in the program but with different registers and variables. 
SWIFT [25] is an application-level duplication 
mechanism based on EDDI. In Error Detection by 
Diverse Data and Duplicated Instructions (ED4I) [16] 
two “different” programs with the same functionality but 
with different data sets, are executed and their outputs are 
compared. The “different” programs are generated by 
multiplying all variables and constants in the original 
program by a diversity factor k. 

Duplicated at the application level increases the 
code size of the application in memory. More importantly, 
it reduces the instruction supply bandwidth from memory 
to the processor. EDDI can possibly be extended to 
support selective replication by instructing the compiler 
which portions of the application need to be replicated. 
ED4I has to execute two versions of the same programs 
and has an effective overhead of more than 100%, since 
both the applications have to be executed and their results 
collected and compared. 

In the realm of commercial processors Tandem’s 
(now HP) Integrity S2 [16] fault tolerance platform 
provided triple modular redundancy (TMR) in all 
hardware components and synchronizing the replicated 
processors at the interrupt-level. The IBM G5 processor 
[17] provides duplicate I- and E- units to provide 
duplicate execution of instructions. The processor is 
supported by a hierarchical recovery mechanism, from the 
instruction-level extending upto the system level. To 
support the duplicate execution, the G5 is restricted to a 
single-issue processor and incurred 35% hardware 
overhead.  

In experimental research simultaneous 
multithreading (SMT) [19] and the chip multiprocessor 
(CMP) architectures have been ideal bases for space and 

time redundant fault-tolerant designs because of their 
inherent redundancy. In the AR-SMT architecture fault 
tolerance is achieved by executing two copies of the same 
program on an SMT processor [20]. A later work 
develops similar concepts in the context of CMPs [21]. In 
simultaneously and redundantly threaded processors 
(SRT), AR-SMT is further enhanced by checking only 
instructions whose side effects are visible beyond the 
boundaries of the processor core. This allows looser 
coupling between the redundant threads [22]. This 
modified SMT-based fault-tolerant design is subsequently 
extended in simultaneously and redundantly threaded 
processors with recovery (SRTR) to include recovery [5]. 
Another fault-tolerant processor architecture is proposed 
in the DIVA design [3][4]. DIVA comprises an 
aggressive out-of-order superscalar processor along with a 
simple in-order checker processor. The checker processor 
verifies the output of the complex out-of-order processor 
and triggers a recovery action when an inconsistency is 
found. Microprocessor-based introspection (MBI) [23] is 
a time redundancy technique, to detect transient faults. 
MBI achieves time redundancy by scheduling the 
redundant execution of a program during idle cycles in 
which a long-latency cache miss is being serviced. Even 
though full duplication at the processor-level has been 
believed to have little or no performance overhead, [5] 
and [23] have reported upto 30% overhead. SLICK [26] is 
a SRT based approach to provide partial replication of an 
application, compared to this approach we do not rely on 
a multi-threaded architecture for the replication. Instead, 
this paper presents modifications to a general superscalar 
processor to support partial or selective replication of the 
application.  

The basic principle of fault-tolerance employed 
in all the previous techniques that have been discussed is 
replication. This is also the focus of this paper. But a 
major difference is that none of the previous techniques 
provide a mechanism to dynamically configure the level 
of replication according to the application’s demand. The 
application also does not have a choice of not replicating 
part of its code. This requires providing an interface to the 
application, either at the high-level programming 
language or at the assembly level, to invoke and configure 
the replication mechanism at run-time. This is the major 
contribution of this paper. 
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7 Conclusion 

In this paper we have demonstrated an approach 
to extract sensitive sections of code that can be selectively 
replicated to enhance the reliability of the application, 
instead of replicating the entire application. We have 
given a detailed design and evaluation of the mechanism 
to support this selective replication at the processor 
architecture level. The results show that with about 59% 
less overhead than full duplication of all instructions we 
can cover 97% of the data errors and 87% of the 
instruction errors that were covered by full duplication. 
An important advantage of the selective replication is that 
reduces the detection of errors benign to the final outcome 
of the application by 17.8% as compared to full 
duplication. 
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