

Automated Derivation and Hardware Implementation of Application-
Specific Error Detectors

K. Pattabiraman, G.P. Saggese, D. Chen, Z. Kalbarczyk, R.K. Iyer

Center for Reliable and High-Performance Computing,
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, IL 61801
{pattabir, saggesse, dchen8, kalbar, iyer}@crhc .uiuc.edu

Abstract - This paper proposes a novel technique for
automated derivation of fine-grained, application-
specific error detectors. An algorithm based on dynamic
traces of application execution is developed for
extracting the optimal set of error detectors for a target
application. An automatic framework is proposed for
synthesizing the derived detectors in hardware and
enabling low-overhead run-time checking of the
application execution. Coverage (evaluated using fault
injection) of the error detectors obtained using the
proposed methodology, the additional hardware
resources, and performance overhead for several
benchmark programs are also reported.
1. Introduction
This paper presents a technique to derive and implement
error detectors to protect an application from data errors.
Typically, many errors in a program do not manifest in
the program’s outcome [1]. If they manifest, they cause a
divergence in data values observed during the error-free
execution of the program. We refer to these errors as data
errors. Data errors may cause the program to crash, hang
or produce incorrect output (fail-silent violations). These
errors can result from incorrect computation, and would
not be caught by traditional techniques such as ECC in
memory.
This paper contributes with: (i) a procedure for
automated generation of a class of application-specific
detectors and their implementation in hardware in the
form of concurrent checkers tailored to the application;
and (ii) an experimental assessment of the proposed
methodology.
The proposed methodology is applied to derive an
optimal set of detectors for several benchmark programs.
Experimental evaluation of coverage (assessed via fault
injection), the additional hardware resources, and
performance overhead indicate that: (1) The coverage of
the detectors derived ranges in 40-60% for crashes and in
20-60% for fail-silent violations, when 100 detectors are
placed in the application code; (2) A hardware
implementation of the detectors incurs a performance
slowdown of around 5%, with acceptable area and power
overhead; (3) False positives (detectors flagging an error
when no error occurs) are less than 6% in the vast
majority of considered benchmarks
Fault Model - The fault model adopted in this study
covers errors in the data values used during the program
execution. This includes faults in: (1) the instruction
stream that result either in the wrong op-code being

executed or in the wrong registers being read or written
by the instruction, (2) the functional units of the
processor which result in incorrect computations, (3) the
instruction fetch and decode units, which result in an
incorrect instruction being fetched or decoded (4) the
memory and data bus, which cause wrong values to be
fetched or written in memory and/or processor register
file. The fault-model also represents certain types of
software errors that result in data-value corruptions such
as: (1) synchronization errors or race conditions that
result in corruptions of data values due to incorrect
sequencing of operations, (2) memory corruption errors,
e.g., buffer-overflows and dangling pointer references
that can cause arbitrary data values to be overwritten in
memory, and (3) use of un-initialized or incorrectly
initialized values, as these could result in the use of
unpredictable values depending on the platform and
environment. These are residual errors that are present
even in well-tested code and are usually hard to detect.

2. Approach
The derivation and implementation of the error detectors
in hardware encompasses four main phases as depicted
in Figure 1. The analysis and design phases are related to
the derivation of the detectors, while the synthesis and
checking phase are related to the implementation and use
of the detectors at run-time.
During the analysis phase, the locations and variables for
placing detectors to maximize coverage are identified,
based on the execution of the code and the Dynamic
Dependence Graph of the program. This phase is based
on the technique we proposed in [10]. The program code
is then instrumented to record the values of the chosen
variables at the locations selected for detector placement.
The recorded values are used during the design phase to
choose the best detector that matches the observed values
for the variable, based on a set of pre-determined generic
detector classes.
After this stage, the detectors can be integrated into
application code as assertions or implemented in
hardware. The synthesis phase converts the assertions
generated to a HDL description that is synthesized in
hardware. It also inserts special instructions in the
application code to invoke and configure the hardware
detectors. Finally, during the checking phase, the custom
hardware detectors are deployed in the system to provide
low-overhead run-time error detection.

Figure 1: Steps in detector derivation and implementation process

3. Related Work
Broadly, error detectors can be classified based on two
criteria: (1) how the detectors are derived (static or
dynamic) and (2) how the checking is performed (static
or dynamic). Tools such as PREFIX [5], Bandera [6],
ESC/JAVA [7] and C-Cured [8] analyze the application
code and remove errors before the application is
executed. These fall in the category of statically derived,
statically-checked detectors.
DAIKON [13] infers invariants about the code from the
dynamic execution of the program for a characteristic
test suite. The invariants are statically checked by the
programmer or by an automatic theorem-proving tool to
eliminate false or spurious invariants that are a property
of the test-suite rather than the code. The main difference
between DAIKON and our approach is that DAIKON
derives detectors comprising of multiple program
variables at an instant of time, whereas our approach
derives detectors based on the evolution of a single-
program variable over time.
Dynamically-checked detectors can be derived statically
from the specifications or from code properties.
Examples of this class of detectors correspond to
executable assertions embedded by the programmer in
the code. These detectors can also be derived using
automated tools that check for violations of
specifications or code properties. For example, the Purify
[3] and Valgrind [4] tools dynamically check for
memory leaks and memory corruptions, while the
ERASER[9] tool dynamically checks for data races in a
multi-threaded application. The main difference between
these detectors and our detectors are that our detectors
are derived dynamically based on the application
properties, and do not require specifications or
programmer intervention.
The technique proposed in this paper falls in the category
of dynamically-derived, dynamically-checked detectors.
Another example in this category is the DIDUCE tool
[2]. The main difference between the detection
performed by DIDUCE and our detectors is that
DIDUCE is used for detecting errors in programs for

debugging purposes whereas our detectors are aimed at
detecting random errors in production settings.

4. Detector Derivation
In this study, an error detector is defined as a check on
the value of a single variable of the program at a specific
location in the static code of the program. Thus, a
detector is essentially a software assertion. A detector for
a variable is placed immediately after the instruction that
writes to the variable. A detector is placed in the static
code of the program and is invoked each time the
program location at which the detector is placed is
executed.

Class Name Generic Rule
(ai , ai-1)

Description

Constant (ai == c)
The value is always a
constant, which is
given by parameter c

Alternate

(ai == x and ai-

1== y) or (ai
== y and ai-1==

x)

The value varies
between parameters x
and y alternately

Constant-
Difference (ai - ai-1 == c)

The value differs
from its previous
value by a constant
parameter c

Bounded-
Difference

(min <= ai - ai-1
<= max)

The difference
between the previous
and current values
lies between
parameters min and
max

Multi-Value ai є { x, y, … }
The value is one of x,
y etc., which are the
parameters of the rule

Bounded-
Range

(min <= ai <=
max)

The value lies
between the
parameters, min and
max

Table 1: Generic Rule Classes and their Descriptions

In our current implementation, the detector involves only
functions of the current and previous values of the
selected variable at the detector’s location. We refer to
the current value of the detector variable a as ai and the
previous value as ai-1. A generated set of detectors can be
constructed for a target variable by observing the
evolution of the variable over time. A detector consists
of a rule describing the allowed values of the selected
variable at the selected location in the program, and an
exception condition to cover correct values that do not
fall into the rule. If the detector rule fails, then the
exception condition is checked, and if this also fails the
detector flags an error. The detector rules can belong to
one of the six generic classes and are parameterized for
the variable checked. Table 1 shows the set of rule
classes that are used to derive detectors.
The exception condition only involves equality
constraints on the current and previous values of the
variable, as well as logical combinations (such as and,
or) of two of these constraints. The equality constraints
take the following forms: (1) ai == d, where d is a
constant parameter; (2) ai-1== e, where e is a constant
parameter; and (3) ai==ai-1.
The detectors are automatically derived based on the
dynamic trace of values produced during the
application’s execution. The program points at which
detectors are placed (both variables and locations) are
chosen based on the Dynamic Dependence Graph (DDG)
of the program as shown in [10]. The program is then
instrumented to record the run-time evolution of the
values of detector variables at their respective locations,
and executed over multiple inputs to obtain dynamic-
traces of the checked values. These traces are then
analyzed to choose a set of detectors (both rule class and
exception condition) that matches the observed values. A
probabilistic model for coverage is then applied to the set
of chosen detectors to find the best detector for that
location (not discussed here due to space constraints).
In order to derive the detector, the rule class
corresponding to the detector is chosen and the
associated exception condition is formed. The algorithm
to derive a detector for a particular variable and location
is given below. We refer to the evolution of a program
variable over time as the stream of values for that
variable.
1. In order to derive the rule, the rule classes in Table 1

are each tried in sequence against the observed value
stream to find which of the rule classes satisfy the
observed values. The parameters of the rule are
learned based on appropriate samples (for each rule
class) from the observed stream. For each rule class,
multiple rules are generated depending on the
parameters learned. The set of all rule classes is
considered in step 2.

2. For each rule derived in step 1, the associated
exception condition is derived based on the values in
the stream that do not satisfy the rule. Each of the
values that do not satisfy the rule is used as a seed
for generating exception conditions for that rule. The
exception conditions generated are based on the

equality constraints described before and logical
combinations of two of these constraints. If it is not
possible to learn an exception condition for the
observed value, the current rule is discarded and the
next rule is tried in the set of rules derived in step 1.
The set of all rule-exception pairs generated is
considered in step 3.

3. For each rule-exception pair generated, the best
detector is chosen according to a probability model
that estimates coverage, for that location. The entire
procedure is repeated for each detector location.

The output of the algorithm is a list of detectors that are
used to synthesize the hardware modules in Section 5.

5. Hardware Implementation
The hardware implementation of error detectors derived
in the design stage encompasses two steps: (i)
instrumentation with the CHECK instructions1 of the
target software application, and (ii) generation of the
Error Detector Module (EDM), a piece of customized
hardware to check at run-time the execution of the
program, and flag a signal when one of the detectors
fires. These two phases are carried out at compile time,
before the application is executed. Given the application
code (in an intermediate representation, such as assembly
code) the design flow delivers – in an automatic fashion
without the designer involved in any design decision –
the instrumented application code and the hardware
description of the Error Detector module tailored for the
target application.
The technique we propose is general and can be adapted
to any processor. The information required from the
main pipeline (e.g., the value of the PC and state of
internal registers) can be found in any modern processor.
In this paper, we discuss the hardware implementation of
the Error Detector Module in context of the Reliability
and Security Engine (RSE) framework[12] and of a
DLX-like processor [1]. The RSE is a reconfigurable
processor-level framework that can provide a variety of
reliability features according to the needs and constraints
imposed by the user or the application
In the following we describe the overall architecture of
the Error Detector Module referring to Figure 2. We
assume that the required signals are provided through an
interface to the processor similar to the RSE interface.
There are several components in the Error Detector
Module described below: Shadow Register File (SRF)
keeps track of current and last values of the
microprocessor’s registers checked by the detectors.
Detector Table stores the information needed for a
detector. Rule and Exception Checkers – are the actual
data-paths used to carry out the computation of the
detector rules and exceptions. Violation Detector – uses
the results of the rule and exception checkers to flag an
error, indicating a malfunctioning when both the clause
and the exception fail.

1 These are special instructions that are used to invoke the
Error-Detector Module from the target application.

Figure 2 – Detailed Architectural View of the Error Detector Module

6. Experimental Evaluation
 This section includes several experimental results of the
proposed technique: (1) assessment of different detector
sets in terms of their ability to detect crashes, hangs and
fail-silent violations; and (2) the area and performance
overheads when the detectors are implemented in
hardware.
6.1 Detector Derivation and their Coverage
In order to perform the detector derivation and fault-
injection experiments, a modified version of the Simple-
scalar simulator [11] is used. The simulator allows fine-
grained tracing of the application and studying its
behavior under faults such as hangs, crashes, fail-silent
violations. The results from the simulator represent the
behavior of the processor augmented with the hardware
Error Detection Module. The experiment is divided into
three parts: (1) Placement of detectors and
instrumentation of code; (2) Deriving the detectors based
on training set; and (3) Fault-injections and coverage
estimation.
In the first part, the dynamic instruction trace of the
program is obtained and the Dynamic Dependence Graph
(DDG) is constructed from the trace. The points at which
detectors (both variables and locations) must be placed
are chosen based on our previous work [10]. For each
application, up to 100 detector points are chosen by the
analysis. In the second phase, the detectors are derived.
The simulator records the values of the selected variables
at the detector locations for representative inputs. The
dynamic values obtained are used in the learning phase
to derive the detectors using nearly 100 inputs in the
training set. Finally the third phase consists of fault-
injection experiments performed by flipping randomly
chosen single bits in data-values produced during the
course of a program’s execution. After injecting the
fault, the data values at the detector locations are
recorded and the outcome of the simulated program is
classified into crash, hang, success or fail-silent data
violation. The values recorded at the detector locations

are then checked offline by the derived detectors to
assess their coverage.
The applications used to evaluate the detectors are the
Siemens suite [14] of programs. These are C programs
consisting of few hundred lines of C code. Each
application is executed over 10 new inputs (unseen
during the learning phase) and for each input 1000
random locations are chosen for fault-injections. For
each location, five random bits are corrupted (one at a
time), leading to a total of 5000 fault-injections for each
application/input combination.
Figure 3, Figure 4 and Figure 5 show the coverage for
crashes, hangs and fail-silent violations (fsv) obtained for
the target applications as a function of the number of
detectors placed in the application. The main results are:
• While coverage for all three classes of failures

(crash, hang and fail-silent violations) increases as
the number of detectors increases, there is a
significant overlap in the errors detected by different
detectors which leads to a plateau effect in the
coverage;

• Error coverage varies significantly across
applications depending on the type of failure. For
100 detectors placed in the code, coverage for crash
failures varies between 45% (print_tokens) and 60%
(schedule), for hangs between 2% (print_tokens2) to
40% (schedule) and for fsv, from 20% (schedule2)
to 60% (tot_info).

False-positives can occur when a detector flags an error
even if there is no error in the application. Some of the
detectors may fail on some of the inputs as the values at
the detector points for these inputs may not obey the
detector’s rule or exception condition learned from the
training inputs. Figure 6 presents the percentage of false-
positives for each of the target applications across 1000
inputs. If even a single detector detects an error for a
particular input, that input is treated as a false-positive.
For all applications except tot_info, the false-positives
observed are less than 6% (for 100 detectors). For the
tot_info application, the observed false-positives are
16%.

Figure 3: Crash Coverage for actual detectors

Figure 4: Hang Coverage for actual detectors

Figure 5: FSV coverage for inserted detectors

Figure 6: Percentage of False-Positives for 1000 inputs of

each application

6.2 Hardware Implementation Results
The proposed design of the DLX processor, the RSE
Interface and the Error Detector Modules for different
applications were synthesized using Xilinx ISE 7.1 tools
targeting a Xilinx Virtex-E FPGA. The Xilinx Virtex
series of FPGAs consists mainly of several type of logic
cells: (1) 4-input Look-Up Tables (LUTs) statically
programmed during the bootstrap with the configuration
bit-stream, (2) flip-flops (FFs), storage elements in the
user visible system state, and (3) Block RAM (BRAMs),
which are memory blocks that can store up to 4096 bits.
Four LUTs and four FFs compose a logic unit called
Slice.
Table 2 reports the synthesis results in terms of area (i.e.,
FFs, LUTs, BRAM and total Slices) and minimum clock
frequency, for the reference DLX processor and the
complete RSE Interface. Table 3 gives the synthesis
results in terms of area and minimum clock period for
different configurations of the Error Detector module for
the workloads reported in the first column. For different
workloads, the number of slices required for the
implementation of the Error Detector modules ranges
between 2685 and 2915, while the number of additional
BRAMs is 9. The last two columns of Table 3 show the

area overhead, for the Error Detector module (EDM) and
for a complete implementation of the RSE, respectively.
The area overhead of the single EDM is about 30%,
while the area overhead of the complete implementation
is about 45%.
A measure of the performance overhead is given by:

 (Twith EDM - Twithout EDM) / Twithout EDM
= [Extra Clock Cycles * (TCK, with ED - TCK, without EDM)] / (

Total Clock Cycles * TCK, without EDM)
where Twith EDM and Twithout EDM are the total execution
times with and without Error Detector module
respectively, Extra clock cycles is the number of
additional clock cycles required to execute the code with
the CHECK instructions, TCK with ED and TCK without ED are
the minimum clock period of the overall system with and
without the Error Detector module, respectively.
Due to space constraints, we do not report the results for
all the workloads, but we report only the workload with
the largest time overhead, i.e., schedule2. The number of
extra clock cycles is 594, while the total number of clock
cycles is nearly 1 million, TCK with ED is 58.82 ns and TCK

without ED is 55.55 ns. From this, we can calculate the total
performance overhead to be about 5.6%.

 FFs LUTs BRAMs Slices
Clock
Period

[ns]
DLX processor 4873 16395 0 9526 58.8

Complete RSE Interface 2465 2329 0 1420 2.01
Table 2: Area and timing results for the DLX processor and the RSE Framework

Workload
Name

Number
of

Detecto
rs

FFs
BRAMs LUTs Slices

Clock
Period

[ns]

EDM Slice
Overhead

[%]

EDM + RSE
Interface

Slice Overhead
[%]

tot_info 91 2913 9 5174 2685 20.7 28.2 43.1
replace2 91 2913 9 5176 2686 21.6 28.2 43.1

print_tokens 98 3169 9 5575 2876 19.7 30.2 45.1
print_tokens2 98 3169 9 5578 2875 21.1 30.2 45.1
schedule 98 3169 9 5578 2875 20.4 30.2 45.1
schedule2 99 3201 9 5626 2911 19.9 30.6 45.5

Table 3: Area and timing results for Error Detector modules for different workloads.

7. Conclusions and Future Work
This paper has proposed a novel technique for preventing
a wide range of data errors from corrupting the execution
of a generic application. This technique consists in
automated derivation of fine-grained, application-
specific error detectors by an algorithm based on
dynamic traces of application execution. A set of error
detector classes, parameters and locations, are produced
in order to maximize the error detection coverage for a
target application. The paper also presents an automatic
framework for synthesizing the optimal set of detectors
in hardware to enable low-overhead run-time checking of
the application execution. Coverage (evaluated using
fault injection) of the error detectors derived using the
proposed methodology, the additional hardware
resources, and performance overhead for several
benchmark programs are also reported.
Future work will involve (1) Evaluating the technique on
larger benchmark programs, (2) Reducing the number of
false-positives encountered and (3) Increasing the
coverage for fail-silence violations by deriving detectors
that are a function of the application’s inputs.

Acknowledgements
This work was supported in part by the US office of
Naval Research, Defense Advanced Research Projects
Agency (MURI Grant N00014-01-1-0576), Gigascale
Systems Research Center (GSRC/MARCO), NSF Next-
Generation Software (grant number CNS-0406351), and
Motorola Corporation.

References
[1] G.P. Saggese et al., Microprocessor Sensitivity to Failures:
Control vs Execution, Combinational vs Sequential”,
Proceedings of DSN Conference 2005.
[2] S.Hangal and M. Lam, Tracking down software bugs using
automatic anomaly detection, Intl. Conference on Software
Engineering 2002.

[3] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the USENIX Winter
Technical Conference, 1992.
[4] Nethercote, N. and Seward, J. 2003. Valgrind: A program
supervision framework. In Proceedings of the 3rd International
Workshop on Runtime Verification (RV).
[5] W. Bush et al. A static analyzer for finding dynamic
programming errors. Software: Practice and Experience,
30(7), 2000.
[6] Corbett, et. al., Bandera: Extracting finite-state models
from Java source code. In Proc. 22nd International Conference
on Software Engineering (ICSE), June 2000
[7] Flanagan et. al., Extended static checking for Java,
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation..
[8] J. Condit, et al.. CCured in the real world. In Proceedings
of the ACM SIGPLAN 2003.
[9] S. Savage et al., A dynamic data race detector for multi-
threaded programs. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, October 1997.
[10] K.Pattabiraman et al., Application-Based Metrics for
Strategic Placement of Detectors, To appear in Pacific rim
Dependable Computing (PRDC), 2005.
[11] D. Burger, T. Austin, and S. Bennett, Evaluating Future
Microprocessors: The SimpleScalar ToolSet, University of
Wisconsin-Madison, Computer Sciences Department,
Technical Report CS-TR-1308, July 1996.
[12] N. Nakka, et al., An Architectural Framework for
Providing Reliability and Security Support, Proc. Intl.
Conference on Dependable Systems and Networks (DSN),
2004.
[13] M.D Ernst et. al., Dynamically Discovering Likely
Program Invariants to Support Program Evolution, IEEE
Transactions on Software Engineering. Volume 27, Issue 2,
Feb 2001.
[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
Experiments of the Effectiveness of Dataflow- and Control-flow
Based Test Adequacy Criteria, Proc. Intl. Conference of
Software Engineering (ICSE), 1994.

