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made systems much more vulnera-
ble to malicious attacks that can
have far-reaching implications on
our daily lives. The catastrophic
failure of AT&T’s telecommunica-
tion network in New York City,
for example, which affected both
airline reservation and American
Red Cross blood-supply-tracking
systems,1 and  the Code Red
worm, which exploited a buffer
overflow in Internet Information
Service (IIS), indicate a rising
problem with computer and sys-
tem security.

Traditionally, system security
has meant access control and cryp-
tography support, but the Inter-
net’s phenomenal growth has led
to the large-scale adoption of net-
worked computer systems for a di-
verse cross section of applications
with highly varying requirements.
In this all-pervasive computing
environment, the need for security
and reliability has expanded from a
few expensive systems to a basic
computing necessity. This new
paradigm has important conse-
quences:

• Networked systems stretch the
boundary of fault models, from
an application or node failure to
failures that could propagate and
affect other components, subsys-

tems, and systems. 
• Attackers can exploit vulnerabili-

ties in operating systems and ap-
plications with relative ease. 

• As computing systems become
more ubiquitous, security and re-
liability techniques must be
cheaper and more focused on ap-
plication characteristics.

Clearly, the traditional one-
size-fits-all approach to security
and reliability is no longer suffi-
cient or acceptable from the user
perspective. A potentially much
more cost-effective and precise ap-
proach is to customize the mecha-
nisms for detecting security attacks
and execution errors using knowl-
edge about the expected or allowed
program behavior. Spectacular sys-
tem failures due to malicious tam-
pering or mishandled accidental
errors call for novel, application-
specific approaches. In this article,
we introduce the concept of appli-
cation-aware checking as an alter-
native. By extracting application
via recent breakthroughs in com-
piler analysis and enforcing the
characteristics at runtime with the
hardware modules embedded in
the reliability and security engine
(RSE), it’s possible to achieve secu-
rity and reliability with low over-
heads and false-positive rates.

Why application-
aware?
Users want their applications to con-
tinue to operate without interrup-
tion, despite attacks and failures, but
as applications become more com-
plex and sensitive, this task becomes
more difficult. Furthermore, because
hardware is becoming cheaper, it’s
much more desirable for the under-
lying hardware to configure itself to
provide the best support on a per-ap-
plication basis. 

Application-aware checking pro-
vides knowledge about an applica-
tion’s characteristics to the underlying
hardware. This in turn makes the ap-
plication aware of underlying hard-
ware techniques that it can invoke at
critical points in its execution to re-
quest reliability and security support
when necessary. As a result, applica-
tion-aware checking makes attack
and error checkers smarter, so that
they detect only those errors that af-
fect the application.

The principle of application-
aware checking applies at all levels of
the system hierarchy—operating sys-
tem, middleware,2 and application.3

The idea of customizing hardware
checkers based on application needs
is especially compatible with recent
industry trends such sa utility com-
puting, in which large hardware
farms provide a platform for com-
plex, long-running applications to
operate in a timely fashion (see
http://devresource.hp.com/drc/top
ics/utility_comp.jsp and www.
network.com). Indeed, utility com-
puting grids can optimize themselves
to suit the application’s performance
needs. Analogously, an application-
aware checking methodology lets
hardware checkers tune themselves
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wo trends—the increasing complexity of computer

systems and their deployment in mission- and life-

critical applications—are driving the need to pro-

vide applications with security and reliability

support. Compounding the situation, the Internet’s ubiquity has 
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to detect the relevant errors affecting
an executing application.

Hardware-based techniques also
have the advantage of low perfor-
mance overhead because the hard-
ware modules can perform security
and reliability checking in parallel
with the application’s execution.
With knowledge about allowed ap-
plication behavior, application-aware
hardware techniques can detect er-
rors close to their point of occur-
rence, and hence low levels of
detection latency are possible. This
isn’t always true for software-imple-
mented application-, middleware-,
or operating system-level techniques.

A new framework
Our hardware-based technique uses
knowledge of an application’s exe-
cution characteristics to devise ap-
plication-specific detectors and
assertions for low-latency data-cor-
ruption detection. Figure 1 illus-
trates a framework for automated (or

semi-automated) derivation of secu-
rity and reliability checks. 

The framework in Figure 1 uses
compiler-based static analysis to un-
cover relationships or invariants that
hold in the original program, so that
the hardware can check them during
runtime to detect security and relia-
bility violations. An example of an
invariant is that only certain instruc-
tions can write to a specific memory
location; a violation of this invariant
signals an error or attack. The first
step in static analysis is to identify
critical variables and locations in the
program, which, if corrupted can
lead to failures or security breaches
with a high probability. For reliabil-
ity, the compiler identifies critical
variables based on heuristics applied
to the program’s dynamic depen-
dence graph.3 For security, pro-
grammers use their knowledge of
application semantics to identify
critical variables—for example, the
variable that holds the system pass-

word for authentication might be
critical in a network communication
application. 

Security checks
The goal of security checks is to de-
fend against potential security at-
tacks by preventing malicious
corruption of critical data (such as
passwords). This is accomplished by
enforcing the program’s semantics
upon its execution. 

Our broad threat model includes

• memory attacks, in which the at-
tacker can execute arbitrary code
or overwrite program variables
stored in memory and processor
registers;

• physical attacks, in which code is in-
jected via malicious hardware de-
vice; and

• insider attacks, in which the attacker
tries to alter (at runtime) part of
the program to gain control over
the application or system. 
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Figure 1. Common framework for security and reliability checks. After identifying critical variables, the compiler extracts the
backward program slice, which serves as a basis for security and reliability checks.
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Because we want to ensure the in-
tegrity of critical data (rather than
ensure data confidentiality), our ap-
proach doesn’t address side-channel
attacks. We also assume that the
original program itself isn’t mali-
cious, thus we don’t consider attacks
in which the program’s source code
is tampered with (such as Trojan
horse attacks). 

Languages such as C and C++
aren’t memory-safe, so any pointer
can access (or write) any location in
the application’s memory space.
Consequently, an attacker can ex-
ploit memory errors to get access to
security-critical data by overflowing
nearby memory objects.4 Buffer
overflow attacks, for example, are
possible because the system allocates
two buffers next to each other on the
stack, thus letting an attacker use a
pointer from one buffer to access the
other. Similarly, in a format-string
attack, an attacker can use an ill-
formed format-string argument to
the printf function to write to an
arbitrary memory location. The
ability to write past the end of an ob-
ject into other valid objects is an arti-
fact of the runtime system (the
linker/loader), not an artifact of
source semantics.

Essentially, these attacks exploit
memory corruption because of the

gap between the program’s source-
and application-level semantics and
its execution semantics and runtime
implementation. We’ve found two
security-checking techniques that
bridge this gap and enforce either
source-level semantics (dataflow sig-
natures) or application-level seman-
tics (pointer-taintedness) at runtime.

Dataflow signature checking. Our
source-level semantic technique en-
sures that only instructions that are al-
lowed to write to a given memory
location actually do so during program
execution. We achieve this by enforc-
ing compiler-derived data dependen-
cies at runtime using specialized
programmable hardware. Because
compiler analyses typically make no
assumptions about the runtime layout
of objects in memory, the dependen-
cies the compiler derives are artifacts of
the program’s source code and not sys-
tem artifacts. The technique enforces
this behavior by encoding the instruc-
tions that write to the critical object as
a signature and then checking the sig-
nature at runtime. Memory corrup-
tion attacks to security-critical data
objects are  detected because they cor-
respond to memory access behavior
nto allowed for at the source-code
level.

However, an attacker could try to
subvert the system by overwriting an
object that the program uses to de-
rive or influence a security-critical
object’s value. To prevent this, we en-
code the entire series of dependen-
cies for a security-critical object as a
signature for that object. This pre-
vents the attacker from overwriting
any of the objects on the dependence
chain. To subvert the scheme, the at-
tacker must modify the critical object
only through instructions that are al-
lowed to write to the object accord-
ing to compiler-derived source-level
semantics. We found that this in-
creases the attacker’s effort to mount
a successful attack because it limits
the number of attack points in the
program and prevents the attacker
from taking advantage of the object

layout in memory. 
Consider the example code for

a password-based authentication
scheme illustrated in Figure 2.

The program fragment prompts
the user for a password and compares
the entered password to the correct
one stored in the password variable.
If the user enters the correct seven-
character password “asecret,” the
program outputs Success; if the
passwords don’t match, it outputs
Failed. However, the unchecked
bounds on the gets() function let
the user enter more than seven char-
acters, allowing other variables on
the stack to be overwritten. Now as-
sume that an attacker enters the
string attack! attack!. This
would let the attacker overwrite the
password variable on the stack and
falsely authenticate to the system—a
classic buffer-overflow attack.

The main reason for this vulnera-
bility is that although the program-
mer never implied that the password
buffer should be written by the
gets() function, the runtime sys-
tem allows the write. From the
source code, it seems clear that only
the gets() function should write
to the userpass buffer, but the
runtime system doesn’t enforce
this—rather, it allows any instruc-
tion to write to any memory loca-
tion. The attacker can easily exploit
this disconnect between source-
level semantics and the runtime lay-
out of objects on the stack, and
overwrite security-critical variables.

So how does the application-
aware technique detect such an at-
tack? In the last example, let’s assume
that both the password and
userpass buffers are critical. Dur-
ing static compilation, the enhanced
compiler identifies and encodes the
set of all instructions that are allowed
to write to each of the critical vari-
ables (For the sake of clarity, we con-
sider here signatures at the
granularity of program statements
rather than instructions.) In this ex-
ample, the only statement that’s al-
lowed to write to the password
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1 int main()

2 {

3 char password[8] = “asecret”;

4 char userpass[8];

5 printf(“Enter Password:\n”);

6 gets(userpass);

8 if(strncmp(userpass,password,7)==0)

9 printf(“Success\n”);

10 else

11 printf(“Failed\n”);

12 }

Figure 2. Example code fragment. The program
outputs “Success” or “Failed” when the user
provides a correct or invalid password,
respectively. 



On the Horizon

variable is password[8] =

“asecret” on line three, and the
only statement that’s allowed to
write to the userpass variable is
gets(userpass) on line six.
Suppose our signature is the set of
memory addresses, so the signature
for password is {3} and the signa-
ture for userpass is {6}. Now,
any attempt to write to password
from within gets() on line six will
be detected because six isn’t in the
signature for the password vari-
able, and the signatures won’t match. 

Pointer-taintedness checking.
Our other technique ensures that
data provided by the user isn’t used as
a pointer value during program exe-
cution. We’ve found that user data
employed as a pointer value is the
main cause of common memory at-
tacks such as buffer-overflows and
format-string vulnerabilities. A
pointer is said to be tainted if the
pointer value comes directly or indi-
rectly from user input, thus a tainted
pointer lets the user specify the target
memory address to read, write, or
transfer control to, which can lead to
a compromise of system security.
The attacker’s ability to specify a ma-
licious pointer value is crucial to the
success of attacks that exploit mem-
ory corruption. 

To indicate whether data is de-
rived from user input, we extend the
memory model and associate a
Boolean property, called taintedness,
with each register/memory location.
The program marks any data received
from external sources as tainted (ex-
ternal data sources can include the
network, file system, keyboard, com-
mand-line arguments, and environ-
mental variables). This is achieved
through slight modifications to the
operating system’s user input rou-
tines. Load, store, and ALU instruc-
tions are responsible for propagating
taintedness from register to register,
memory to register, and register to
memory. Any time the program uses
a data word with tainted bytes as an
address for memory access or control-

flow transfer, an alert is raised and the
application process is terminated.
The proposed architecture is trans-
parent to the application and requires
no source-code access or compile-
time type information.5,6

Derivation of
reliability checks
The reliability check’s goal is to de-
tect errors in the critical variable’s
value, which occur due to both tran-
sient hardware errors as well as soft-
ware errors. One way of detecting
such errors is to replicate the critical
variable’s computation, which usu-
ally involves considerable perfor-
mance and resource costs (in terms
of hardware). We propose an alter-
native approach: applying special-
ized code optimizations to form the
check (that is, the sequence of in-
structions for recomputing the
value). Our first optimization is to
include only those instructions that
influence the critical variable’s value
in generating the check (this corre-
sponds to the backward slice of the
critical variable in the program). The
second optimization involves track-
ing the control path that the pro-
gram follows at runtime and
re-executing only the instructions in
the slice along this path. 

The reliability-check derivation

technique performs the backward
slicing and path specialization at
compile time for each critical vari-
able along every acyclic path in the
program to derive the checking in-
struction sequence or expression. A
specialized software tool then inserts
instrumentation in the code to track
the path followed at runtime and
choose the correct checking expres-
sion for the path. Figure 3 illustrates
this approach with a simple if-then-
else statement. In the figure, the
original code is shown in blue, and
the checking code is in yellow.

Assume that f is a critical variable
to be checked. Figure 3 shows only
the instructions corresponding to
the backward slice of variable f; this
slice has two paths, corresponding to
each of the two branches of the if-
then-else statement. The specialized
software tool optimizes the instruc-
tions along each path to a concise
expression, which checks the critical
variable’s value, depending on the
path followed. The expression also
validates the path being followed to
ensure that the path is correct. 

The derived checks can be im-
plemented in either software or
hardware, but we prefer hardware
because it ensures low-overhead
error detection without sacrificing
coverage. The hardware implemen-
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Figure 3. Error checks. The specialized software tool inserts code to track the path followed at
runtime and then choose the correct check for the path. The original code is in blue, the
checking code is in green, and the application instrumentation is in red.
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tation of error detectors involves
two steps: instrumentation of the
target application with special in-
structions to invoke the hardware
checks, and generation of an error-
detection module, which is a piece
of customized hardware to check
the program’s execution at runtime
and raise an exception if one of the
detectors signals an error. These two
phases occur at compile time, before
the application is executed, but can
be executed at application load time
as well. We’re now leveraging the
advance optimization techniques
provided by the Impact compiler
(http://gelato.uiuc.edu) to enhance
security checks while we work to
incorporate the necessary support
into the compiler itself. This relia-
bility effort in turn leverages the
LLVM compiler framework.8

A prototype
To deploy our application-specific

error-checking mechanisms, we de-
veloped the RSE, a hardware frame-
work that’s an integral part of the
processor and resides on the same
die. We embedded hardware mod-
ules in the RSE to provide reliability
and security to the applications; the
modules execute in parallel with the
main processor’s pipeline.8

We integrated the RSE prototype
into the Superscalar-DLX processor,
which runs on a Xilinx field-pro-
grammable gate array (FPGA). The
framework offers application-specific
modules tailored to provide different
types of security and reliability sup-
port. Figure 4 gives a block diagram
of the RSE along with the pipeline of
the superscalar DLX processor. The
RSE interface provides inputs for
embedded hardware modules: control-
flow checking, which detects violation
of the control flow in instruction exe-
cution; a process health monitor, which
detects operating system hangs; data

value checking, which detects corrup-
tion of  critical program variables;
dataflow signature checking, which de-
tects violation of data dependencies
in the computation of critical vari-
ables; and pointer-taintedness checking,
which detects memory corruption
attacks in which the adversary over-
writes program pointers. The RSE’s
configurability allows the developer
to choose which modules to incor-
porate according to an application’s
requirements, thereby minimizing
chip-area overhead because the un-
necessary modules simply aren’t in-
cluded in the design. 

T o illustrate the RSE’s security
protection, we synthesized and

integrated the pointer-taintedness
detection module with an FPGA-
based implementation of the RSE.
We’re currently executing realistic
application scenarios with fully con-
figured FPGA hardware and are
using the same hardware base to im-
plement dataflow-signature check-
ing for security protection.

Although the current RSE hard-
ware is a research prototype, our
work has opened up an interesting
array of implementation opportuni-
ties, including dynamic configura-
tion of the RSE to support a system
or application’s changing needs,
compiler extensions to enable auto-
mated generation of application-
specific security and reliability
checks, and trusted processing cores.
To explore these opportunities,
we’re porting our RSE prototype to
next-generation FPGA-based hard-
ware. This transition enables experi-
mentation with larger applications
and opens avenues for future inte-
gration of RSE hardware within the
Trusted ILLIAC, a configurable, ap-
plication-aware, high-performance
platform for trustworthy computing
being developed at the University of
Illinois. 
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Figure 4. Framework and hardware prototype. Our reliability and security engine (RSE)
is an integral part of the processor and embeds hardware modules for providing error
detection and security protection.
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