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Abstract

Critical Variable Recomputation (CVR) based error de-
tection provides high coverage for data critical to an ap-
plication while reducing the performance overhead asso-
ciated with detecting benign errors. However, when im-
plemented exclusively in software, the performance penalty
associated with CVR based detection is unsuitably high.
This paper addresses this limitation by providing a hybrid
hardware/software tool chain which allows for the design of
efficient error detectors while minimizing additional hard-
ware. Detection mechanisms are automatically derived dur-
ing compilation and mapped onto hardware where they are
executed in parallel with the original task at runtime. When
tested using an FPGA platform, results show that our ap-
proach incurs an area overhead of 53% while increasing
execution time by 27% on average.

1 Introduction

The continual shrinkage of transistor process technology
has increased the need for more reliable systems. Result-
ing smaller capacitances have increased the likelihood of
transient or soft errors which impact application availabil-
ity [1][9]. Though many existing software solutions, such
as duplication [2][11][14][15], provide the necessary relia-
bility, they suffer from being overly conservative and ineffi-
cient as many of the detected errors are benign [8].

These conservative detection strategies often incur high
overheads either in execution time or in additional hardware
complexity [15]. These impediments must be overcome in
order to assure the likely adoption of a technique. This is
especially true for applications that are time critical, such
as medical applications, or which are limited in the amount
of available hardware resources, such as embedded systems.
Thus, it is essential to minimize the performance and area

overheads of additional detection mechanisms.

Toward this, our recent study presented an intelligent re-
computation technique called Critical Variable Recompu-
tation (CVR) in [13]. Under this technique, the compiler
profiles an application to determine which data is most crit-
ical. Recomputation is then performed only on data deemed
critical to each application. However, when implemented in
software, the technique incurs a considerable performance
overhead requiring up to 141% and 555% more time to
complete when run on the Pentium 4 and Leon3 platforms,
respectively.

To address this undesirable overhead, we move the bulk
of the detection mechanism into hardware which is signifi-
cantly faster and far more efficient than software. The soft-
ware implementation is limited by the availability of hard-
ware resources. Thus, the checking code must compete
against the application that it protects for processing cy-
cles which may stall program execution. With dedicated
hardware, however, we can execute checking operations in
parallel with the original application, significantly reducing
execution time. Moreover, the hardware implementation re-
quires less area overhead and complexity than full duplica-
tion.

Unfortunately, many microprocessors are so complex
that it is difficult to sufficiently validate all aspects of the
design. As a result, extraneous features, such as fault de-
tection hardware, are often poorly tested. For example, In-
tel recently released a specifications update for their Core
processors and most of the errata consist of malfunctioning
exceptions and other fault detection hardware [4]. Many
of the workarounds consist of disabling the detection hard-
ware, enabling the core hardware to function properly with-
out the checking mechanism. On the other hand, the hard-
ware checks we propose are very simple and involve the
execution of common operations such as additions and sub-
tractions. This greatly simplifies the validation process of
the design.



In this paper, we present a hybrid hardware/software tool
chain which derives and implements low-cost (in terms of
performance and area overhead) application-specific error
detectors. Analysis of the source code for target applica-
tions is performed statically at compile time in order to re-
tain all necessary characteristics of the program. Enforce-
ment of the checks is maintained in hardware to minimize
the detection latency and error propagation.

The contributions of this paper include:

1. The design, implementation, and evaluation of a low
latency hardware checking mechanism.

2. An automated tool chain for generation of the hard-
ware checks. The tool chain is like a compilation step
which facilitates easy adoption.

2 Related Work

A variety of techniques have been proposed for detecting
errors in programs. Static analysis techniques typically vali-
date applications based on knowledge of common program-
ming bugs (e.g. NULL pointer dereferences). Dynamic
analysis techniques derive code-specific invariants based on
dynamic characteristics of the application. However, sub-
tle errors such as timing errors (e.g. race conditions) may
still persist in a program [6]. Runtime error detection tech-
niques, such as software duplication, which duplicates the
program at the source level [2], instruction level [11], or the
intermediate code level [14], are geared toward addressing
both these and other software and hardware errors. How-
ever, these techniques usually suffer from very high over-
head. In order to reduce the overhead, there is a need for
runtime error detection techniques that are (1) customized
to the application’s characteristics and (2) able to detect er-
rors that matter to the application (i.e. errors which, if un-
detected, lead to failure).

Conversion of C code into synthesizable VHDL has been
extensively studied in literature [17][3]. However, such
techniques are generic and are thus inefficient in a special-
ized context. The technique proposed in this paper allows
for more efficient hardware synthesis compared to these
generic techniques because (1) the checking expressions de-
rived by the technique are devoid of loops/control-transfers,
(2) the checking expressions have a common high-level
structure, and (3) the detectors do not interfere with normal
program behavior.

3 Critical Variable Recomputation Back-
ground

The Critical Variable Recomputation (CVR) technique
was first presented in [13] where it was fully implemented in

software 1. The goal of CVR is to achieve near-duplication
levels of error-detection coverage with only a fraction of the
performance overhead. This is feasible because the tech-
nique focuses on the recomputation of critical variables
which are highly sensitive to random errors in the program.
By protecting only a few of these critical variables, it is pos-
sible to achieve high coverage for errors that are likely to
lead to program failure.

The basic steps followed in the design and implementa-
tion of the CVR technique are as follows.

1. Determine the critical variables in the program. These
variables are chosen based on their fanout (defined as
the number of forward dependencies); those with a
higher fanout are deemed to be more critical. The most
critical variables are then chosen for protection. More
details concerning this selection is described in [12].

2. Derive the backwards slice, or the dependency trees, of
the critical variables. The backwards slice consists of
those instructions that can legally modify the critical
variables according to the C language semantics [16].

3. Create path tracking and checking expressions for crit-
ical variables by optimizing the backward slice for
each path which contributes to the computation of a
critical variable.

4. Convert the path tracking and checking expressions
into state machines which are programmed into recon-
figurable hardware. Instrument the original program
with special CHK instructions which trigger state tran-
sitions when control paths must be tracked or when
recomputation must occur.

5. Compile the instrumented application onto a generic
processor. The path tracking and checking state ma-
chines are programmed into reconfigurable hardware.

4 Hardware Implementation

This section discusses the design and implementation of
the CVR hardware.

4.1 Reliability and Security Engine

Our work is built on top of the Reliability and Security
Engine (RSE) [10], a framework that provides a general in-
terface for the modular development and implementation of
reliability and security techniques in hardware. This ap-
proach enables the development of isolated hardware mod-
ules for reliability and security enhancements without sub-

1While limited hardware support was assumed in the paper, the tech-
nique itself was demonstrated exclusively in software
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Figure 1. The Leon 3 processor with the Relia-
bility and Security Engine

stantially modifying the host processor. Moreover, the mod-
ular environment allows users to customize their system by
enabling or disabling techniques as they wish.

We have integrated the RSE with the Leon 3 open-source
processor pipeline from Gaisler Research [5], depicted in
Figure 1. Although shown with the Leon 3, the RSE frame-
work is general enough to be integrated with any general
purpose processor. Additionally, the RSE is non-intrusive
to the main processor pipeline as it only needs to monitor
execution behavior. This is achieved by inserting probes
into the pipeline of the host processor which continuously
transfer select state information to the RSE modules.

In order to allow for communication between the appli-
cation running on the host processor and the RSE modules,
we override the SPARC v8 instruction set architecture co-
processor operation instruction (CPOP1) and convert it into
a CHK instruction. From the point of view of the main pro-
cessor, a CHK instruction is viewed as analogous to a no-
operation instruction. Each CHK instruction has a unique
type identification which specifies the RSE module and op-
eration for which it is intended.

4.2 The Static Detector Module

The Static Detector Module (SDM) is the hardware im-
plementation of the CVR technique described in Section 3.
As shown in Figure 2, the SDM consists of two submodules:
(1) the Path Tracking submodule, and (2) the Checking
submodule. Typically, data relevant to both submodules is
provided in the CHK instruction word. If necessary, an ar-
gument buffer, called the ARGQ, buffers data supplied by
an SDM-protected application in order to support recompu-
tation involving several operands. Once all values neces-
sary for recomputation are supplied, the ARGQ is accessed
in a manner similar to a queue which allows the SDM to
perform ordered operations without requiring further infor-

mation from the application.
Path Tracking. The Path Tracking submodule tracks the

location within the application where execution is occur-
ring. This dynamic state information is needed to indicate
which operations to recompute. Each path corresponds to a
different check in the Checking submodule.

The Path Tracking submodule consists of hardware state
machines and a stack structure (StateStack). Each state ma-
chine corresponds to a particular check and is constantly
updated during program execution. The StateStack is im-
plemented as group of individual stacks, one for each state
machine. Partitioning the stack in this manner offers ma-
jor benefits over a unified stack. Specifically, the complex
routing logic and wiring associated with maintaining a uni-
fied stack yields unsynthesizable designs. Additionally, the
overhead associated with stack accesses is minimized as
each state machine may access its own stack in parallel with
other state machine accesses. The Path Tracking submodule
recognizes three different types of CHK instructions:

• emitEdge(src,dest): This is invoked whenever a branch
is encountered during program execution. The argu-
ments for this instruction (the source and destination
values) are inserted into the ARGQ by the applica-
tion. Since branches are always merging and splitting,
the technique requires both the source and destination.
The path tracking state machines are then updated ac-
cordingly based on these arguments.

• enterFunc: This is invoked when program execution
enters a function. At this point, the current state of all
state machines are pushed onto the StateStack and are
cleared.

• leaveFunc: This is invoked whenever program execu-
tion returns from a function. The state machines are
restored to their previous states, which are popped off
of the StateStack.

Checking. The Checking submodule performs recom-
putation operations in parallel with the program execution.
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Figure 2. Static Detector Module block diagram
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ware checks

Checks are invoked with CHK instructions which are em-
bedded into the program source code. This module is re-
sponsible for figuring out when recomputation takes place.
The Checking submodule recognizes only one type of CHK
instruction:

• check(num): This is invoked when the check is to be
executed. The num argument indicates the ID of the
check that is to be invoked. The Checking submod-
ule also uses information output from the Path Track-
ing submodule to execute the correct version of each
check. This information is needed for cases such as a
loop since the check to be performed may depend on
whether the program execution is looping or exiting
the loop.

After recomputation, the Checking submodule performs
a comparison between the normal application computation
and the hardware recomputation. If the two computed val-
ues differ, the module throws an error. As with the Path
Tracking submodule, the Checking submodule gets argu-
ments that it needs either for recomputation or comparison
from the application through the CHK instruction word, or
the ARGQ.

4.3 Tool Chain

The overall tool chain for deriving the hardware checks
is illustrated in Figure 3. The process is fully automated; to
the user, this process can be viewed as a simple compilation
step. The tool chain accepts as input the application source
code and produces two files:

1. The VHDL implementation of the application-specific
error detectors. These are later synthesized for use in
configuration of the FPGA device.

2. The application instrumented with CHK instructions is
loaded into DRAM for execution on the main proces-
sor.

As previously mentioned, the application source code is
all that is needed to derive and implement the detectors.
We first compile the application source code using the aug-
mented LLVM compiler presented in [13] which profiles the
application to determine which variables are critical. The
compiler then outputs the instrumented source code (to be
run on the host processor) along with path and check defi-
nition files. The definition files contain all the information
needed to implement the Path Tracking and Checking sub-
modules and are fed into the SDM VHDL Translator which
automatically generates their corresponding VHDL source
code. Finally, we use Synplify Pro and Xilinx XST to gen-
erate a bit file used to program the FPGA device.

5 Evaluation

We have implemented the RSE and SDM alongside the
Leon 3 processor [5] which includes a 7 stage in-order
pipeline, split 16 KB L1 instruction and data caches, and
a DDR memory controller. Synthesis and mapping were
done with Synplify Pro 8.1 while translation and place &
route were done with Xilinx XST 9.1. The target prototype
board was a Digilent XUP board utilizing the Xilinx Virtex-
II Pro 30 FPGA chip with a nominal clock speed of 65 MHz
and 512MB of SDRAM.

We evaluated the SDM and associated hardware on seven
applications from the Stanford Benchmark suite [7] accord-
ing to the following metrics: (1) performance overhead and
(2) area overhead of the synthesized design. We do not
evaluate the coverage because it was thoroughly evaluated
in [13] and is thus not the main focus of this study. Table 1
summarizes the number of checks which must be inserted
into the source code for each benchmark in order to provide
sufficient error coverage for the five most critical variables
in each function.

Figure 4 shows the performance overhead attributed to
both the software-only and hardware-supplemented imple-
mentations of the protected Stanford applications normal-
ized against their un-instrumented original source. These
results depict a marked improvement in performance across
the applications when checking occurs within the SDM.
However, the results also show that the performance benefit
of CVR-based checking varies significantly between appli-
cations. After analyzing the instrumented source code, it
is apparent that such variations likely occur as a result of
emitEdge and check instructions which utilize the ARGQ
as described in section 4. For example, some of the appli-
cations (e.g. Queens) require emitEdge instructions at com-
monly used branch points whereas other applications (e.g.
Quicksort) do not.



Table 1. Number of checks needed for cover-
age of top 5 variables/function

Benchmark Number of
Checks

Number of CHK in-
struction activations

Bubblesort 5 748,502

IntMM 11 3,331,262

Oscar 15 175,920

Perm 16 2,047,922

Queens 10 2,525,002

Quicksort 14 135,630

RealMM 9 2,051,262

Figure 4. Performance Slowdowns for instru-
menting the Stanford Benchmarks

Furthermore, investigation of the instrumented source
code reveals that less than 1% of the performance overhead
is actually attributable to the path tracking or recomputa-
tion hardware. Rather, CHK instructions embedded into the
original source code are primarily responsible for the de-
graded performance. This occurs because insertion of CHK
instructions, though they represent a no-operation from the
point of view of the application, essentially add pipeline
bubbles. Thus, applications like Queens, which require
CHK instructions at commonly used branch points, require
several additional CPU cycles.

Additionally, the combined impact of all such cycles is
somewhat inflated on the Leon 3 platform due its low op-
erating frequency and in-order pipeline. As the Leon 3
operates at 65 MHz, pipeline bubbles appear as costly as
typically long-running operations (like memory transfers)
which require far more CPU cycles when run on high fre-
quency platforms such as the Pentium 4. Moreover, due to
the in-order pipeline, these bubbles cannot be masked on the
Leon 3 as would be possible on a superscalar architecture
such as the Pentium 4. This is evidenced by the fact that,

when run on a Pentium 4 chip, the software-only imple-
mentation of the instrumented Queens application required
only 141% more CPU cycles to complete than the unmodi-
fied version; identical code when run on the Leon3 required
555% more cycles.

Figure 5 presents the additional area required by the
SDM hardware as compared against the baseline Leon3. All
area results were obtained by examining the equivalent gate
count of the synthesized hardware. Also, synthesis results
indicate that the SDM is not in the critical path of the design
and thus has no effect on the clock frequency.

From Figure 5, it is clear that area overheads are depen-
dent on the application to be protected. For example, al-
though Quicksort has a smaller number of detectors than
Perm, it has a higher area overhead (57% compared to
Perm’s 51.5%). This is because the checking expressions
for Quicksort are more complex as they not only track the
current path seen in execution, but also temporary state in-
formation gathered during recursive function calls. Perm,
on the other hand, is not recursive and thus requires no in-
formation beyond the current path seen in execution in order
to function.

Figure 5. Area Overheads for the Stanford Bench-
marks

6 Discussion and Conclusions

The SDM provides 75-80% coverage for errors that lead
to program crashes as demonstrated in our software-only
SDM implementation presented in [13]. Moreover, our
implementation utilizes a practical detection strategy that
avoids unnecessary benign error detection. The proposed
tool chain automates the extraction of necessary checks
and checking expressions while generating the hardware re-
quired to perform CVR. Our results show that, for the Stan-
ford benchmarks, performance is only degraded by 27%
while area is increased by 53% on average 2. These results

2The gate count of the SDM hardware should not vary across different
processors; area overhead would decline for more complex CPU designs



are encouraging as they demonstrate that error coverage ap-
proaching that of duplication is possible at a significantly
reduced cost in terms of performance or area overheads.

In the future, we plan to pursue several improvements
upon this implementation. For example, potentially un-
bounded area overheads possible with the current hardware
implementation represents a point of concern. To this end,
we have designed a specialized 51 instruction microcon-
troller capable of replacing the checking and path tracking
hardware. Use of the microcontroller would also obviate the
need to re-synthesize hardware for protected applications as
its instructions can be stored in memory.

However, we do not want to rule out specialized hard-
ware altogether as it is conceivable that some checking ex-
pressions may require too many instructions for the micro-
controller to compute in a timely manner. Instead, we con-
sider adding a feedback loop from the synthesis tools to
the compiler in the tool chain. Thus, the compiler would
”know” of any resource restrictions for the checks that it
generates. For example, given resource limitations the syn-
thesis tools could direct the compiler to generate either less
complicated or fewer checks. On the other hand, the synthe-
sis tools could direct the compiler to generate larger or more
checks for increased coverage if resources are available.

Additionally, the area overhead of the specialized detec-
tors could be improved by eliminating redundancies among
checking expressions. For example, in the prototype im-
plementation, combinational logic is not reused between
expressions. If two expressions on two separate paths are
identical, the same circuit is synthesized twice. Eliminating
these redundancies could yield reductions in the area over-
head for the error checking sub-module. However, reducing
this redundancy will only be partially effective as much of
the area overhead depends on hardware not specific to any
particular checking expression (e.g. the StateStack).

Finally, as CHK instructions embedded at branch points
diminish performance, we are examining methods which
would reduce the need for such instructions. For example,
information required by emitEdge CHK instructions could
be inferred directly from signal taps on the main Leon3
pipeline. This method would not only reduce the observed
performance overhead, but also reduce performance varia-
tions across different applications.

Once we have established these alternate checking im-
plementations and extended the automated tool chain, we
plan to examine the impact of the checking method across a
broader variety of applications.
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