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Abstract - This paper proposes a novel technique for 
automated derivation of fine-grained, application-
specific error detectors. An algorithm based on dynamic 
traces of application execution is developed for 
extracting the optimal set of error detectors for a target 
application. An automatic framework is proposed for 
synthesizing the derived detectors in hardware and 
enabling low-overhead run-time checking of the 
application execution. Coverage (evaluated using fault 
injection) of the error detectors obtained using the 
proposed methodology, the additional hardware 
resources, and performance overhead for several 
benchmark programs are also reported.  
1. Introduction 
This paper presents a technique to derive and implement 
error detectors to protect an application from data errors. 
Typically, many errors in a program do not manifest in 
the program’s outcome [1]. If they manifest, they cause a 
divergence in data values observed during the error-free 
execution of the program. We refer to these errors as data 
errors. Data errors may cause the program to crash, hang 
or produce incorrect output (fail-silent violations). These 
errors can result from incorrect computation, and would 
not be caught by traditional techniques such as ECC in 
memory.  
This paper contributes with: (i) a procedure for 
automated generation of a class of application-specific 
detectors and their implementation in hardware in the 
form of concurrent checkers tailored to the application; 
and (ii) an experimental assessment of the proposed 
methodology. 
The proposed methodology is applied to derive an 
optimal set of detectors for several benchmark programs. 
Experimental evaluation of coverage (assessed via fault 
injection), the additional hardware resources, and 
performance overhead indicate that: (1) The coverage of 
the detectors derived ranges in 40-60% for crashes and in 
20-60% for fail-silent violations, when 100 detectors are 
placed in the application code; (2) A hardware 
implementation of the detectors incurs a performance 
slowdown of around 5%, with acceptable area and power 
overhead; (3) False positives (detectors flagging an error 
when no error occurs) are less than 6% in the vast 
majority of considered benchmarks 
Fault Model - The fault model adopted in this study 
covers errors in the data values used during the program 
execution. This includes faults in: (1) the instruction 
stream that result either in the wrong op-code being 

executed or in the wrong registers being read or written 
by the instruction, (2) the functional units of the 
processor which result in incorrect computations, (3) the 
instruction fetch and decode units, which result in an 
incorrect instruction being fetched or decoded (4) the 
memory and data bus, which cause wrong values to be 
fetched or written in memory and/or processor register 
file. The fault-model also represents certain types of 
software errors that result in data-value corruptions such 
as: (1) synchronization errors or race conditions that 
result in corruptions of data values due to incorrect 
sequencing of operations, (2) memory corruption errors, 
e.g., buffer-overflows and dangling pointer references 
that can cause arbitrary data values to be overwritten in 
memory, and (3) use of un-initialized or incorrectly 
initialized values, as these could result in the use of 
unpredictable values depending on the platform and 
environment. These are residual errors that are present 
even in well-tested code and are usually hard to detect. 

2. Approach 
The derivation and implementation of the error detectors 
in hardware encompasses four main phases as depicted 
in Figure 1. The analysis and design phases are related to 
the derivation of the detectors, while the synthesis and 
checking phase are related to the implementation and use 
of the detectors at run-time.  
During the analysis phase, the locations and variables for 
placing detectors to maximize coverage are identified, 
based on the execution of the code and the Dynamic 
Dependence Graph of the program. This phase is based 
on the technique we proposed in [10]. The program code 
is then instrumented to record the values of the chosen 
variables at the locations selected for detector placement. 
The recorded values are used during the design phase to 
choose the best detector that matches the observed values 
for the variable, based on a set of pre-determined generic 
detector classes.  
After this stage, the detectors can be integrated into 
application code as assertions or implemented in 
hardware. The synthesis phase converts the assertions 
generated to a HDL description that is synthesized in 
hardware. It also inserts special instructions in the 
application code to invoke and configure the hardware 
detectors. Finally, during the checking phase, the custom 
hardware detectors are deployed in the system to provide 
low-overhead run-time error detection.  
 



 

Figure 1: Steps in detector derivation and implementation process 
 

3. Related Work 
Broadly, error detectors can be classified based on two 
criteria: (1) how the detectors are derived (static or 
dynamic) and (2) how the checking is performed (static 
or dynamic).  Tools such as PREFIX [5], Bandera [6], 
ESC/JAVA [7] and C-Cured [8] analyze the application 
code and remove errors before the application is 
executed. These fall in the category of statically derived, 
statically-checked detectors.  
DAIKON [13] infers invariants about the code from the 
dynamic execution of the program for a characteristic 
test suite. The invariants are statically checked by the 
programmer or by an automatic theorem-proving tool to 
eliminate false or spurious invariants that are a property 
of the test-suite rather than the code. The main difference 
between DAIKON and our approach is that DAIKON 
derives detectors comprising of multiple program 
variables at an instant of time, whereas our approach 
derives detectors based on the evolution of a single-
program variable over time. 
Dynamically-checked detectors can be derived statically 
from the specifications or from code properties. 
Examples of this class of detectors correspond to 
executable assertions embedded by the programmer in 
the code. These detectors can also be derived using 
automated tools that check for violations of 
specifications or code properties. For example, the Purify 
[3] and Valgrind [4] tools dynamically check for 
memory leaks and memory corruptions, while the 
ERASER[9] tool dynamically checks for data races in a 
multi-threaded application. The main difference between 
these detectors and our detectors are that our detectors 
are derived dynamically based on the application 
properties, and do not require specifications or 
programmer intervention.  
The technique proposed in this paper falls in the category 
of dynamically-derived, dynamically-checked detectors. 
Another example in this category is the DIDUCE tool 
[2]. The main difference between the detection 
performed by DIDUCE and our detectors is that 
DIDUCE is used for detecting errors in programs for 

debugging purposes whereas our detectors are aimed at 
detecting random errors in production settings. 

4. Detector Derivation 
In this study, an error detector is defined as a check on 
the value of a single variable of the program at a specific 
location in the static code of the program. Thus, a 
detector is essentially a software assertion. A detector for 
a variable is placed immediately after the instruction that 
writes to the variable. A detector is placed in the static 
code of the program and is invoked each time the 
program location at which the detector is placed is 
executed.  

Class Name Generic Rule 
(ai , ai-1) 

Description 

Constant ( ai == c ) 
The value is always a 
constant,     which is 
given by parameter c  

Alternate 

( ai == x and ai-

1== y ) or ( ai 
== y and ai-1== 

x ) 

The value varies 
between parameters x 
and y alternately 

Constant-
Difference  ( ai - ai-1 == c ) 

The value differs 
from its previous 
value by a constant 
parameter c 

Bounded-
Difference 

( min <= ai - ai-1 
<= max ) 

The difference 
between the previous 
and current values 
lies between 
parameters min and  
max 

Multi-Value ai є { x, y, … } 
The value is one of x, 
y etc., which are the 
parameters of the rule 

Bounded-
Range 

( min <= ai  <= 
max ) 

The value lies 
between the 
parameters, min  and 
max 

Table 1: Generic Rule Classes and their Descriptions 
 



 

In our current implementation, the detector involves only 
functions of the current and previous values of the 
selected variable at the detector’s location. We refer to 
the current value of the detector variable a as ai and the 
previous value as ai-1. A generated set of detectors can be 
constructed for a target variable by observing the 
evolution of the variable over time. A detector consists 
of a rule describing the allowed values of the selected 
variable at the selected location in the program, and an 
exception condition to cover correct values that do not 
fall into the rule. If the detector rule fails, then the 
exception condition is checked, and if this also fails the 
detector flags an error. The detector rules can belong to 
one of the six generic classes and are parameterized for 
the variable checked. Table 1 shows the set of rule 
classes that are used to derive detectors. 
The exception condition only involves equality 
constraints on the current and previous values of the 
variable, as well as logical combinations (such as and, 
or) of two of these constraints. The equality constraints 
take the following forms: (1) ai == d, where d is a 
constant parameter; (2) ai-1== e, where e is a constant 
parameter; and (3) ai==ai-1.  
The detectors are automatically derived based on the 
dynamic trace of values produced during the 
application’s execution. The program points at which 
detectors are placed (both variables and locations) are 
chosen based on the Dynamic Dependence Graph (DDG) 
of the program as shown in [10]. The program is then 
instrumented to record the run-time evolution of the 
values of detector variables at their respective locations, 
and executed over multiple inputs to obtain dynamic-
traces of the checked values. These traces are then 
analyzed to choose a set of detectors (both rule class and 
exception condition) that matches the observed values. A 
probabilistic model for coverage is then applied to the set 
of chosen detectors to find the best detector for that 
location (not discussed here due to space constraints). 
In order to derive the detector, the rule class 
corresponding to the detector is chosen and the 
associated exception condition is formed. The algorithm 
to derive a detector for a particular variable and location 
is given below. We refer to the evolution of a program 
variable over time as the stream of values for that 
variable. 
1. In order to derive the rule, the rule classes in Table 1 

are each tried in sequence against the observed value 
stream to find which of the rule classes satisfy the 
observed values. The parameters of the rule are 
learned based on appropriate samples (for each rule 
class) from the observed stream. For each rule class, 
multiple rules are generated depending on the 
parameters learned. The set of all rule classes is 
considered in step 2.  

2. For each rule derived in step 1, the associated 
exception condition is derived based on the values in 
the stream that do not satisfy the rule. Each of the 
values that do not satisfy the rule is used as a seed 
for generating exception conditions for that rule. The 
exception conditions generated are based on the 

equality constraints described before and logical 
combinations of two of these constraints. If it is not 
possible to learn an exception condition for the 
observed value, the current rule is discarded and the 
next rule is tried in the set of rules derived in step 1. 
The set of all rule-exception pairs generated is 
considered in step 3. 

3. For each rule-exception pair generated, the best 
detector is chosen according to a probability model 
that estimates coverage, for that location. The entire 
procedure is repeated for each detector location.  

The output of the algorithm is a list of detectors that are 
used to synthesize the hardware modules in Section 5. 

5. Hardware Implementation  
The hardware implementation of error detectors derived 
in the design stage encompasses two steps: (i) 
instrumentation with the CHECK instructions1 of the 
target software application, and (ii) generation of the 
Error Detector Module (EDM), a piece of customized 
hardware to check at run-time the execution of the 
program, and flag a signal when one of the detectors 
fires. These two phases are carried out at compile time, 
before the application is executed. Given the application 
code (in an intermediate representation, such as assembly 
code) the design flow delivers – in an automatic fashion 
without the designer involved in any design decision – 
the instrumented application code and the hardware 
description of the Error Detector module tailored for the 
target application.  
The technique we propose is general and can be adapted 
to any processor. The information required from the 
main pipeline (e.g., the value of the PC and state of 
internal registers) can be found in any modern processor. 
In this paper, we discuss the hardware implementation of 
the Error Detector Module in context of the Reliability 
and Security Engine (RSE) framework[12] and of a 
DLX-like processor [1]. The RSE is a reconfigurable 
processor-level framework that can provide a variety of 
reliability features according to the needs and constraints 
imposed by the user or the application 
In the following we describe the overall architecture of 
the Error Detector Module referring to Figure 2. We 
assume that the required signals are provided through an 
interface to the processor similar to the RSE interface. 
There are several components in the Error Detector 
Module described below: Shadow Register File (SRF) 
keeps track of current and last values of the 
microprocessor’s registers checked by the detectors. 
Detector Table stores the information needed for a 
detector. Rule and Exception Checkers – are the actual 
data-paths used to carry out the computation of the 
detector rules and exceptions. Violation Detector – uses 
the results of the rule and exception checkers to flag an 
error, indicating a malfunctioning when both the clause 
and the exception fail. 

                                                        
1 These are special instructions that are used to invoke the 
Error-Detector Module from the target application. 



 

 
Figure 2 – Detailed Architectural View of the Error Detector Module  

 
6. Experimental Evaluation 
 This section includes several experimental results of the 
proposed technique: (1) assessment of different detector 
sets in terms of their ability to detect crashes, hangs and 
fail-silent violations; and (2) the area and performance 
overheads when the detectors are implemented in 
hardware. 
6.1 Detector Derivation and their Coverage  
In order to perform the detector derivation and fault-
injection experiments, a modified version of the Simple-
scalar simulator [11] is used. The simulator allows fine-
grained tracing of the application and studying its 
behavior under faults such as hangs, crashes, fail-silent 
violations. The results from the simulator represent the 
behavior of the processor augmented with the hardware 
Error Detection Module. The experiment is divided into 
three parts: (1) Placement of detectors and 
instrumentation of code; (2) Deriving the detectors based 
on training set; and (3) Fault-injections and coverage 
estimation.  
In the first part, the dynamic instruction trace of the 
program is obtained and the Dynamic Dependence Graph 
(DDG) is constructed from the trace. The points at which 
detectors (both variables and locations) must be placed 
are chosen based on our previous work [10]. For each 
application, up to 100 detector points are chosen by the 
analysis. In the second phase, the detectors are derived. 
The simulator records the values of the selected variables 
at the detector locations for representative inputs. The 
dynamic values obtained are used in the learning phase 
to derive the detectors using nearly 100 inputs in the 
training set.  Finally the third phase consists of fault-
injection experiments performed by flipping randomly 
chosen single bits in data-values produced during the 
course of a program’s execution. After injecting the 
fault, the data values at the detector locations are 
recorded and the outcome of the simulated program is 
classified into crash, hang, success or fail-silent data 
violation. The values recorded at the detector locations 

are then checked offline by the derived detectors to 
assess their coverage.  
The applications used to evaluate the detectors are the 
Siemens suite [14] of programs. These are C programs 
consisting of few hundred lines of C code. Each 
application is executed over 10 new inputs (unseen 
during the learning phase) and for each input 1000 
random locations are chosen for fault-injections. For 
each location, five random bits are corrupted (one at a 
time), leading to a total of 5000 fault-injections for each 
application/input combination. 
Figure 3, Figure 4 and Figure 5 show the coverage for 
crashes, hangs and fail-silent violations (fsv) obtained for 
the target applications as a function of the number of 
detectors placed in the application. The main results are: 
• While coverage for all three classes of failures 

(crash, hang and fail-silent violations) increases as 
the number of detectors increases, there is a 
significant overlap in the errors detected by different 
detectors which leads to a plateau effect in the 
coverage; 

• Error coverage varies significantly across 
applications depending on the type of failure. For 
100 detectors placed in the code, coverage for crash 
failures varies between 45% (print_tokens) and 60% 
(schedule), for hangs between 2% (print_tokens2) to 
40% (schedule) and for fsv, from 20% (schedule2) 
to 60% (tot_info). 

False-positives can occur when a detector flags an error 
even if there is no error in the application. Some of the 
detectors may fail on some of the inputs as the values at 
the detector points for these inputs may not obey the 
detector’s rule or exception condition learned from the 
training inputs. Figure 6 presents the percentage of false-
positives for each of the target applications across 1000 
inputs. If even a single detector detects an error for a 
particular input, that input is treated as a false-positive. 
For all applications except tot_info, the false-positives 
observed are less than 6% (for 100 detectors). For the 
tot_info application, the observed false-positives are 
16%.



 

 
 

Figure 3: Crash Coverage for actual detectors 

 
Figure 4: Hang Coverage for actual detectors 

 

 

 
Figure 5: FSV coverage  for inserted detectors 

 
Figure 6: Percentage of False-Positives for 1000 inputs of 

each application 
 
6.2 Hardware Implementation Results  
The proposed design of the DLX processor, the RSE 
Interface and the Error Detector Modules for different 
applications were synthesized using Xilinx ISE 7.1 tools 
targeting a Xilinx Virtex-E FPGA. The Xilinx Virtex 
series of FPGAs consists mainly of several type of logic 
cells: (1) 4-input Look-Up Tables (LUTs) statically 
programmed during the bootstrap with the configuration 
bit-stream, (2) flip-flops (FFs), storage elements in the 
user visible system state, and (3) Block RAM (BRAMs), 
which are memory blocks that can store up to 4096 bits. 
Four LUTs and four FFs compose a logic unit called 
Slice.  
Table 2 reports the synthesis results in terms of area (i.e., 
FFs, LUTs, BRAM and total Slices) and minimum clock 
frequency, for the reference DLX processor and the 
complete RSE Interface. Table 3 gives the synthesis 
results in terms of area and minimum clock period for 
different configurations of the Error Detector module for 
the workloads reported in the first column. For different 
workloads, the number of slices required for the 
implementation of the Error Detector modules ranges 
between 2685 and 2915, while the number of additional 
BRAMs is 9. The last two columns of Table 3 show the 

area overhead, for the Error Detector module (EDM) and 
for a complete implementation of the RSE, respectively. 
The area overhead of the single EDM is about 30%, 
while the area overhead of the complete implementation 
is about 45%.  
A measure of the performance overhead is given by: 

 (Twith EDM - Twithout EDM) / Twithout EDM 
= [ Extra Clock Cycles * (TCK, with ED - TCK, without EDM) ] / ( 

Total Clock Cycles * TCK, without EDM) 
where Twith EDM and Twithout EDM are the total execution 
times with and without Error Detector module 
respectively, Extra clock cycles is the number of 
additional clock cycles required to execute the code with 
the CHECK instructions, TCK with ED and TCK without ED are 
the minimum clock period of the overall system with and 
without the Error Detector module, respectively.   
Due to space constraints, we do not report the results for 
all the workloads, but we report only the workload with 
the largest time overhead, i.e., schedule2. The number of 
extra clock cycles is 594, while the total number of clock 
cycles is nearly 1 million, TCK with ED is 58.82 ns and TCK 

without ED is 55.55 ns. From this, we can calculate the total 
performance overhead to be about 5.6%. 



 

 FFs LUTs BRAMs Slices 
Clock 
Period 

[ns] 
DLX processor 4873 16395 0 9526 58.8 

Complete RSE Interface 2465 2329 0 1420 2.01 
Table 2: Area and timing results for the DLX processor and the RSE Framework 

  

Workload 
Name 

Number 
of 

Detecto
rs 

FFs  
BRAMs LUTs Slices 

Clock 
Period 

[ns] 

EDM Slice 
Overhead 

[%] 

EDM + RSE 
Interface 

Slice Overhead 
[%] 

tot_info 91 2913 9 5174 2685 20.7 28.2 43.1 
replace2 91 2913 9 5176 2686 21.6 28.2 43.1 

print_tokens 98 3169 9 5575 2876 19.7 30.2 45.1 
print_tokens2 98 3169 9 5578 2875 21.1 30.2 45.1 
schedule 98 3169 9 5578 2875 20.4 30.2 45.1 
schedule2 99 3201 9 5626 2911 19.9 30.6 45.5 

Table 3: Area and timing results for Error Detector modules for different workloads. 
 

7. Conclusions and Future Work 
This paper has proposed a novel technique for preventing 
a wide range of data errors from corrupting the execution 
of a generic application. This technique consists in 
automated derivation of fine-grained, application-
specific error detectors by an algorithm based on 
dynamic traces of application execution. A set of error 
detector classes, parameters and locations, are produced 
in order to maximize the error detection coverage for a 
target application. The paper also presents an automatic 
framework for synthesizing the optimal set of detectors 
in hardware to enable low-overhead run-time checking of 
the application execution. Coverage (evaluated using 
fault injection) of the error detectors derived using the 
proposed methodology, the additional hardware 
resources, and performance overhead for several 
benchmark programs are also reported.  
Future work will involve (1) Evaluating the technique on 
larger benchmark programs, (2) Reducing the number of 
false-positives encountered and (3) Increasing the 
coverage for fail-silence violations by deriving detectors 
that are a function of the application’s inputs.  
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