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ABSTRACT
Programs written in type-unsafe languages such as C and
C++ incur costly memory errors that result in corrupted
data structures, program crashes, and incorrect results. We
present a data-centric solution to memory corruption called
critical memory, a memory model that allows programmers
to identify and protect data that is critical for correct pro-
gram execution. Critical memory defines operations to con-
sistently read and update critical data, and ensures that
other non-critical updates in the program will not corrupt
it. We also present Samurai, a runtime system that imple-
ments critical memory in software. Samurai uses replication
and forward error correction to provide probabilistic guaran-
tees of critical memory semantics. Because Samurai does not
modify memory operations on non-critical data, the major-
ity of memory operations in programs run at full speed, and
Samurai is compatible with third party libraries. Using both
applications, including a Web server, and libraries (an STL
list class and a memory allocator), we evaluate the perfor-
mance overhead and fault tolerance that Samurai provides.
We find that Samurai is a useful and practical approach for
the majority of the applications and libraries considered.

Categories and Subject Descriptors
D.4.5 [Reliability]: Fault-tolerance; D.3.3 [Programming
Languages]: Dynamic Storage Management
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1. INTRODUCTION
Languages such as C and C++ do not provide intrinsic

guarantees about memory safety that are present in type-
safe languages such as Java. Many programs are still written
using these languages for performance and compatibility rea-
sons and, as a result, memory errors continue to be common
causes of program failures and security vulnerabilities (e.g.,
CERT [30]). In this paper, we focus on an important sub-
class of memory errors, memory corruptions, although lim-
ited protection is offered from other subclasses of memory
errors as well (e.g., uninitialized reads and invalid/double
frees). Memory corruption occurs when a program breaks
type safety and writes to an unintended location, potentially
corrupting the data there. Common causes of memory cor-
ruptions include buffer overruns and dangling pointer errors.

Because all memory locations are equally accessible to all
store instructions in a program, current approaches to pro-
viding safety from memory corruption in C and C++ re-
quire that every store in a program be either statically or
dynamically checked for correctness (e.g., [8, 15, 16, 23]).
As a result, there are significant challenges to existing ap-
proaches that limit their practical application. For dynamic
approaches, the overhead of checking at every store is high
(ranging from 2x to 30x overhead) [12, 16, 24]. For static
approaches, it is difficult to reason about program compo-
nents that are not available statically. For example, libraries
can be loaded dynamically, and third-party libraries are of-
ten not available in source form [23]. A single unchecked
pointer write in the program can void the guarantees that
static analysis provides.

Figure 1 illustrates the challenges both static and dynamic
techniques face in providing safety from corruptions. In the
example, we focus on the value of the variable balance,
which might represent a bank account balance. Preventing
the value of balance from being illegally modified is diffi-
cult with existing methods. In this paper, we present an
alternate approach to reducing the impact of memory cor-
ruptions on C and C++ programs. Our main contributions
are as follows:

• We define a new memory model, Critical Memory
(CM), that prevents arbitrary stores from corrupting
critical data. Critical data is explicitly identified by
the programmer as being vital for correct program ex-
ecution. In our example, the variable balance would
be identified as critical. Distinguishing critical data en-
ables local reasoning about safety from memory corrup-
tion, so that the programmer writing check_balance

does not need to know if the argument i is within the



int x, y, buffer[10];

// balance is critical

int balance = 100;

void check_balance(int i) {

GUI_action(&x, &y);

buffer[i] = 10000;

if (balance < 0)

check_credit();

}

Figure 1: Example unsafe C program

bounds of array buffer, or that the library function
GUI_action does not corrupt memory. Critical mem-
ory allows the use of static analysis techniques on a
subset of a larger unsafe program while ensuring that
external libraries (or other functions) cannot corrupt
local data. Critical memory is an abstract model that
can be implemented in either hardware or software.

• We describe Samurai, an object-based implementation
of critical memory in software. Samurai provides for
critical data, probabilistic guarantees of safety from
corruption at a cost proportional to the amount of crit-
ical data in use. Samurai uses replication and forward
error correction (majority voting) to approximate the
semantics of an ideal critical memory.

• We evaluate the use of Samurai in applications, in-
cluding four SPECINT2000 benchmarks [13], a ray-
shading application [21] (written in C) and a multi-
threaded web server (written in C++) [2], and in li-
braries (an STL List class and a memory allocator).
Our results indicate that the performance overhead of
Samurai varies based on the amount of critical data
protected, and is often below 10%. We evaluate the
error resilience of Samurai using fault-injection exper-
iments in applications protected with Samurai to sim-
ulate memory errors. These experiments show that
Samurai is able to tolerate corruptions in both criti-
cal and non-critical data, and recover the critical data
successfully.

Aspects of our approach make it appealing to use in prac-
tice. First, programmers can deploy CM selectively and re-
alize its benefits incrementally without major changes to
the application and with low execution overhead. Second,
CM protection works even in the presence of unsafe third-
party libraries for which the source code is not available.
CM makes no assumptions about and requires no modifi-
cations to third-party code, but still ensures critical data
consistency. Finally, CM does not change the structure of
the allocated objects or the format of pointers used to ac-
cess them, making it compatible with library functions and
system calls that know nothing about CM.

CM can also protect against security attacks caused due to
memory corruption errors (e.g. buffer overflows). However
Samurai (the software implementation of CM) does not ex-
plicitly address security attacks. While Samurai protection
is adequate for a wide-range of existing memory corruption
attacks, it is possible for a smart attacker to circumvent the

protection provided by Samurai. This is addressed in Sec-
tion 3.2 along with possible mitigation strategies.

In the remainder of this paper, we describe critical mem-
ory (Section 2), describe the design of Samurai (Section 3),
and evaluate our implementation using both benchmark pro-
grams and modified libraries (Sections 4 and 5). We con-
clude by describing related work (Section 6) and summariz-
ing (Section 7).

2. CRITICAL MEMORY
Critical Memory (CM) is a memory model that allows pro-

grammers to identify and protect data that is critical to the
correct execution of their application. CM extends a tradi-
tional load/store instruction set architecture with additional
instructions 1 that create and reference a new memory re-
gion that overlays normal memory. While traditional loads
and stores read and write normal memory, critical loads and
stores read and write both the normal and critical memory.
To concisely summarize the semantics, critical loads return
the value stored by the last critical store to a given address,
despite any intervening normal stores.
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Figure 2: Critical memory operation

Figure 2 illustrates the effect of a sequence of four memory
operations, critical_store, store, load, and critical_load.
Critical memory exists in parallel with normal memory and
critical store operations store values to both normal and crit-
ical memory, while normal store operations modify only nor-
mal memory. Load operations read normal memory, while
critical load operations read from critical memory. Because
this approach allows normal and critical memory contents to
get out of sync, we allow critical load and store operations
to detect a difference between the values in critical and nor-
mal memory and to trap if that behavior is desired (while
debugging, for instance). In the figure, the critical load la-
belled D illustrates a mismatch that can either be tolerated
or cause an exception.

Figure 3 provides an operational semantics of critical mem-
ory in a single-threaded computer2. Beside the critical load
and store instructions, there are instructions to allocate and
deallocate critical memory (map_critical and unmap_critical,

1These operations could be implemented as extensions to the
processor’s instruction set or through API calls in software.
2The multi-threaded case is discussed in Section 3.3.



Word Mem[0..MAX_MEMORY]; // Word-level representation of normal memory
Word CritMem[0..MAX_MEMORY]; // Word-level representation of critical memory
bool IsCrit[0..MAX_MEMORY]; // Bitmap representing whether a memory location is critical
bool skipCheck, exceptionOnCriticalMismatch;

// map an address as critical // load a value from critical memory
void map_critical(Address addr) { Word critical_load(Address addr) {
IsCrit[addr] = true; if (!IsCrit[addr] || skipCheck)
Mem[addr] = 0; return load(addr);
CritMem[addr] = SENTINEL; if (exceptionOnCriticalMismatch

} && (CritMem[addr] != Mem[addr])) {
// Raise error on mismatch for debugging

// map an address as non-critical trap(CriticalMismatchError);
void unmap_critical(Address addr) { } else {
IsCrit[addr] = false; Mem[addr] = CritMem[addr];

} }
return CritMem[addr];

// promote a value to critical }
void promote(Address addr) {
IsCrit[addr] = true; // store a value to critical (& normal) memory
CritMem[addr] = Mem[addr]; void critical_store (Word rValue, Address addr) {

} if (!IsCrit[addr]) {
store(rValue, addr);

// load a value from normal memory return;
Word load(Address addr) { }

return Mem[addr]; // raise error on mismatch
} if (exceptionOnCriticalMismatch

&& (CritMem[addr] != Mem[addr])
&& (CritMem[addr] != SENTINEL) ) {

// store a value to normal memory trap(CriticalMismatchError);
void store (Word rValue, Address addr) { }

Mem[addr] = rValue; CritMem[addr] = rValue;
} Mem[addr] = rValue;

}

Figure 3: Operational semantics of critical memory

respectively). A final operation, promote, upgrades a nor-
mal memory address to critical status, allocating a critical-
memory area to shadow the normal memory area for that
data item, and copying its value from normal to critical
memory.

The figure shows that the semantics of normal load and
store instructions remain unchanged, which allows program
components that use critical memory to interoperate with
libraries that do not. Our semantics are motivated by the
goal of allowing programmers to selectively apply critical
memory to parts of their application. As such, we consider
a “critical object” to be one that has a normal memory area
as well as a shadowing area of critical memory. Normal
store operations modify the normal memory of such a criti-
cal object, potentially creating a mismatch in its normal and
critical memory areas. Critical load or store instructions can
detect these anomalies; if the inconsistency is expected (for
example, due to interoperation with modules that are not
aware of critical memory) then the program resolves the in-
consistency and continues. Otherwise it is assumed to be
the result of an unintended write, and the program can trap
or perform recovery before continuing. In a sense, critical
memory refers not just to the memory, but also to the sec-
tions of code that access it via critical memory instructions,
creating a sort of lightweight checkpoint and recovery system.

In the semantics we define, critical loads have the side-
effect of updating normal memory to have the same value
as the critical memory in cases where the values conflict.
Our rationale is that the critical memory contains the pre-

ferred value, and if the programmer chooses not to trap on
such mismatches, the critical value is the one that should
be propagated forward from the critical load. Critical loads
and stores performed on addresses not mapped as critical
behave as normal loads and stores.

2.1 Checkpointing and Recovery
Critical memory can be used in conjunction with check-

pointing systems to restart applications in the case of a pro-
gram crash or error. Checkpointing ensures that application
data is written to disk periodically or at specific program
points [14], while critical memory ensures the consistency
of the checkpointed data. With checkpointing, the onus is
on the programmer to provide recovery routines that recon-
struct the state of the application from the checkpointed
data. However, critical memory simplifies the programmer’s
job as it relieves the programmer from checking whether the
checkpointed data is correct before taking the checkpoint.
Using critical memory in conjunction with checkpointing
leads to the following strategies:

Error Detection Strategies: These define the behavior
of critical loads in the program.

1. Eager detection: Every critical load to a critical
memory location checks whether the critical value matches
the value in normal memory.

2. Lazy detection: Critical loads do not check the con-
sistency of the critical memory location. Consistency
of critical memory is checked just before checkpointing.



Error Recovery Strategies: These define the behavior
of the system when the value in critical memory does not
match the value in normal memory.

1. Forward recovery: The normal memory location is
updated with the critical value, thereby correcting the
corruption.

2. Backward recovery: An exception is raised which
triggers application recovery from the previous check-
point.

3. Trap, no recovery: An exception is raised which the
application handles without recovery.

The error-detection strategies can be composed with the
error-recovery strategies described above, leading to a total
of six possible combinations of detection and recovery strate-
gies. Each of the above strategies has specific tradeoffs in
terms of performance and reliability. For example, the ea-
ger detection strategy has higher performance overheads as
every critical load needs to be checked. However it also of-
fers higher reliability than the lazy detection strategy as it
leads to earlier detection of inconsistencies. Similarly, the
backward recovery strategy that performs recovery from a
checkpoint has higher reliability than the forward recovery
strategy that corrects inconsistencies in critical data. This
is because the latter can lead to propagation of erroneous
values in non-critical data. However, backward recovery has
higher performance overheads when errors are encountered
as it involves rollback to the last checkpoint.

In this paper, we implement critical memory using an
eager detection, forward recovery strategy. The eager de-
tection strategy minimizes error propagation and the extra
performance overhead it introduces can be alleviated using
an efficient implementation (see Section 3). Further, the
forward recovery strategy allows correction of inconsisten-
cies without requiring explicit checkpointing support in the
application.

2.2 What Should Be Critical?
A programmer using critical memory has to decide what

data to make critical. Choosing how much data to make
critical has to balance the performance impact with the re-
liability gains. For example, in our software-based critical
memory implementation, making all data critical would have
a significant performance impact, as shown by our results
(Section 5.1).

Protecting critical data is tightly intertwined with provid-
ing crash recovery in applications (already discussed). Pro-
grammers writing applications such as word processing pro-
grams already identify data that must be preserved in case
of a crash (e.g., the document). In general, the data re-
quired to reconstruct an application’s state when it crashes
is a good candidate for making critical.

Library writers also have obvious data that should be crit-
ical. For example, a memory manager implementing the
malloc/free API would benefit from having its metadata be
critical. We discuss our experience doing this in Section 5.5.
More generally, any library collection implementation (hash
table, tree, list) would be more robust if the “backbone” of
the collection was made critical so that accidental overwrites
of pointers do not render the entire structure unusable. If
the performance is acceptable, the elements of the collec-
tion (e.g., list elements, tree contents) could also be critical.

In Section 5.4 we describe our experience building a critical
STL list class.

While critical memory protects against direct memory cor-
ruption, indirect errors can also corrupt critical data. For
example, non-critical values that have been corrupted can
be stored into critical data. Control flow errors can also
cause a program to fail to perform a correct critical store
to critical data or for an incorrect critical store to update a
critical data location. In general, if non-critical data affects
program control flow, then either that data should be made
critical or other mechanisms to check the validity of control
flow should be used [1]. In Section 5.3 we quantify the like-
lihood of indirect corruption in our benchmark applications.

2.3 Interoperability
Critical memory should allow programmers to reason lo-

cally about the critical data in their module and be confident
that other modules will not corrupt it. To achieve this goal
we need to (1) be able to define per-module critical data and
(2) allow other modules to modify a module’s critical data
when necessary.

To address the first problem, we associate a module-specific
key with each critical memory address when it is mapped.
Critical load and store operations are required to hold the
proper key when they access critical memory. Keys can be
bound to critical load and store instructions by associating
code address ranges with a specific module key. This binding
can be performed by the linker by adding the key as an ar-
gument to critical load and store calls. Every map_critical

operation performed by a module associates the key of the
module mapping the memory with the critical address. Ac-
cidentally referencing another module’s critical data with
the wrong key could either default to a non-critical load or
store, or raise an exception. Implementing this approach
requires that the current module key be maintained across
module transitions, and that the keys be checked on every
critical load and store instruction. More sophisticated mod-
ule/critical data bindings are also possible. We leave a more
in-depth consideration of their design and implementation
for future work.

Programmers will also want to allow potentially unsafe
external libraries (possibly written without an awareness of
critical memory) to modify their critical data. This can be
accomplished without modifications to the library by allow-
ing it to execute normally using non-critical stores to update
critical memory. After the library returns, the module call-
ing it must first check the validity of any updates made by
the library to the normal memory area of critical objects.
Once this memory has been vetted, the module can make
the changes permanent using the promote operation. Any
other changes to critical memory made by the external li-
brary can be transparently undone or detected when the
calling module subsequently reads from the locations using
critical reads or writes. Note that a crash of the library
function does not result in critical data corruption, as the
library does not perform critical loads and stores.

2.4 Programming Model
The most basic programmer interface to critical memory

mirrors the instructions we have already presented, provid-
ing functions to allocate, deallocate, promote, and reference
critical data. We have implemented this API, allowing the
creation and use of critical objects on the heap (e.g., with



critical_malloc, critical_free, etc.) and have used this
API to modify several benchmark programs in the Olden
suite [28] as well as gzip from the SPEC2000 suite [13].

// (A) Original C code
void add_to_list(Node* start, Patient*patient) {

Node* list = (Node*) malloc(sizeof(Node));
list->patient = patient;
list->forward = NULL;
start->forward = list;
start = list;

}

// (B) Modified to make list objects critical
void add_to_list(Node* start, Patient* patient) {

Node* list = (Node*)critical_malloc(sizeof(Node));
critical_store(&list->patient,

sizeof(list->patient), &patient);
list->patient = patient;
Node* temp = NULL;
critical_store(&list->forward,

sizeof(list->forward), &temp);
list->forward = temp;
critical_store(&start->forward,

sizeof(start->forward), &list);
start->forward = list;
start = list;

}

// (C) Modified using critical type specifier
void add_to_list(critical Node* start,

Patient* patient) {
critical Node* list =

(Node*) critical_malloc( sizeof(Node) );
list->patient = patient;
list->forward = NULL;
start->forward = list;
start = list;

}

Figure 4: Critical memory in the Health benchmark

Figure 4 presents two approaches to adding critical mem-
ory to the Olden program health, which performs a sim-
ulation of the Columbian health-care system [28]. In this
application, patient data is stored in a linked list and we
choose to make the nodes of the linked list critical. Version
A in the figure is the original code, while Version B contains
the same code modified to use a low-level interface to criti-
cal memory. The critical memory API described in Figure 3
has been modified to allow each operation to take a range
of bytes instead of a single word, but is otherwise similar to
the instruction-level API already presented 3.

Version B illustrates the challenges of using a low-level in-
terface to critical memory. The programmer needs to ensure
that all potential references to critical objects are done with
critical loads and stores. While the transformation is clear
in this example, in general, having the programmer iden-
tify which source statements may reference critical data is
tedious and error prone.

Version C in Figure 4 illustrates a promising approach
that requires additional compiler support. In this version,
we have introduced a new type specifier, critical that indi-
cates that the object pointed to is critical (much as the const
specifier is used to identify constants). The compiler both

3The critical store implementation does not actually update
the variable, so the original assignment remains in the code.

checks to ensure that critical objects are not used where
they are not expected and inserts the appropriate calls to
critical_load and critical_store when critical objects
may be referenced.

2.5 Fault Model
The focus of critical memory is to protect programs from

memory corruption errors caused by pointers writing out-
side their intended objects and corrupting other objects in
memory. In addition, critical memory also offers limited
protection against the following other error categories:

1. Soft errors in memory: These are typically caused
due to electical disturbances or cosmic ray radiation
affecting hardware memory circuits, and may lead to
data corruption in memory. Critical memory provides
protection from soft errors that affect critical data.

2. Uninitialized reads: These occur when memory lo-
cations are read before being written to, which can
result in non-deterministic values being returned by
the read. Critical memory protects against uninitial-
ized reads to the critical data, as the contents of the
critical memory location and the normal memory loca-
tion will be out of sync until a critical store or critical
promote is performed on the location. This is because
the critical memory contents are initialized to a spe-
cial sentinel value during the map critical operation as
shown in Figue 3.

3. Double/Invalid Frees: The software implementa-
tion of critical memory, Samurai, is built on top of the
DieHard allocator (see section 3), which offers proba-
bilistic protection against double/invalid frees.

3. THE SAMURAI RUNTIME SYSTEM
Samurai is a runtime system for increasing program relia-

bility that probabilistically implements critical memory using
replication and forward error correction. Samurai maintains
additional copies of every critical object that is allocated
on the heap. The copies are called shadows and mirror
the contents of the original object. When a critical store
is performed, the shadows are updated with the data being
stored. When a critical load is done on the object, the ob-
ject is compared with its shadows to ensure that the data is
consistent. If there is a mismatch, then the object and its
shadows are brought in sync using simple majority voting on
their contents. Because Samurai uses replication within the
same address space, it cannot guarantee that multiple repli-
cas will not be corrupted through a memory error (although
the likelihood of such corruptions is minimized by the ran-
domized allocation policy described below). As a result, it
only implements critical memory semantics probabilistically,
with the likelihood of corruption as a function of the amount
of replication and the degree that the additional replicas are
protected.

Underlying Allocator Samurai uses DieHard [5] as its
underlying memory manager 4 because DieHard allows criti-
cal load and critical store operations to be implemented effi-
ciently (as shown below). Even more importantly, DieHard

4We use DieHard in the standalone mode without process-
level replication.



randomizes the location of objects in the heap, which min-
imizes the probability that a memory error corrupts both
the object and one or more of its replicas. Thus, corrup-
tions caused by memory errors can be corrected using simple
majority voting on the object and its replicas.

Object Metadata Samurai requires all critical data in
the program to be allocated using the Samurai memory al-
location routines. For every critical object allocated, the
Samurai memory manager transparently allocates two shadow
objects on the heap. This is because at least three objects
(including the original) are needed to perform majority vot-
ing for correcting corruptions caused by memory errors 5.

The addresses of these shadow objects are chosen from
the Samurai heap by the DieHard allocator. The addresses
are then stored as part of the heap metadata of the original
object so that a write (read) of the original object can follow
the pointers to the shadows and update (compare) the shad-
ows with the contents being written to (read from). Table 1
shows the fields of the metadata in a Samurai object.

Field Size Purpose
Valid tag 2 bytes Special flag for

valid heap objects
Shadow pointer 1 4 bytes Address of first

shadow copy
Shadow pointer 2 4 bytes Address of second

shadow copy
Object size 4 bytes Exact size of object
Checksum 2 bytes Checksum of

shadow pointers
and size

Table 1: Fields of object metadata

Heap Organization: In order to update or compare the
shadow objects, the object metadata must be accessed on
every reference to the object, so that the pointers to the
shadows can be followed. In the Samurai implementation,
the object metadata is stored at the start of the main object
and may be retrieved from the base address of the object.
Hence, given an internal pointer to an object on the heap,
a fast mechanism to retrieve the base address of the object
is required. This mechanism is provided by the organiza-
tion of the DieHard/Samurai heap as a big bag of pages
(BIBOP) [5, 17].

In the BIBOP heap, objects of the same size (typically
rounded to the nearest power of two) are grouped together
in a contiguous heap region. Since every object in a region is
the same size and regions are aligned to powers-of-two sizes,
a pointer into any object in the region can be efficiently
masked to create a pointer to the base of the region. From
this base pointer, the size of the objects in the region can
be determined via a table lookup. Knowing the object size
and the offset from the base of the region, the offset of an
arbitrary internal pointer to the base of the object can then
be determined. The function getBase, which takes a pointer
and returns a pointer to the base of the object, implements
this translation.

Additional Checking: In order to prevent access to in-

5Note that the critical memory semantics in Figure 3 main-
tains only one additional copy as the abstract model assumes
that the critical memory is separate from the normal mem-
ory.

valid objects on the heap through critical loads, the valid
field of the object metadata contains a specifically chosen
unlikely bit pattern for valid objects. The critical load op-
eration checks for this bit pattern in the valid field before
performing the load, and aborts the operation if the pattern
has been corrupted.

Samurai also checks that critical stores to the critical data
do not exceed the bounds of the critical-object by storing the
actual size of the allocated object (not the rounded-up size)
as part of the object’s metadata, and checking the access to
ensure that it is within bounds. This prevents critical stores
from writing outside the allocated object, and corrupting
other objects on the heap (critical and non-critical).

The metadata for each heap object is itself protected with
checksums to protect it from corruption. In addition, a re-
dundant copy of the metadata is stored in a separate hash
table in a virtual memory protected heap region. This can
be used to restore the metadata in case it is corrupted.

Critical Malloc and Critical Free: The pseudo-code
for critical_malloc and critical_free are shown in Fig-
ure 5. These operations make use of the underlying memory
allocator’s allocation and deallocation routines to allocate
and deallocate the object and its shadows. They also main-
tain the mapping between the object and its shadows in the
object’s metadata and the hash table.

void* critical_malloc(size_t size) {
// Allocate object and its shadows with DieHard
ptr = default_malloc( size + metadataSize );
shadow1 = default_malloc( size );
shadow2 = default_malloc( size );
// Initialize metadata of the object
((metadata*)ptr)->shadow1 = shadow1;
((metadata*)ptr)->shadow2 = shadow2;
((metadata*)ptr)->size = size;
((metadata*)ptr)->valid = validFlag;
((metadata*)ptr)->checksum= computeChecksum(ptr);
addToHashTable(ptr, shadow1, shadow2, size);
return ptr + metadataSize;

}
void critical_free( void* ptr ) {

(shadow1, shadow2, size) =
retrieveRemoveHashTable(ptr);

// Reset metadata corresponding to the object
((metadata*))ptr->valid = invalidFlag;
// Free the pointer and its shadows
default_free( ptr );
default_free(shadow1);
default_free(shadow2);

}

Figure 5: Pseudo-code of critical malloc/free

Critical Load and Store: Functions critical_load

and critical_store are responsible for comparing and up-
dating the shadows of an object. In order to update/compare
the shadows, the pointer to the shadows for that object must
first be retrieved from the object’s metadata. This is done
by the getShadowAddresses function, which given a pointer
within a memory object, retrieves the pointers to the shad-
ows of the object (after checking and repairing them if neces-
sary) and finds the equivalent shadow object locations that
mirror the location within the original object.

The pseudocode of the getShadowAddresses function is
shown in Figure 6. In getShadowAddresses the hash table
is accessed only when the metadata is invalid or if the check-



sum is incorrect. Otherwise, the offsets within the shadows
are computed from the metadata itself, which is likely to be
the common case.

pair getShadowAddresses(void* ptr, int numBytes) {
void* base = getBase(ptr);
metadata* meta = (metadata*)base;
// Check if the object is a valid one
if ( meta->valid != validFlag) {

// Check if the object was allocated
if (!isAllocated(base)) return (NULL, NULL);
meta->valid = validFlag;

}
// Check if metadata checksum matches
if ( computeChecksum(meta) != meta->checksum ) {

// Reload version from hash table
(shadow1, shadow2, size) = retrieveHashTable(ptr);
// Update metadata with shadow1, ...
...

}
// The meta data is correct
// Check the bounds of the access here
if (ptr+numBytes >= base+metadataSize+meta->size)

return (NULL, NULL);
// Compute the offset from the base ptr
offset = ptr - (base + metadataSize);
// Return the corresponding offsets
// within the shadows
return (meta->shadow1+offset, meta->shadow2+offset);

}

Figure 6: Pseudo-code of getShadowAddress

The critical load and critical store operations use the func-
tion getShadowAddresses to retrieve the offsets correspond-
ing to the memory address within the shadows. critical_load
compares the contents of the shadow objects at the offsets
retrieved by the function getShadowAddresses with the con-
tents of the original object that is being loaded. If there is
a mismatch, a repair routine based on majority voting is
initiated. critical_store copies the contents that are be-
ing stored to the offsets within the shadows returned by
getShadowAddresses. Unlike the semantics shown in Fig-
ure 3, both critical_load and critical_store functions
return immediately if called on a pointer that was not al-
located with critical_malloc (not on the Samurai heap6)
because our implementation assumes the non-critical load
or store remains in the program.

3.1 Optimizations
We implemented two optimizations to the base Samurai

operations to speed up memory accesses. These optimiza-
tions focus mainly on loads, as our experiments indicate that
loads are the most numerous operations in the applications
considered.

The first optimization is based on the observation that it
is sufficient to compare the original object with one of the
shadows during a critical_load in order to detect an er-
ror. Then, if there is a mismatch, the second shadow can be
used to repair the error using voting. However, if the sec-
ond shadow is never checked, it can potentially accumulate
errors over time, and when a mismatch between the object
and the first shadow is detected, the second shadow may also

6The operation of checking if an address is on the Samurai
heap is a simple range-check and takes constant time.

be corrupted, making repair impossible. We solve this prob-
lem by switching the pointers to the shadows after every N
memory accesses. This allows both shadows to be checked
periodically and prevents accumulation of errors in any one
replica. At the same time, it incurs a branch mis-prediction
in only one of N accesses. By choosing a sufficiently large
value of N (=100), the cost of this mis-prediction can be
amortized.

We also maintain a one-element cache for the metadata
of the last-accessed object. For many applications, repeated
consecutive accesses to the same object are common, and
we avoid the cost of the metadata lookup on each access by
keeping a cache and checking if the access was from within
the cached object. However, there needs to be a balance
between the size of the cache and the relative benefits of a
cache-hit, because larger caches make the cost of a cache-
miss higher (the entire cache needs to be searched on every
access). We found that a single-element cache significantly
improved performance and larger caches degraded perfor-
mance.

3.2 Discussion
A software implementation of critical memory has limita-

tions with respect to possible hardware implementations.
One limitation is that Samurai does not detect the case

when multiple replicas are corrupted in exactly the same way
(by a random or malicious error). Although Samurai miti-
gates this possibility by randomly distributing the replicas
on the heap, the protection provided by Samurai is proba-
bilistic, and Samurai cannot handle large-scale corruptions
of the heap that occur in a short period of time.

Also, Samurai cannot recover when the hash table or the
allocation bitmap is corrupted. Since the table and bitmap
are accessed less frequently than the metadata itself (dur-
ing critical_malloc and critical_free or during repairs),
they are protected with page-level mechanisms, hence miti-
gating the possibility of corruption.

Samurai does not hide the location of the replicas of an
object as it stores the pointers to the replicas in the object
metadata (for fast access). A malicious attacker can locate
the replicas by reading the metadata and potentially over-
write them, therby causing critical data corruption. One
way to prevent this kind of attack would be to encode the
pointer values in the metadata with a secret mask that is
randomly generated during each execution of the program.
This can prevent attackers from finding the replicas. How-
ever, this scheme incurs a constant time overhead to decode
the locations of the replicas on each load or sstore. The
encoding can take multiple forms from simple XOR to com-
plex schemes such as MD5 hashing, depending on the level
of security required and the acceptable performance penalty.

3.3 Multi-threading
Samurai has been designed to work correctly in a multi-

threaded context, as evidenced by its use in a multi-threaded
server application (see Section 5.4). However, it requires the
program to be free of race conditions with respect to critical
memory. In other words, every thread must take a lock be-
fore performing a critical store to a shared critical memory
location. This is because Samurai performs multiple shared
memory updates during a critical store, and the stored val-
ues can go out of sync if another thread performs a simul-
taneous critical store to the same location. Critical loads,



however, do not have this restriction as no memory updates
are performed (except in the rare case when an inconsistency
is detected).

The current implementation of Samurai does not sup-
port multi-threading for allocations/deallocations and re-
pairs. However this was not a problem with the webserver
application in Section 5.4 as all allocations and deallocations
were made from a single thread. We detail the modifications
that need to be made to the existing Samurai algorithms to
support multi-threading in its full form.

1. The critical malloc() and critical free() operations must
acquire a global lock L before performing updates to
the hash table that maintains the mapping from an
object to its replicas. No locking is necessary when
performing mallocs and frees on the DieHard heap as
the underlying DieHard allocator is engineered to be
thread-safe [5]. Hence, the global lock needs to be held
only when the hash table is being updated.

2. The repair routine has to be modified to acquire the
global lock L prior to performing a repair on the critical
data. This is because the repair can potentially access
the hash table in order to correct inconsistencies in the
heap metadata. Further, it is imperative that only one
repair routine be active on an object and its replicas
at any given time.

3. No modifications are necessary to the critical store rou-
tine as we assume that the program is free of data races
with regard to the critical data. This implies that ei-
ther the critical data is always updated within a single
thread in the program or that the program has ap-
propriate synchronization mechanisms to prevent mul-
tiple threads from simultaneously updating the same
piece of critical data. Since each critical object has its
own unique shadow copy on the heap, the synchroniza-
tion mechanisms also ensure that the updates to the
shadow objects are synchronized.

4. No modifications are necessary to the critical load rou-
tine as neither the critical object nor its shadows are
modified by it (unless an inconsistency is detected, in
which case, see (2) above). However, the optimiza-
tions described in section 3.1 may modify the critical
object’s metadata. These are considered as follows:

• The use of a cache may result in multiple threads
overwriting the cache contents and rendering the
cachec contents invalid. This problem can be
avoided by storing a checksum along with the
cache and checking if the checksum of the cache
contents matches the stored checksum upon a cache
access. If they do not match, the cache contents
are discared and the object is read from the heap.
Implementing the checksum for the cache con-
tents had negligible effects on the overall perfor-
mance of the scheme.

• The operation of periodically swapping shadows
can be performed in a thread-safe manner using
an atomic compare and swap instruction found on
most processor architectures. Since this opera-
tion is performed only during one of every N=100
accesses, it would not impact the overall perfor-
mance of Samurai.

4. EXPERIMENTAL METHODS
This section describes the benchmarks used to evaluate

Samurai and the methodology we used to measure its per-
formance and fault tolerance.

4.1 Benchmarks
We evaluate Samurai in two ways. We modified four

SPEC2000 benchmarks [13], and a ray-shading application [21]
to use Samurai directly for the purpose of measuring perfor-
mance overhead and fault tolerance. We chose specific heap-
allocated data structures in each application and made them
critical.

We also modified two libraries, an STL list class [22] and
a memory allocator [33], to use Samurai in order to make
them more reliable. For these libraries, we measure the per-
formance of client applications of the libraries to see the
impact of using Samurai. The client of the STL list class is
a multi-threaded web server [2]. We measured several clients
of the memory allocator, including programs that have been
used in prior work to measure the performance of memory
allocators [6].

Table 2 describes each benchmark application’s function-
ality, describes the data we chose to make critical, and ex-
plains our rationale. Results from the modified libraries are
discussed in Sections 5.4 and 5.5. Table 3 shows the per-
centage of critical data and the percentage of critical loads
and stores in each benchmark application Depending on the
choice of critical data, we see the fraction of loads that are
critical ranges widely, from 0.01% to 12.8% (in gzip).

App Critical
bytes
allocated
(KB)

Total
bytes
allocated
(KB)

Critical
loads
(%)

Critical
stores
(%)

vpr 93867 248564 0.009 0.000043
crafty 118 118 0.25 0.60
parser 61 31518 0.010 0.000013
gzip 5271 5271 12.8 0.28
rayshade 4 57 1.91 0.000040

Table 3: Application execution characteristics

4.2 Performance Evaluation
We measured the performance overhead of Samurai on a

dual 3.4 Ghz Intel Pentium(R) 4 Desktop system with 2GB
RAM running Windows XP SP2 under light load. Because
we currently do not have a compiler that will automatically
determine statically which loads and stores should be made
critical when critical data is declared, we instead check for
critical data at runtime. The Phoenix compiler infrastruc-
ture we use [9] allows us to instrument all heap loads and
stores in the benchmark applications. At runtime, our sys-
tem dynamically determines which loads and stores access
critical data and calls the appropriate Samurai function. If
the data is non-critical, normal loads and stores are per-
formed. To calculate the overhead of Samurai, we subtract
out the runtime cost of checking whether a particular load
or store is critical from the overall execution time as follows.

Let TBase be the execution time of the program without
instrumenting references and without using Samurai. Let
TInstCheck be the execution time with all loads and stores
in the program instrumented with Phoenix, and including



App Functionality Critical Data Rationale
vpr Performs Routing of circuit

blocks onto a FPGA chip.
Only used in route mode.

rr graph data structure to maintain
global routing constraints that are up-
dated after each assignment.

An error in the structure could impact
future routing decisions and result in
incorrect routing assignment.

crafty Plays a game of chess with
the user

Cache of previously seen board posi-
tions that is used to speed up evalua-
tion of the game tree.

Error in cache can result in program
making an erroneous or non-optimal
move.

parser Reads in a list of sentences
and parses them into syntac-
tic constructs.

Tree structure used for looking up
words in the dictionary.

If the tree structure is corrupted, pars-
ing of all subsequent sentences in list
would be incorrect.

gzip Decompress a file read in
from the disk using Huffman
decoding. Only used in de-
compression mode.

Huffman decompression tree used for
expanding encoded blocks read in from
disk.

Any corruption of the tree would make
the expansion of code words in a block
meaningless.

rayshade Renders a scene file on the
screen using ray-tracing.

List of scene objects along with their
positions in the scene.

Minor changes in the scene may go un-
noticed, but changes in the list of ob-
ject will likely result in objects being
changed or disappearing, and is hence
more likely to be noticed in the scene.

Table 2: Description of applications and critical data

the dynamic check that determines if a reference is criti-
cal. We define TΔInstCheck = TInstCheck − TBase as the
total instrumentation and checking cost. Let f be the frac-
tion of critical loads and stores divided by total loads and
stores. We approximate the cost of instrumenting and check-
ing only the critical loads and stores as TΔCritInstCheck =
f ∗ TΔInstCheck.

Finally, let TSamurai be the execution time of the applica-
tion with the critical data allocated using the Samurai allo-
cator and critical loads and stores in the program executed
in Samurai. We define TΔSamurai = TSamurai − TInstCheck

as just the overhead to execute the additional critical mal-
locs, frees, loads and stores. We then estimate the total
execution time of an application using Samurai as:
TSamEst = TBase + TΔCritInstCheck + TΔSamurai.
We used the approach described above to calculate the per-
formance results from the four SPEC benchmarks and the
rayshade application presented in Section 5.

4.3 Fault-injection Experiments
Fault-injection is a standard technique used to evaluate

the resilience of fault-tolerance mechanisms and to measure
their coverage [31]. We evaluate Samurai’s fault tolerance
in two cases: when critical data itself is corrupted and when
non-critical data is corrupted and that corruption propa-
gates to critical data.

To measure the effect of corruptions of critical data, the
structure of the fault-injector is as follows. First, a ran-
dom critical object on the heap is chosen according to a
fault-injection policy (see below). A random offset is cho-
sen uniformly from within this object, along with a random
number of bytes (from a uniform distribution) no larger than
the size of the object. Then the memory locations within
the object starting from the random offset are overwritten
with random values up to the random number of bytes cho-
sen. The net effect of the injected fault is to corrupt a single
object on the Samurai heap, be it allocated or unallocated.
Note that multiple faults can be injected per run, leading to
corruption of more than one object during a single execution
of the program.

Our fault-injection policy probabilistically chooses objects
from the Samurai heap, based on the number of allocated ob-

jects in each partition. Partitions that have more allocated
objects are given higher weight in the sampling process, and
hence objects are more likely to be chosen from more heavily
allocated heap regions, eliminating a sampling bias towards
large heap objects.

We also want to quantify the probability of an error in
non-critical data propagating to critical data. We focus on
three ways an error in non-critical data can propagate to
critical data: (1) a critical store can write an incorrectly
computed value (data error), (2) the program can follow
the wrong control path and perform incorrect critical stores
(control error), (3) a critical store can write to an incor-
rect but valid critical address (pointer error). To classify
these errors we first obtain the memory trace of all critical
stores to critical data with no faults injected. This trace
(the golden trace) contains the program counter of the in-
struction performing the store, the address being stored to
and the contents that are being stored.

We filter the golden trace to find the program counter
addresses that can potentially write to critical data in the
program. This is the set of critical stores in the program.
We then inject faults into the non-critical data and compare
the memory trace of stores performed from critical store
locations with the golden trace. A mismatch indicates a
corruption of the critical data due to error propagation. A
mismatch in the program counter field indicates a control
error, a mismatch in the contents field indicates a data error
and a mismatch in the address field indicates a pointer error.

5. RESULTS
This section presents our experimental results, including

measurements of performance overhead, fault tolerance, and
experience with using Samurai to harden libraries.

5.1 Performance
Figure 7 shows the relative execution time of the four

SPEC benchmarks and rayshade measured with and without
being modified to use critical memory. The overheads are
normalized to 1 (baseline = without Samurai) and lower is
better. For the four SPEC benchmarks, the ref inputs were
used [13], while for rayshade, an animation of a coin being
flipped was used to measure the slowdown.
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Figure 7: Performance overhead of Samurai

The results show that for all applications except gzip, the
performance overhead is less than 10%. For gzip, the over-
head is around 2.7x (averaged across all the ref-inputs). This
is because the fraction of critical loads and stores to criti-
cal data in gzip is relatively high (10-15%) compared to the
other benchmarks. Further, the critical data consisting of
the Huffman decompression table constitutes all the heap
data for this application, and the accesses to this table are
on the performance-critical path.

Based on the numbers in Table 3, one can observe that
the three programs crafty, gzip and rayshade have more than
1% combined critical loads and stores. These programs ex-
hibit overheads of between 4 to 15 % for every percentage of
critical loads and stores. This suggests that the critical data
for an application must be chosen with care, and blindly
making a large percentage of the data critical can result in
prohibitive performance overheads.

5.2 Injections into Critical Data
We inject faults into the critical data of the four SPEC

benchmarks (using the test inputs) and rayshade to under-
stand the effectiveness of Samurai’s fault tolerance. During
the execution of the application, faults are injected into the
heap one every N memory accesses, where N is the period
of the injection. For each value of the period N, the applica-
tion is executed 10 times and the outcome is classified into
failure (crash or incorrect output) and success. The fault
period is varied from 100,000 to 1,000,000 in increments of
100,000.

Faults are injected into the critical data of the application
both with and without Samurai. The results of the fault-
injection experiments with one application, vpr, are shown
in Figure 8. We observe that the number of trials in which
the application completes successfully increases as the fault
period increases (red/dark bars), although the curve itself
is quite jagged indicating high variance because of the rela-
tively small number of trials performed.

Figure 9 shows the result of the same fault-injection exper-
iment performed with an application protected with Samu-
rai. We observe that Samurai allows the application to com-
plete successfully for all fault-rates. There is one case when
the fault-period is one every 100000 accesses (the highest
in our experiments) where Samurai detects an inconsistency
that it is unable to correct due to multiple copies of an ob-
ject getting corrupted. However, the application goes on to
continue and produce correct output showing that the error
was benign. This is considered a false positive for Samurai.
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5.3 Injections into Non-critical Data
We now consider the effects of injecting faults in the non-

critical data of our five applications (again, using the SPEC
benchmark test inputs). The outcomes of the injections are
classified as data, control or pointer errors as explained in
Section 5.4. The results are shown in Table 4.

App Trials Errors in Critical Data Assert.
Data Cntrl Ptr Total Errors

vpr 550 203 0 1 204 2
(199) (0) (0) (1) (1) (2)

crafty 55 9 12 4 25 0
(18) (3) (7) (3) (13) (0)

parser 500 3 0 0 3 14
(380) (1) (0) (0) (1) (14)

gzip 500 4 0 5 9 37
(52) (4) (0) (5) (9) (37)

rayshade 500 5 0 0 5 1
(68) (1) (0) (0) (1) (1)

Table 4: Fault Injections into non-critical data

The numbers in the table that are not in parentheses in-
dicate how many trials produced a particular result. The
numbers in parentheses below those numbers indicate how
many of those trials resulted in a failure (e.g., the program
either crashing, hanging, or producing an incorrect result).
We also report the number of assertion violations or con-



sistency check errors reported by each application. These
assertions/checks were already present in the applications’
code and indicate the amount of error resilience built into
the applications.

For all benchmarks except vpr and crafty, we observe that
the number of faults propagating from non-critical data to
the critical data and resulting in a data, control or pointer
error is relatively small (less than 2%).

For vpr, the number of data-errors is high, but none of
these resulted in a failure. This is because in vpr, the ad-
dress of a region allocated using regular malloc is stored in
the critical data, and corrupting the value of a random store
is highly likely to corrupt the data structures used in the
standard allocator (not the Samurai allocator). The cor-
rupted structures result in an address being returned by the
call to malloc that is different from the address in a correct
execution. Nevertheless, this different address does not re-
sult in an error for this application as it does not impact the
correctness of the data. Hence, these errors do not impact
the correctness of the application, although they propagate
to the critical data.

In crafty there are a relatively large number of cases in
which errors in non-critical data propagate to the critical
data, and result in failures. This is because the crafty appli-
cation performs repeated computation and stores the results
in the cache. Therefore, in this application, a memory error
results in incorrect computation, which in turn is stored in
the cache, resulting in error propagation from non-critical
to critical data.

The last column of Table 4 shows the number of asser-
tions/consistency checks violated in each application due to
the errors injected. Crafty has the fewest assertion viola-
tions, which indicates that this application has few built-in
consistency checks. Gzip has the most assertion violations
as it uses cyclic-redundancy checks (CRCs) on the data.

5.4 STL List Class and Web Server
We used Samurai to implement a reliable version of an

STL list class [22] based on critical memory. We then modi-
fied a multi-threaded web server to use our reliable list class
to protect the list of threads associated with connections.
This implementation gave us the opportunity to see how
easy it is to build and use a library based on critical mem-
ory and directly measure the cost of using it in a real server
application.

We modify a standalone version of HP’s STL List class [25]
to make it use critical memory for storing the list contents7.
We chose to modify the class so that both the list elements
and the list backbone (e.g., pointer structure) were critical.
The required changes included:

• We modified the custom allocator for the class to use
critical malloc and critical free to allocate and deallo-
cate list objects.

• We modified the member functions of the class, such as
insert and erase to call the Samurai API functions in
order to check and update the list contents (including
the list pointers) being accessed in the functions.

• We modified the custom iterators for the class to call
the Samurai functions to ensure that list elements were

7The list class was downloaded from
http://www.cs.rpi.edu/~musser/gp/lists.html

consistent prior to the iterator being dereferenced. We
added a new call-back function in the iterator to up-
date an object’s replicas in Samurai (i.e., an object-
level version of promote), which must be called by the
client if the object is modified directly through an it-
erator rather than through a member function of the
list class.

We modified a multi-threaded web server [2] to use the
critical STL list class. This web server spawns a new thread
to service each incoming request from a client, and uses STL
lists to maintain a list of all active threads in the system. We
replaced these lists in the application with our Samurai list
class to protect them from corruption. This list is important
because if it is corrupted, it can result in runaway threads
whose behavior is different from the intended behavior of the
application. Further, when a thread completes execution, it
returns control to the main thread, which removes the thread
from the global list of threads. A corruption in the thread
list could result in the main thread crashing or going into
an infinite loop, which would result in the server not being
able to accept new connections.

In order to evaluate the performance overhead of the mod-
ified web server, we developed a multi-threaded client pro-
gram that sends HTTP requests to the server in batch mode.
The client program spawns multiple threads, each of which
opens an HTTP connection to the server, sends a request
and waits for a response. On receiving a response, the client
thread closes the connection and the entire process is re-
peated. The server processes each incoming request (in a
separate thread) and sends the results back to the client.
For the purposes of our evaluation, both the server and the
client execute on the same machine, so there is no network
delay. We measure the time taken by the client to complete
processing a fixed number of requests using a certain num-
ber of threads. The slowdown experienced by the client as
a function of the number of client threads and total number
of requests issued is shown in Table 5. Each number in the
table was obtained by computing the average of three trials.

No. of No. of Time (seconds) Percentage
Requests Threads Samurai Baseline Slowdown
10 1 10.0 10.0 0.0
10 10 1.42 1.36 8.8
100 1 101.25 100.99 0.0
100 10 13.50 12.50 7.9
100 100 3.36 3.23 4.0
1000 1 1008.06 1007.81 0.0
1000 10 126.67 122.89 3.0
1000 100 27.85 27.51 1.2

Table 5: Client request times for web server

As the table shows, the slowdown is within 10% for the
range of requests and client threads considered. Further, the
slowdown first increases as the number of threads increases
from 1 to 10 and then decreases as the number of threads in-
creases from 10 to 100 at the client. For the single-threaded
case, the slowdown is close to zero as the client issues re-
quests one at a time, which are then handled by separate
server threads. However at any time only a single thread is
active at the server to service the request, and therefore the
overhead of adding or removing threads from the thread list
is negligible (0% in the table). As the number of threads



at the client increases from 1 to 10, the number of active
threads at the server also increases and therefore the over-
head of adding and removing threads from the thread list
results in the application slowing down by about 8% (for
100 requests). However, when the number of threads at the
client increases to 100, the overall slowdown at the client
drops to 4% (for 100 requests). This is because the increase
in the performance overhead in accessing the list elements is
counterbalanced by the increase in parallelism at the client
which results in better overlapping of request latencies.

5.5 A Reliable Memory Allocator
Memory allocators typically store metadata about the al-

located data on the heap. This metadata is itself suscep-
tible to corruption by the application, either accidentally
through an error or maliciously through a security attack.
Such metadata corruption is often fatal for the application
and can lead to security vulnerabilities [19].

An important consideration in the design of a reliable
memory allocator is separation of the application data from
the allocator’s metadata. This is a challenging problem be-
cause memory allocators often store the metadata contigu-
ously with the application data (for reasons of locality and
efficiency). Existing approaches sometimes use virtual mem-
ory protection to protect the pages around the metadata.
The Heap Server project [20] goes as far as to place the allo-
cator metadata in a separate process. These approaches can
involve considerable reengineering of the allocator’s code and
may not be practical to implement for all memory allocators.
Further, the Heap Server approach can be expensive because
it requires crossing the process-kernel boundary through a
system call or through inter-process communication. For al-
location intensive programs, Heap Server’s overhead can be
as high as 60% [20].

We implemented a reliable memory allocator that uses
Samurai to protect the allocator metadata. Memory alloca-
tors typically use an OS interface (e.g., sbrk or VirtualAlloc)
to allocate and deallocate large chunks of memory, which are
then used for storing both application data as well as allo-
cator metadata. We interposed at this layer and replaced
the large-chunk allocator with Samurai. By only modifying
the allocator itself, no changes to the allocator clients are
required. Furthermore, with this approach, we are able to
protect the allocator metadata wherever it is, even if it is
intermixed with the application data. Thus, using Samurai
requires only small changes to the allocator.

The one change that is required is that when the allo-
cator references its metadata, it must use critical load and
store operations. Note that with this approach, the alloca-
tor client performs normal loads and stores to the heap data
even though that data has been allocated on the Samurai
heap. The client sees a consistent view of its data in the
absence of memory errors, even though it is not using crit-
ical loads and stores. However, in the event that an incon-
sistency is detected in the allocator metadata, we have to
modify the repair strategy of Samurai in this library to repair
only the allocator’s metadata and not the application data.
Alternately, we could avoid a repair strategy altogether and
simply raise an exception when corruption is detected.

In order to demonstrate this idea, we modified the HeapLay-
ers package [6] to use Samurai as the underlying alloca-
tor. HeapLayers provides a family of allocation strategies
implemented as layers that can be composed together to

build memory allocators. This in turn allows the applica-
tion designer to build custom allocators composed of layers
representing the policies best suited to their application’s
characteristics. Berger et al. [6] describe an implementation
of the popular Kingsley allocator [33], using four layers in
HeapLayers:

1. StrictSegHeap: Provides segregation of objects by the
object size. Each object size is rounded to its nearest
power-of-two and stored in the bin corresponding to
the size.

2. SizeHeap: Stores the object size along with the object
to facilitate fast size lookups of objects

3. FreeListHeap: Stores the list of free objects as a single-
linked list on the heap. Recycles objects from this list
for fast allocation.

4. SbrkHeap: Base heap that allows the Kingsley heap
to expand and contract as necessary by allocating and
deallocating pages from the operating system.

To implement a reliable Kingsley heap, we replaced the
underlying SBrkHeap with the Samurai heap in HeapLayers
and added critical load and store calls at appropriate places
in the SizeHeap and the FreeListHeap layers. These modifi-
cations involved about 10 lines of the nearly 1000 lines of C
code implementing the Kingsley heap. We also interposed a
ChunkHeap layer between the FreeListHeap and the Samu-
rai heap, to allocate memory in chunks of 1024 bytes (this
did not affect the overall correctness of the design, but re-
sulted in better performance). It took us less than a day to
make these changes to the Kingsley allocator, and most of
it consisted of understanding the existing code.

We used a series of allocation-intensive programs (most of
which have been used in prior work [4][6]) to evaluate the
performance of the modified Kingsley heap. The applica-
tions were statically linked with the reliable allocator and
executed on a dual-core Pentium 1.8 Ghz laptop with 2 GB
RAM under light load. Each application was executed with
pre-specified inputs and the average of five trials was com-
puted for those inputs that had reasonably high execution
times (this ensured low variance among trials) 8.

For comparison purposes, we also used the unreplicated
version of the DieHard allocator [5] as the underlying allo-
cator for the Kingsley heap. The DieHard allocator random-
izes the location of the allocated object in the heap, but does
not maintain multiple replicas of the object. The original
Kingsley allocator is used as the baseline and all measure-
ments are normalized to the performance of the Kingsley
allocator. For each benchmark, we evaluated the perfor-
mance of three allocators - Samurai-based, DieHard-based
and the original Kingsley allocator.

The overall performance of the applications with the mod-
ified allocator(s) is summarized in Figure 10. It can be
observed that the average overhead of the Samurai-based
allocator was 10%, while the overhead due to the DieHard-
based allocator was 6%. The worst-case overhead for the
Samurai-based allocator was 23% (for espresso), and the
worst-case overhead for the DieHard-based allocator was

8Some inputs that had low execution times (<1 sec) exhib-
ited high variance due to measurement noise, and are hence
not reported here. These numbers are available upon re-
quest.



12% (for mudlle). These results were obtained with the ver-
sion of DieHard used in [5].

The overhead incurred by the DieHard-based allocator
represents the overhead due to the loss in locality as a re-
sult of randomization. The additional overhead incurred
by the Samurai-based allocator is the cost of allocating and
deallocating multiple replicas of the object and synchronz-
ing/comparing them.
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Figure 10: Reliable allocator performance

6. RELATED WORK
We classify related work into three categories: robust

data-structures, static and dynamic checking, and error-
tolerance for applications.

6.1 Robust Data-structures
There have been a number of papers on data structure

checking and repair, as well as synthesizing robust data
structures [7, 18]. The main idea of these papers is that the
programmer specifies invariants about data-structure prop-
erties and the system ensures that these invariants hold.
Demsky and Rinard present a planning-based approach to
repair data structures transparently in an application [10].
However, the repaired data structure may not be semanti-
cally equivalent to the data structure in a correct program
resulting in unexpected behavior. Further, the repair is car-
ried out after a program crash (or periodically), by which
time the program could have produced incorrect output.

6.2 Static and Dynamic Checking
There has been considerable work on bringing the type-

safety properties of languages such as Java to C and C++.
CCured uses static analysis and type-inference to classify
pointers in the program based on their usage into safe, se-
quential and wild [23]. Safe pointers and sequential point-
ers can be checked at compile-time and only wild pointers
need to be checked at runtime. However, supporting arbi-
trary third-party plugins whose source-code is not available
at compile-time is challenging for CCured. Also, CCured re-
quires engineering effort to make it compatible with library
code, as it modifies the format of pointers in the program [8].

Another approach to provide memory-safety guarantees
to C programs is to check every pointer access at runtime
to ensure it is within the bounds of the referent object as
done by Jones and Kelley [16] and extended by Ruwase and

Lam [29]. Dhurjati and Adve propose using a special com-
piler optimization known as pool-allocation to reduce the
overhead of bounds-checking [11]. The main problem with
these dynamic approaches is that they need to check every
pointer access to ensure it is within bounds. This can be a
problem for large applications where checking every pointer
dereference at runtime can be prohibitively expensive. Fur-
ther, most of these approaches stop the program upon en-
countering a memory error, rather than allowing it to con-
tinue. An exception is the boundless-buffers work by Rinard
et al. [27], in which a pointer is allowed to go out of bounds
of the object, but made to point to a special location.

A third approach to ensure memory safety of C programs
is Software-Fault Isolation (SFI) [32]. In SFI, each mod-
ule in a program is given the illusion of executing in its
own address space and the compiler/binary-rewriting tool
ensures that one module cannot access memory outside its
pseudo-address space. However, this approach requires mod-
ifications to the source or binary of the application and its
libraries.

6.3 Error-tolerance for Applications
DieHard is a memory allocator that hardens the appli-

cation to memory errors [5]. DieHard provides probabilis-
tic soundness guarantees for applications that allow them
to continue execution in the presence of memory errors.
DieHard offers two modes of protection: replicated and un-
replicated. Replicated mode, in which an entire process
is replicated, provides the strongest protection guarantees
in DieHard. Samurai differs from DieHard in that it only
replicates critical memory and the operations on it, while
still providing strong protection guarantees for the applica-
tion. However, whereas DieHard replicates processes trans-
parently with no programmer effort, Samurai requires the
critical data to be explicitly identified by the programmer.

Failure-oblivious computing aims to continue program ex-
ecution after a memory error, by ignoring illegal writes and
manufacturing values for illegal reads [27]. The problem
with this approach is that after a memory error has occurred,
the state of the application is undefined and the program-
mer has no way of knowing if the application will continue
correctly after the memory error.

The Rx system combines checkpointing with logging to
recover from detectable errors such as crashes [26]. Upon a
failure, Rx rolls back to the latest checkpoint and re-executes
the program in a modified environment. Rx is unsound in
that it cannot detect latent errors that do not lead to pro-
gram crashes.

The Sprite Operating System attempts to provide fast re-
covery to applications using the concept of a recovery box
[3]. A recovery box is a specially designated area of memory
to which an application can write important data that must
be recovered after a system crash. In order to access the re-
covery box, the application must use a structured interface,
and hence requires extensive code modifications.

SafeDrive [34] is a system that attempts to provide ap-
plication recovery in the presence of erroneous extensions.
Safedrive uses strong typing and type-safety checks in the
extension code to provide fine-grained resource tracking for
recovery. However, Safedrive requires all extensions to be
type-checked prior to being loaded into the application space,
which requires the extensions’s source code.



7. SUMMARY
This paper introduces critical memory, a memory model

that protects specific data from arbitrary non-local changes.
Critical memory enables local reasoning about the consis-
tency of memory in type-unsafe programs and can be used
for a variety of purposes. We describe the semantics of crit-
ical memory, and discuss how the concept can be exposed
to a programmer through APIs, libraries, and language fea-
tures. Samurai is a runtime system that implements critical
memory with the goal of providing probabilistic memory
safety guarantees in C and C++ programs. Samurai im-
plements critical memory using replication layered on top
of a robust runtime system. Samurai enables programmers
to selectively identify and protect key data structures, thus
allowing the effort and overhead of using Samurai to be tai-
lored to the application. We demonstrate Samurai by modi-
fying five benchmark applications as well as an STL list class
implementation and a memory allocator. We show that the
overhead of Samurai is 10% or less for the vast majority
of the applications and libraries considered. We also show
that Samurai increases application fault tolerance for faults
injected both into critical and non-critical data.
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