
 1

Processor-level Selective Replication

Nithin Nakka, Karthik Pattabiraman, Ravishanker Iyer
Center for Reliable and High Performance Computing

Coordinated Science Laboratory

{nakka, pattabir, iyer}@crhc.uiuc.edu

Abstract

Full duplication of an entire application
(through spatial or temporal redundancy) would detect
many errors that are benign to the application from the
perspective of the end-user. It has also been seen that
duplication has upto 30% performance overhead and
needs significant introduction of hardware to synchronize
the replicas. In order to overcome the drawbacks of
performance overhead and detection of "benign" faults,
we propose a processor-level technique called Selective
Replication, which provides the application the capability
to choose where in its application stream and to what
degree it requires replication. Recent work on static
analysis and fault-injection based experiments on
applications reveals that certain variables in the
application are critical to its crash- and hang-free
execution. If it can be ensured that the computation of
these variables is error-free, then a high degree of
crash/hang coverage can be achieved at a low
performance overhead to the application. The Selective
Replication technique provides an ideal platform for
validating this claim. The technique is compared against
complete duplication as provided in current architectural-
level techniques. The results show that with about 59%
less overhead than full duplication selective replication
detects 97% of the data errors and 87% of the instruction
errors that were covered by full duplication. It also
reduces the detection of errors benign to the final
outcome of the application by 17.8% as compared to full
duplication.

1 Introduction

System level replication has been a widely used
technique to detect and possibly tolerate transient errors in
both commercial and research prototypes. Processor-level
replication has also been used recently [1]. Replication
can be introduced into the application at compile time by
duplicating the instructions in the static source code and
providing code for comparing the outputs of the
duplicated instructions [2]. This has the advantage that the
underlying hardware does not need to be modified.
Additionally, using compiler analysis techniques, only
critical portions of the application can be chosen to be
replicated, instead of the entire application. The drawback

of this approach is that it incurs a high memory and
performance overhead.

The two basic approaches for processor-level
replication are hardware redundancy and time
redundancy. (1) Hardware redundancy [3] – carrying out
the same computation on multiple, independent hardware
at the same time and comparing the redundant results. (2)
Time redundancy [4][6] –executing the same operation
multiple times on the same or idle hardware. In either
type of redundancy, the underlying hardware is unaware
of the application executing on it. All instructions of the
application are replicated and checked for correct
execution. The application cannot choose to use
redundancy for a specific code section and run in a
normal, unreplicated mode for the rest of the code. In
other words, it is a “one size fits all” approach.

Another advantage of selectively replicating an
application is the reduction in detection of processor-level
errors that do not affect the final outcome of the
application. Fault-injection based experiments by Choi
[7], Wang [8] and Saggese [9] showed that 80%-85% of
the errors did not manifest as errors in the application
outcome. Full replication at the hardware level aims at
detecting all errors in the processor, even those that are
benign to correct application outcomes. This leads to false
alarms to the operator, which are considered undesirable
from a safety perspective.

We propose hardware-based selective replication
to achieve the advantages of both software- and hardware-
implemented replication. The application can choose
which portions need to be replicated and the degree of
redundancy. This is achieved by compile-time
instrumentation of the application with special CHECK
instructions, an extension to the instruction set
architecture (ISA) to invoke a reconfiguration of the
underlying hardware and provide the specified level of
replication.

Recent work by Pattabiraman et al. [7][11] has
shown that it is feasible to identify some critical variables
in an application, which when in error will cause
application/system failure with a high probability. Based
on this study it was concluded that protecting the
computation of these variables can provide a high

 2

coverage against program failures (crashes1 and fail
silence violations). Selective replication provides a
platform to validate this claim because it allows
replication of only those portions of the application that
compute the critical variables, instead of replicating the
entire application.

This work addresses the following two questions
to provide selective replication:

• Which sections of the code need to be
replicated?

• How can we modify the renaming, issue, and
commit mechanism to handle a specified level of
redundancy for portions of the code?

The mechanism of replication in a superscalar
processor has been detailed and a possible
implementation is presented. The results show that
even though Selective Replication detects about 87%
of the instruction errors and 97% of the data errors
detected by Full Duplication, it incurs only 59%
overhead. Moreover, the detection of errors benign to
the application outcome is reduced by about 18%.

2 What to replicate

In order to identify the critical variables we use
the approach similar to that described in [7]. The
criticality of the variables to error-free execution of the
program has been evaluated using metrics like lifetime,
and fanout (definition). It was shown that ideal detectors
placed at locations with high fanout gave higher coverage,
where an ideal detector is one that is able to detect any
data error that propagates to the location at which it is
placed. The analysis was done on the program’s dynamic
dependency graph (DDG). For multiple inputs, faults are
injected into the points that are being evaluated for
criticality (with high fanout, lifetime etc.). For each input,
the effect of each fault is traced, using the DDG for that
input, to locations of the program where the program may
crash. If the error led the program to a potential crash
location, a detector at the critical point can detect an
impending program crash. The claim of this work is that
if the computations of the critical variables can be
replicated then this can enhance application dependability
very substantially for a small performance overhead
compared to full replication. Moreover, the types of
errors detected are, for the most part, those that would
need full duplication or extensive coding to detect.

Extraction of the Critical Code Sections. Any
part of the application that affects the value of a critical
variable is a critical code section (consisting of critical
instructions). Any critical code section includes:

1 Our aim is to preemptively detect program crashes as they are
not always benign [12].

• Instructions that define critical variables.

• Instructions that produce a result that is
subsequently consumed by critical instructions.

A reverse depth-first search algorithm is used for
automated identification/extraction of instructions that
directly or indirectly affect the value of critical variables.
Using selective replication only these critical instructions
in the program are replicated whereas all other
instructions are executed normally. Due to a constraint of
space, we do not present the details of the reverse depth-
first search algorithm here, but are presented in [24]. An
important point to note is that when using multiple critical
nodes, there may be an overlap in the instructions that
affect two or more nodes. All such instructions that affect
multiple critical nodes need to be replicated only once for
all nodes, instead of being replicated for each node.

In summary, the backward slice of the
instruction that defines a critical variable for selective
replication is extracted. Backward slicing in a static
program segment is known to be very time-consuming.
Using a dynamic dependency graph the execution time for
backward slicing is reduced. In addition, calls to library
functions have not been traced; rather, the entire library
function is considered a single node in the dynamic
dependency graph.

Formally, let
Θ

 be the set of critical variables,
and Ι be the set of all inputs. For an input i ∈ Ι , let the
dynamic dependency graph be Gi = (Vi, Ei) where the
vertices in Vi correspond to statements in the dynamic
execution of the program and there is an edge (u, v) in Ei
if statement u is executed before statement v and u
produces a result that is used by v.

For every critical variable θ ∈ Θ, let Hi,θ = (Vi,θ,
Ei,θ) be the subgraph of Gi which is the backward slice of
instructions that affect variable θ. For each dynamic
instruction w ∈ Vi,θ its counterpart, s, in the static code
segment is found (both of them have the same PC). The
set of static instructions corresponding to the dynamic
instructions in Vi,θ is the set of critical instructions, Si,θ,
that need to be replicated for input i and critical variable

θ. Si = U
Θ∈θ

Si,θ is the set of critical instructions for input i

and S = U
Ii∈

Si is the set of all instructions in the static

code segment that need to be replicated for all inputs
considered.

In a real implementation a compiler places a
special CHECK instruction before and after each
duplicated instruction to notify the hardware of the
change in level of replication (in our simulation we insert
the check instruction into the dynamic instruction stream

 3

when the first replicated instruction and after the last
replicated instruction are encoutered). Note that the
critical instructions can also be consequent to each other.
In such a case, for each block of contiguous critical
instructions, one CHECK instruction is placed before and
one after the block of instructions to notify the replication
module of ENTERING into and EXITING from
replication mode.

3 Overview of Selective replication

This section describes the selective replication
technique in detail and presents a possible hardware
implementation in a superscalar processor. Instructions
are fetched as in a normal pipeline. The dispatch
mechanism, which allocates reorder buffer entries to the
currently fetched instructions, broadly operates in two
modes: the unreplicated mode and the replicated mode. In
the unreplicated mode, a single copy of each instruction is
dispatched, renamed, and allocated to the reorder buffer
(ROB). In the replicated mode, r copies of each
instruction are dispatched, where r is the degree of
replication. If any instruction, i, in the replicated code
consumes a value produced by a preceding unreplicated
instruction, j, then all copies of i receive their input from
j. If a replicated instruction i1 is dependent on another
replicated instruction i2, then the copy of i1 in every
replica is dependent on the copy of i2 in the same replica.
Thus, the register operands of the instructions are
renamed.

After instruction execution is complete the result
is stored in the ROB itself. When an instruction at the
head of the ROB is ready to commit, all copies of the
instruction are checked to see if they are ready to commit.
If all copies are ready to commit, then their results (stored
in their corresponding ROB entries) are compared. If all

of them match the instruction is committed. In the case of
even a single mismatch appropriate recovery action can
be taken.

3.1 Mechanism of replication

An important aspect of this work is the
mechanism for selective replication that allows the
application to choose the extent and location of
replication it needs. In this section the implementation of
selective replication in a modern superscalar out-of-order
processor is described. Implementing selective replication
in a superscalar processor involves modifying the
instruction fetch and dispatch, register renaming, and
commit mechanisms of the processor. The block diagram
in Figure 1 shows a processor pipeline (top of the figure)
with the modifications required for selective replication
(bottom of the figure).

Before describing the actual mechanism of
execution in the replicated mode, it is helpful to describe
some key hardware data structures that would be used in
the execution. The register alias table (RAT) is used in
dynamic scheduling in the rename state of pipeline. It
contains as many entries as the number of architectural
registers. The i th entry in the RAT contains information of
the source of the most recent value of register i. If the
most recent instruction producing register i has been
committed to architectural state, the i th entry in the RAT
contains a special sentinel value indicating that the value
of a register is ready and available in the architectural
register file. If the most recent instruction producing
register i is still executing and is in the ROB, the entry in
the RAT contains the index of the ROB entry containing
the instruction. Thus the RAT holds information of the
(read-after-write) RAW dependencies among
instructions.

I-Cache Fetch Rename

Replicated
Rename

Issue Exec WB Commit

Commit
Augmentation

Replicated
Fetch

Figure 1: Modifications to pipeline for selective replication

The load/store queue (LSQ) contains entries for
all the memory access instructions (loads and stores) that
are currently in-flight. The LSQ can be used to optimize
loads by forwarding the data from the immediately
previous store, if both generate the same effective address
and are writing the same number of bytes.

The replicated fetch mechanism shown in Figure
1 provides multiple copies of a fetched instruction to the
dispatcher. The detailed hardware implementation of this
mechanism is presented in Section 4.

Replicated Rename. The mechanism for
renaming multiple copies of an instruction, based on the
replica index, is shown in Figure 4. If a replicated

 4

instruction d reads from register $x, the RAT entry for $x
is looked up. If the value of $x is available in the
architectural register file then all copies of d get the value
for this source operand from the architectural register file.
Otherwise, the value of $x is the result of an in-flight
instruction, p, that is allocated the ROB entry k.

ROB Instruction Entry1 0
MOREREPL

REPL_INDEX

RAT#0

RAT#2

RAT#1

RAT#3

1

0

1

2

3

Figure 2: Mechanism for register renaming of

multiple instructions

If p is an unreplicated instruction (as indicated
by the REPL bit in entry k) for all replicas d1, d2, …, dr
the source operand register is renamed to read from entry
k. If p is a replicated instruction the register operand $x of
di is renamed to read the output from instruction pi, where
i= 1, 2, 3…, r.

Instructions issue to functional units. With the
above renaming mechanism the issue of instructions to
functional units can be done without any modification to
the already existing scheduling mechanism.

Execution and Storing the Result. The
instructions in the unreplicated mode are always executed
in a noral out-of-order fashion. The instructions in the
replicated mode also execute in an out-of-order fashion,
though it complicates the mechanism to detect the
completion of all copies of the instruction. It provides the
benefits of superscalar out-of-order execution by
exploiting the instruction level parallelism and increasing
the utilization of the multiple functional units available
for instruction execution.

The ROB need not be empty before switching
from the unreplicated mode to the replicated mode. This
can be done by maintaining the information in the register
alias table across the two modes. In other words, if one of
the replicated instructions reads from a register which is
produced by a previous unreplicated instruction (which is
not committed and still holds an entry in the ROB), then
all copies of the replicated instruction read from the result
of the same unreplicated instruction. For dependencies
among instructions within the replica, a replicated
instruction that is dependent on another replicated

instruction gets its input from the producing instruction in
the same replica.

For switching from the replicated mode to the
unreplicated mode, however, the constraint that the ROB
is empty before the switch is maintained. This is because
an unreplicated instruction i, that is dependent on an
instruction j in the preceding replicated code, is
effectively dependent on all the copies of j. Before issuing
i, all copies of j must have completed execution and their
results matched so as to forward the result to instruction i.

After an instruction has completed execution in
the functional unit, the result is stored in the ROB entry
corresponding to that instruction itself. For memory
access instructions, the result of the address generation is
stored in the ROB entry.

Commit Augmentation. As shown in Figure 1,
the commit unit is augmented to vote on the results of
multiple replicas to support selective replication. The
commit stage is augmented to vote on the Each ROB
entry contains a field to indicate if the instruction is ready
to commit or not. Committing unreplicated instructions
follows the same procedure as committing an instruction
in a pipeline without support for replication.

Among replicated instructions two classes of
instructions, memory access instructions and the rest, are
treated separately. When a replicated memory access
instruction at the head of the ROB has completed
execution (generated effective address), all of its copies
are checked to see if they have completed execution. If
not, the commit action is postponed to the next cycle. If
all r copies have generated their effective addresses
(which is stored in the result field of the ROB entry),
these results are compared against each other. If there is a
mismatch, an error is raised and appropriate recovery
action is taken. If the effective addresses of all r copies
match, then a single memory access request is sent to the
memory subsystem, on behalf of all the replicas. This
reduces the pressure on the memory bandwidth, but loses
the coverage over possible errors in memory access.
When this memory access is complete, all copies of the
instruction are ready to commit. In case of a load the data
read is written to the architectural register file. The entries
from the ROB and the LSQ for all copies are deallocated.
When any other replicated instruction is at the head of the
ROB, all of its copies are checked to see if they are ready
to commit. If all r copies are ready to commit, the result
fields in their ROB entries are compared to verify the
computation. If all r fields match, the instruction is
committed and the result is committed to the architectural
register file.

 5

4 Hardware implementation

The mechanism to dispatch multiple copies of
instructions is depicted in Figure 3. Instructions are
fetched into a temporary fetch buffer (temp_fetch_buf in
Figure 3). Depending on the degree of replication
different number of copies of the instruction should be
dispatched. In a processor that does not support
replication the input to the dispatch mechanism would be
the instructions in the temporary fetch buffer. These
instructions are dispatched to the reorder buffer based on
the space available in the ROB and the dispatch width
(the maximum number of instructions that can be
dispatched in one clock cycle) of the processor.

In the processor with selective replication
depending on the degree of replication requested by the

application, the instructions that are dispatched in the
current clock cycle need to be determined. The replicated
instructions that can be dispatched in the current clock
cycle are placed in the real fetch buffer (fetch_buf in
Figure 3). The degree of replication is stored in the
register REP_LVL. REP_LVL – 1 (calculated using the
adder shown in Figure 3) is used as an index into the
combinational logic that starts with 0 when there is no
replication. Consider a processor with

• fetch width, max. number of instructions fetched
in a clock cycle = 4 and

• dispatch width, max. number of instructions
dispatched in a clock cycle = 4

3

12

0123

temp_fetch_buf 0123

0123

REP_LVL

+

-1

Z Z

01230123

0123

Z

Z

fetch_buf
Figure 3: Mechanism for dispatching multiple copies of instructions

Based on the value of REP_LVL, the entries in
the temp_fetch_buf are stored into the fetch_buf as shown
in Figure 3. The mechanism implements the following
rules:

• If REP_LVL = 1 (no replication) all entries in
temp_fetch_buf are copied to corresponding entries
in fetch_buf.

• If REP_LVL = 2 (duplication) two copies of the
instructions in entry 0 are passed to the entries 0 and
1 in fetch_buf and two copies of entry 1 in
temp_fetch_buf are passed to the entries 2 and 3 in
fetch_buf. Only the entries 0 and 1 in the
temp_fetch_buf are invalidated and there is space in
temp_fetch_buf for 2 more instructions to be fetched
in the next clock cycle.

This case is depicted in Figure 4. The red lines show
the duplicated instructions being routed from the
temp_fetch_buf to the fetch_buf. The cases for
REPL_LVL = 3 and 4 are similarly defined.

The ROB is augmented with a bit (referred to as
the REPL bit) to indicate whether it contains a
replicated or an unreplicated instruction. ROB
designs are of two types: one in which the result of
the instruction in the ROB entry is written to separate
physical register file, and the other in which the result
is written to the ROB entry itself. The replication
mechanism is presented assuming an ROB design
where the results are written to the ROB entry itself,
though it is possible to extend the technique for the
design where a separate physical register file is used
to store the results of instructions. The additional
hardware required in the context of RISC architecture
is described (A RISC architecture uses load/store
instructions to access memory and arithmetic
instructions whose destination is a register). The
RAT and commit control logic for the unreplicated
mode is the same as that used in the normal
superscalar out-of-order pipelines.

 6

REPL_LVL = 23

12

0123

temp_fetch_buf 0123

0011

REPL_LVL

+

-1

Z Z

01230123

0123

Z

Z

fetch_buf

0
1
2
3

Figure 4: Example of selective replication with a replication level of 2

5 Evaluation Methodology

The software-implemented functional simulator
implements a MIPS-based SuperScalar processor. The sim-
outorder processor performance simulator of the
SimpleScalar Tool Set [14] has been augmented to
simulate the RSE with embedded hardware modules. sim-
outorder simulates an out-of-order pipelined processor.
The main loop of the simulator is executed once for each
target (simulated) machine cycle. Currently, CHECK
instructions are embedded at runtime, and not at compile
time, as mentioned in Section 2. At the time of an
instruction fetch, the simulator determines whether to
insert a CHECK instruction before it into the instruction
stream. It does this either by decoding the instruction or by
monitoring the fetched instruction address. This is
equivalent to the CHECK instruction being embedded in
the static instruction stream of the program.

5.1 Workload for Evaluation

Evaluation of the performance overhead and error
coverage is based on the Siemens suite of benchmarks.
These benchmark applications are representative of real-
world programs and contain a few hundred lines of code
[15]. They provide a rich input set with an average of 3400
inputs for each benchmark. For each benchmark, we
choose the first 100 inputs from its input set. For each
input i the dynamic dependency graph, Gi of the program
is generated. For each critical variable, its backward slice
in Gi

 is calculated. The set of nodes (instructions) in the
backward slice are critical instructions that need to be
replicated. In a similar manner, the set of critical
instructions for each critical variable are extracted. The
union of these different sets of critical instructions is
calculated. This procedure is repeated for each input i in
the chosen set of 100 inputs. The set of critical instructions
that is replicated is the union of the sets of critical

instructions for all the inputs. Table 1 gives a brief
description of the Siemens suite of benchmarks.

Table 1: Siemens suite of benchmarks

Benchmark #loc Description

schedule 412
A priority scheduler for multiple job
tasks. Given a list of tasks finds an
optimal schedule

schedule2 373
Same operation as Schedule but a
different implementation.

print_tokens 727
Breaks the input stream into a series
of lexical tokens according to
prespecified rules.

print_tokens2 569

Using the tokenizer interface Breaks
the input stream into a series of
lexical tokens according to
prespecified rules.

5.2 Performance Overhead

The software-level implementation evaluates the
performance overhead incurred by the framework and
modules in terms of additional processor cycles.

5.2.1 Overhead categories

The experiments evaluate the following two kinds of
overheads:

1. Framework Overhead. This is the overhead incurred
by the processor due to the presence of the framework
without any modules instantiated. In such a case, the
framework does not perform any checking and is
decoupled from the pipeline. The overhead incurred in
the performance of the application is due to the
memory arbiter introduced to arbitrate memory
accesses of the processor and the RSE.

2. Performance Overhead Due to Selective Replication.
The performance overhead incurred by the application
is measured in terms of the number of additional

 7

cycles taken to execute the application in comparison
to the baseline processor (without the framework). In
order to show the need for selective replication, a
randomized replication mechanism (RANDOMREP)
is also evaluated where instructions are randomly
replicated. So as to make a fair comparison between
the randomized and selective replication approaches
the fraction of replicated instructions is maintained,
ensuring that the overheads are approximately equal.

There can be other sources of overhead due to the
additional hardware introduced in the processor. The
additional circuitry will increase the capacitive load
on pipeline nodes. This will in turn lead to a slight
increase in the clock cycle time. Because we are doing
a functional simulation this factor of overhead is not
included in our experiments.

5.2.2 Results

Table 2 and Figure 5 show the overheads
incurred, for different applications, due to the framework
with selective replication (SELREP) in comparison with
full replication (FULLREP). The overhead of the
framework with no modules instantiated is also shown
(Framework). We observe that the overhead averaged over
all applications and combinations of modules is 53.1%
lower than the overhead due to full replication.

Table 2: Overhead for different configurations of
modules

 Framework SELREP FULLREP
schedule 9.2% 11.9% 36.2%
schedule2 8.1% 11.5% 31.6%
print_tokens 6.9% 20.9% 47.7%
print_tokens2 7.9% 21.8% 46.1%

An average over all the Siemens benchmarks
shows that the overhead is 16.5% for SELREP. For
SELREP the overhead is due to the execution of duplicate
instructions in replicated mode, and due to the switch
between replicated and unreplicated modes. The overhead
varied from application to application. For example, for
schedule the overhead for SELREP was 67.1% lower
whereas for print_tokens2 it was 52.7% lower than full
replication (FULLREP).

5.3 Error Analysis

In this section we describe the fault-injection
analysis of the error coverage provided by Selective
Replication. Firstly, the fault model is described and the
classification of the outcomes of each fault-injection
experiment is presented. Independent experiments are
conducted for each benchmark from the Siemens suite.

0%

10%

20%

30%

40%

50%

schedule schedule2 print_tokens print_tokens2

O
ve

rh
ea

d

Framework SELREP FULLREP

Figure 5: Performance overhead for Selective

Replication

5.3.1 Fault model

An important component of the design of a fault-
injection experiment to evaluate error coverage is the fault
model. It describes the faults that are being targeted by the
error-detection mechanisms and against which they have
been evaluated. The faults considered in our experiments
are as follows:

• Instruction Errors. Errors in instruction binary while
the instruction is being executed in the pipeline. These
errors can occur during the transfer of the instruction
from the cache to the pipeline or while the instruction
is being decoded in the pipeline.

• Data Errors. Errors in the output of a functional unit
that may be written to a register or used as an effective
address for a memory access instruction. ECC in
memory, cache, or registers does not protect against
these errors. This is because the correct ECC would be
calculated on the wrong data and written to registers.

This fault model also includes some software
faults such as assignment/initialization (an uninitialized or
incorrectly initialized value is used) or checking (a check
performed on the variable fails, which is equivalent to an
incorrect value of a variable being used). The error-
detection mechanisms detect the symptoms of errors,
irrespective of whether they occur in software or hardware.

5.3.2 Fault Injection Outcomes

The SimpleScalar sim-outorder performance
simulator simulates the timing information for instructions
executing in a pipeline; i.e., it maintains the information of
which instructions are present in each stage of the pipeline
in any given cycle. The simulator, however, computes the
results of executing the instructions in the dispatch stage,
when it allocates an entry in the reorder buffer to the
instruction. It detects and reports any exceptions that result
out of the execution of the instruction at the dispatch stage
itself, without waiting until the commit stage. Thus, the

 8

processor simulator does not support precise exceptions.
The replication mechanism, however, performs the checks
when the instruction has arrived at the commit stage and is

ready for commit. Considering this behavior of the
processor the fault injection outcomes have been organized
into the various categories tabulated in Table 3.

Table 3: Fault Injection Outcomes

Outcome Description Error Impact

Replication-Detection Errors leading to a mismatch between the
replicas.

Do not raise an exception, but are detected by the voter in
the commit stage.

Exception Raised Errors that raise a simulator exception in the
same instruction (PC) as the injected PC.

Raise an exception in the commit stage of the injected
instruction. Architected state would not be corrupted by
these errors before the exception.

Retrospectively-Detected Errors that are not detected by replication, but
are injected when the processor is in replicated
mode, and raise a simulator error in a different
instruction than the one that was injected into.

Can be detected by the replication if the instruction had
been allowed to complete. However, the architected state
might have been corrupted by then.

System Detection Errors that are detected by the simulator but
occur in a different instruction than the injected
instruction.

Detected by the system, but the architected state might
have been corrupted by the instruction before the system
detects these errors.

Not Manifested Errors that do not cause simulator errors and
hangs, and the output files match.

Do not cause any visible effect on the outcome of the
program.

Program Hang Errors in which the simulator times out and kills
the program

Cause the simulator to wait indefinitely for the program to
complete

Fail-silent Violation Errors that do not cause simulator errors or
timeouts, but result in the output files, differs
from that of the golden run.

System does not detect these errors, but results in an
incorrect program outcome. Potentially, most dangerous
of the error categories

Benign Error Detection Errors that are “Not Manifested” in the baseline
case but are detected by the detection mechanism

Do not affect application outcome and hence need not be
detected

Translating the simulator behavior to that of a
real processor, let us assume that the simulator does not
raise an exception at the dispatch stage but allows the
instruction to proceed to the commit stage.

For the Exception Raised category of errors the
exception must be reported when the injected instruction
is about to commit. If the injected instruction was
replicated, the replication mechanism could have detected
a mismatch in the results of the instruction at the commit
stage before the exception is raised. Therefore, for a real
processor system, the subset of Exception Raised errors
where the injected instruction is replicated can be
included into the Replication Detection category. The rest
of the errors are detected by the system through an
exception. The System Detection category also contains
errors that raise a system exception. However, we
continue to maintain the distinction between the
exceptions raised at the injected instruction and those that
are raised at a later instruction. If the system raises an
exception at the injected instruction itself, then
architectural state is not updated. We categorize these
outcomes as Exception Raised. But if the exception was
raised at a later instruction, the architectural state would
have been updated, possibly with incorrect data. These
outcomes are System Detection.

For the errors belonging to the Retrospectively
Detected category the exception is raised in a different
instruction, even though the injected instruction is

replicated. This is because after the injected instruction
completed execution and before it reached the commit
stage, the simulator dispatches and executes the
instructions following it and raises an exception in one of
these succeeding instructions. Again, in a real processor
the replication mechanism can detect this category of
errors at the commit stage.

5.3.3 Error metrics

The two metrics derived from the fault injection
outcomes are the percentage of errors detected by the
technique and percentage of false positives, where an
error that is benign in the baseline is detected by the
technique. For any technique it is desirable to have the
most sensitive detection possible and as few false
positives as possible, even though these are conflicting
goals.

5.3.4 Error coverage for instruction errors

Errors belonging to each type mentioned in Section 5.3.1
are injected. Table 4 presents the detection by selective
replication (SELREP), averaged over the applications,
when 50 critical variables are used to select the critical
instructions to be replicated. The detection of selective
replication is compared to the outcomes in the baseline
case, when randomized replication (RANDOMREP) is
used and when full duplication (FULLREP) is used.

These results show that selective replication of
instructions affecting 50 critical variables detects about

 9

87% percent of the faults detected by FULLREP. Yet it
incurs 59.1% less overhead and leads to 17.8% fewer

benign error detection scenarios as compared to full
duplication.

Table 4: Results for instruction error injection with SELREP

 Configuration
Outcome Baseline RANDOMREP SELREP FULLREP

Activated 489 449 504 500

Not Manifested 41.8% 30.3% 19.0% 18.0%

Replication Detection 0.0% 50.9% 62.5% 71.2%

Exception raised in same instruction 29.2% 24.8% 2.0% 0.0%

Exception raised in different instruction 40.1% 18.4% 4.2% 0.0%

Program Hang 8.8% 4.2% 1.7% 0.1%

Fail Silence Violation 21.9% 7.9% 1.9% 0.6%
Benign Error Detection 0.0% 45.9% 48.5% 59.0%

In Figure 6, the y-axis shows the different

outcomes from the injection of instruction errors. The x-
axis shows the percentage of errors that fall into each
outcome category. From Figure 6 we can see that
FULLREP detects about 71.2% of the manifested errors.
The rest of the errors raise an exception at the injected
instruction itself and hence can be detected by the system
and recovered easily. Even though selective replication
has a much lower overhead than full duplication, it detects
62.5% of the manifested errors, whereas random
replication detects only 50.9% of the errors. When

random replication is used, the system detects 17% of the
errors in a different instruction, which are difficult to
recover from. In the case of selective replication, this
contributes to only 4.2% of the errors.

Figure 7 shows the percentage of fail silence
violations and program hangs that occur when instruction
errors are injected and when different types of replication
mechanisms are employed. Full Duplication is able to
prevent most of the fail-silence violations and program
hangs. Selective Replication is better than randomized
replication but worse than full replication in detecting
both fail silence violations and program hangs.

71.2%

0.0%

0.0%

59.0%

62.5%

2.0%

4.2%

48.5%

50.9%

5.9%

17.0%

45.9%

28.3%

46.9%

0% 10% 20% 30% 40% 50% 60% 70% 80%

Replication Detection

Exception Raised in
same instruction

Exception Raised in
different instruction

Benign Error
Detection

Full Rep SELREP Random Baseline

Figure 6: Instruction error injection results

0.1%

0.6%

1.2%

1.7%

4.3%

3.8%

10.4%

14.5%

0% 2% 4% 6% 8% 10% 12% 14% 16%

Program Hang

Fail Silence Violation

Full Rep SELREP Random Baseline
Figure 7: Fail silence violations and program hangs for

instruction errors

5.3.5 Error coverage for data errors

Table 5 summarizes the results of injecting data
errors (errors into the output of a functional unit when it is
generating the result of an instruction). We see that
FULLREP detects all the errors. This is because we inject
the result of an instruction in only one of the replicas and
vote over the result of each replicated instruction. Since
all instructions are replicated in FULLREP it can detect
all data errors. However, it is important to note that even

though only a fraction of the instructions are replicated in
selective replication it detects about 97% of all data errors
also. From the last row in Table 5 we see that FullRep
detects all the data errors that were Not Manifested in the
Baseline case, whereas SelRep decreases this detection of
errors benign to the application outcome by more than
6%.

 10

Table 5: Fault injection results for data injection

Configuration
Outcome Baseline SELREP FULLREP

Activated 490 477 477
Not Manifested 44.6% 3.0% 0.0%
Replication Detection 0.0% 97.4% 100.0%
Exception raised in different instruction 72.2% 1.6% 0.0%
Program Hang 2.3% 0.1% 0.0%
Fail Silence Violation 25.5% 0.9% 0.0%
Benign Error Detection 0.0% 93.8% 100.0%

6 Related work

Replicated execution for fault-detection and
tolerance has been investigated extensively both at the
application and hardware level. At the application-level,
instructions in the code segment are duplicated and are
expected to execute on the idle hardware in superscalar
processors. Error Detection Using Duplicated
Instructions (EDDI) [2] duplicates of original instructions
in the program but with different registers and variables.
SWIFT [25] is an application-level duplication
mechanism based on EDDI. In Error Detection by
Diverse Data and Duplicated Instructions (ED4I) [16]
two “different” programs with the same functionality but
with different data sets, are executed and their outputs are
compared. The “different” programs are generated by
multiplying all variables and constants in the original
program by a diversity factor k.

Duplicated at the application level increases the
code size of the application in memory. More importantly,
it reduces the instruction supply bandwidth from memory
to the processor. EDDI can possibly be extended to
support selective replication by instructing the compiler
which portions of the application need to be replicated.
ED4I has to execute two versions of the same programs
and has an effective overhead of more than 100%, since
both the applications have to be executed and their results
collected and compared.

In the realm of commercial processors Tandem’s
(now HP) Integrity S2 [16] fault tolerance platform
provided triple modular redundancy (TMR) in all
hardware components and synchronizing the replicated
processors at the interrupt-level. The IBM G5 processor
[17] provides duplicate I- and E- units to provide
duplicate execution of instructions. The processor is
supported by a hierarchical recovery mechanism, from the
instruction-level extending upto the system level. To
support the duplicate execution, the G5 is restricted to a
single-issue processor and incurred 35% hardware
overhead.

In experimental research simultaneous
multithreading (SMT) [19] and the chip multiprocessor
(CMP) architectures have been ideal bases for space and

time redundant fault-tolerant designs because of their
inherent redundancy. In the AR-SMT architecture fault
tolerance is achieved by executing two copies of the same
program on an SMT processor [20]. A later work
develops similar concepts in the context of CMPs [21]. In
simultaneously and redundantly threaded processors
(SRT), AR-SMT is further enhanced by checking only
instructions whose side effects are visible beyond the
boundaries of the processor core. This allows looser
coupling between the redundant threads [22]. This
modified SMT-based fault-tolerant design is subsequently
extended in simultaneously and redundantly threaded
processors with recovery (SRTR) to include recovery [5].
Another fault-tolerant processor architecture is proposed
in the DIVA design [3][4]. DIVA comprises an
aggressive out-of-order superscalar processor along with a
simple in-order checker processor. The checker processor
verifies the output of the complex out-of-order processor
and triggers a recovery action when an inconsistency is
found. Microprocessor-based introspection (MBI) [23] is
a time redundancy technique, to detect transient faults.
MBI achieves time redundancy by scheduling the
redundant execution of a program during idle cycles in
which a long-latency cache miss is being serviced. Even
though full duplication at the processor-level has been
believed to have little or no performance overhead, [5]
and [23] have reported upto 30% overhead. SLICK [26] is
a SRT based approach to provide partial replication of an
application, compared to this approach we do not rely on
a multi-threaded architecture for the replication. Instead,
this paper presents modifications to a general superscalar
processor to support partial or selective replication of the
application.

The basic principle of fault-tolerance employed
in all the previous techniques that have been discussed is
replication. This is also the focus of this paper. But a
major difference is that none of the previous techniques
provide a mechanism to dynamically configure the level
of replication according to the application’s demand. The
application also does not have a choice of not replicating
part of its code. This requires providing an interface to the
application, either at the high-level programming
language or at the assembly level, to invoke and configure
the replication mechanism at run-time. This is the major
contribution of this paper.

 11

7 Conclusion

In this paper we have demonstrated an approach
to extract sensitive sections of code that can be selectively
replicated to enhance the reliability of the application,
instead of replicating the entire application. We have
given a detailed design and evaluation of the mechanism
to support this selective replication at the processor
architecture level. The results show that with about 59%
less overhead than full duplication of all instructions we
can cover 97% of the data errors and 87% of the
instruction errors that were covered by full duplication.
An important advantage of the selective replication is that
reduces the detection of errors benign to the final outcome
of the application by 17.8% as compared to full
duplication.

REFERENCES

[1] R. K. Iyer, N. Nakka, Z. T. Kalbarczyk, and S. Mitra,
“Recent advances and new avenues in hardware-level
reliability support,” IEEE MICRO, vol. 25, no. 6, pp. 18-
29, Nov.-Dec. 2005.

[2] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Error
detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, vol.
51(1), pp. 63-75, Mar. 2002.

[3] C. Weaver and T. Austin. “A fault tolerant approach to
microprocessordesign,” in Proceedings of the
International Conference on Dependable Systems and
Networks, July 2001, pp. 411-420.

[4] T. Austin, “DIVA: A reliable substrate for deep
submicron microarchitecture design,” in Proceedings of
the Thirty-Second International Symposium on
Microarchitecture, November 1999, pp. 196-207.

[5] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient
fault recovery using simultaneous multithreading,” in
Proceedings of the Twenty-Ninth Annual International
Symposium on Computer Architecture, May 2002, pp.
87-98.

[6] J. Ray, J. C. Hoe, and B. Falsafi, “Dual use of
superscalar datapath for transient-fault detection and
recovery,” in Proceedings of the Thirty-Fourth Annual
International Symposium on Microarchitecture, Austin,
Texas, Dec. 2001, pp. 214-224.

[7] G. Choi, R. Iyer, and V. Carreno, “FOCUS: An
experimental environment for validation of fault
sensitivity analysis,” IEEE Transactions on Computers,
vol. 41, no. 12, pp. 1515-1526, Dec. 1992.

[8] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel,
“Characterizing the effects of transient faults on a high-
performance processor pipeline,” in Proceedings of
Dependable Systems and Networks, 2004, pp. 61-70.

[9] G. Saggese, A. Vetteth, Z. T. Kalbarcyzk, and R. K. Iyer,
“Microprocessor Sensitivity to Failures: Control vs
Execution and Combinational vs Sequential Logic,” in
Proceedings of Dependable Systems and Networks,
2005, pp. 760-769.

[10] K. Pattabiraman, Z. T. Kalbarczyk, and R. K. Iyer,
“Application-based metrics for strategic placement of
detectors,” in Proceedings of Pacific Rim Dependability
Conference, 2005, pp. 8-15.

[11] M. D. Ernst, “Dynamically detecting likely program
invariants,” Ph.D. dissertation, University of
Washington, Department of Computer Science and
Engineering, August 2000.

[12] S. Bagchi, S. Narayanaswamy, Z. Kalbarcyzk, and R.K.
Iyer, “Design and evaluation of preemptive control
signature (PECOS) checking for distributed
applications,” Submitted to IEEE Transactions on
Computers, 2002.

[13] A.V. Aho, R. Sethi and J.D. Ullman, Compilers –
Principles, Techniques, and Tools, Reading, MA:
Addison-Wesley Publishers, 1986.

[14] D. Burger and T. M. Austin, “The SimpleScalar tool set,
version 2.0,” University of Wisconsin-Madison,
Technical Report CS-1342, June 1997.

[15] M. Hiller, A. Jhumka, and N. Suri, “On the placement of
software mechanisms for detection of data errors,” in
Proceedings of the International Conference on
Dependable Systems and Networks (DSN), 2002, pp.
135-144.

[16] D. Jewett, “Integrity S2: A fault-tolerant Unix platform,”
Digest of Papers Fault-Tolerant Computing: The
Twenty-First International Symposium, Montreal,
Canada, pp. 512 - 519, June 25-27, 1991.

[17] T. Slegel, et al. “IBM’s S/390 G5 microprocessor
design,” IEEE Micro, vol. 19(2), pp. 12–23, 1999.

[18] N. Oh, S. Mitra, and E.J. McCluskey, “ED4I: Error
Detection by Diverse Data and Duplicated Instructions,”
IEEE Transactions on Computers, vol. 51(2), pp. 180-
199, Feb. 2002.

[19] D. M. Tullsen, S. J. Eggers, and H. M. Levy,
“Simultaneous multithreading: Maximizing on-chip
performance,” in Proceedings of the Twenty-Second
International Symposium on Computer Architecture,
June 1995, pp. 392-403.

[20] E. Rotenberg, “AR-SMT: A microarchitectural approach
to fault tolerance in microprocessors,” in Proceedings of
the Twenty-Ninth International Symposium on Fault-
Tolerant Computing Systems, June 1999, pp. 84-91.

[21] K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream processors: Improving both performance and
fault tolerance,” In Proceedings of the Thirty-Third
International Symposium on Microarchitecture,
December 2000, pp. 269-280.

[22] S. K. Reinhardt and S. S. Mukherjee, “Transient fault
detection via simultaneous multithreading,” in
Proceedings of the Twenty-Seventh International
Symposium on Computer Architecture, June 2000, pp.
25-36.

[23] M. A. Qureshi, O. Mutlu, and Y. N. Patt,
“Microarchitecture-based introspection: A technique for
transient-fault tolerance in microprocessors,” In

 12

Proceedings of International Conference on Dependable
Systems and Networks, June 2005, pp. 434-443.

[24] N. Nakka. “Reliability and Security Engine: A
Processor-level framework for Application-Aware
detection and recovery,” PhD dissertation, Department of
Electrical and Computer Engineering, University of
Illinois at Urban-Champaign, USA, 2006.

[25] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. I. August. SWIFT: Software implemented fault
tolerance. In Proceedings of the3rd International
Symposium on Code Generation and Optimization,
March 2005.

[26] A. Parashar, A. Sivasubramaniam, S. Gurumurthi.
“SlicK: slice-based locality exploitation for efficient
redundant multithreading,” in Proceedings of the 12th
Intl., conference on ASPLOS, 2006.

