Discovering Application-level Insider
Attacks using Symbolic Execution

Karthik Pattabiraman
Zbigniew Kalbarczyk

Ravishankar K. lyer

Motivation: Insider Attacks

* Malicious insiders can plant logic-bombs/back-doors in apps
— Many libraries distributed in binary form (source unavailable)

— Even if source is available, original developer may have left and
nobody understands the code anymore

— Outsourcing/off-shoring compound the problem

* Both closed-source and open-source equally vulnerable

— Study of 100 closed-source packages found 79 had dead-code and 23
had unwanted code (back-doors) [Veracode ‘09]

— Open-source no panacea (attempts to plant backdoor in the Linux
kernel took 4 days to discover — may be more for less freq. used S/W)

* Malicious system-administrators can modify/recompile code
— Widely-penetrated fraud scheme in organization went undetected
— Sys. Admin commented out a single line of source code [CERT’09]

Application-level Insiders

* Insider can corrupt both registers and memory
— Malicious third-party library or plugin
— Logic flaw planted by disgruntled programmer
— Malicious operating system/higher privileged process

* Insider wants to elude detection (as far as possible)
— Cannot directly execute code that hijacks application
— Cannot perform large-scale corruptions of app data

* Insider does not want to crash the application
— Denial-of-service attacks not considered

Attack Scenario

Interacts
with

application Regular

User

- Nothing to
Application distinguish the

two users :
Colluding

Il lanm.

Malicious Insider

Insider knows the input
that will be given

Existing Techniques

Symbolic Execution: Attack Graphs: Model
Generating attack inputs for attackers at the network-

known vulnerabilities node level
[EXE’06][Bouncer’07] [Jha’01][Upadhyaya’04]

Need for a formal framework to automatically explore all possible insider
attacks on the application at the code-level

Static Analysis: Finding Process Calculii: Model
vulnerabilities in programs attackers at process level
[SPLINT’01][MOPS’04] [Probst’06]

Problem Statement

* Given a program and a set of attack points, can
we discover all possible insider attacks to
achieve a certain goal (for the attacker) ?

— E.g. Make the program print “authenticated” even if
wrong password is supplied by the user

— |ldentify both the data item to be corrupted (AND) the
precise value that it must be corrupted with

* Key Idea: Symbolically execute program under
all possible malicious value perturbations

Assumptions

e Attacker can corrupt a single data item at specific
points in the program execution

— Data item can be register/memory address
— Control-data can also be corrupted e.g. function ptrs

* Only one corruption allowed per run, but corrupted
value can be any valid program value

— Value must be represented in the assembly code

e Corruption only allowed at fixed program points
(attack points), e.g. Calls to 3" party functions

SymPLAID: Approach

Goal: Explore all insider attacks that may be launched
in an application (expressed in assembly language)

Attack Model

— Attacker may corrupt any data in program
(stack/heap/reg.)

— Attacker has a specific goal state (in terms of the
application)

— Attacker launches attack at attack points in applications

Output: Enumeration of all possible attacks in the
model that lead to the attacker’s goal undetected

Insider Attack Example

void authenticate(void* src, void* dest, void™
temp, int len){ Call to malicious 3¢

. arty function -
readinputl(temp); Y e ’
strncpy(src, temp, len
readinput2(temp);
untrusted funtction();
strncpy(dest, temp, len);
if (! strncmp(de%c, len)) S buf
return 1; N .
Both point to
return O; empty strings

et tmp to
chuf—

len(input)

Dst buf

Attacker’s Goal: Make the above function

Tmp buf
return | even if the wrong password is given

SymPLAID: Tool

Program expressed in Set of attack points atigcker’s goal as a
assembly language in the application first-order logic formula

SymPLAID Tool

(Written using Maude rewriting logic engine)

Comprehensive enumeration of insider attacks that
can be launched on the program at the specified
attack points and lead to the specified goal state

SymPLAID: Difference with SymPLFIED

» SymPLFIED » SymPLAID
» More concerned about P Both the origin and effect
effect of the error than its of the security attack
origins » Tracks each value

SymPLFIED emphasizes scalability over accuracy for reasoning about errors

SymPLAID emphasizes accuracy over scalability for reasoning about attacks

A

SymPLFIED
Scalability in no. ym

of errors/attacks '

SymPLAID

> Accuracy

11

SymPLAID: Case Study

» Demonstrated on SSH authentication stub
» 200 lines of C code, 500 assembly language instructions
» Checks if user name is in list of allowed users, AND
» Checks if user password matches system password

» Attacker Goal: To authenticate him/herself with
» Wrong username, Wrong password
» Wrong username, Correct password (= default password)
» Correct username, Wrong password

» Ran task on a 50 node AMD Opteron cluster
» Ran for approximately two full days (maximum of all times)
» Equivalent time to running on a single node for a month

SymPLAID: Case Study Results

* Real Attack Example

— Overwriting stack/frame
pointers of calling
functions

N
©
3
a
(1]
%
-
=)
>
(1]
o
>
v v
/
=
S
Stack a
&> strncmp
Growth o
. < frame
direction B)
© pointer
Vv

e Spurious Attack Example

— Overwriting the current
variable in chunk allocator

start

current max

N

Vv

& N
[N 7

Allocated Unallocated
chunk chunk

E— i £rovt
direction

13

Summary

 SymPLAID: Formal technique to systematically
consider effect of security attacks on programs

— Generate all possible insider attacks for a given goal
— Can guide development of defense mechanisms

* Tracks value corruptions at assembly code level

— Attacker can corrupt program value(s) at specific
points in the program (attack points)

 Demonstrated on real application (OpenSSH) to
find non-intuitive attack scenarios

Future Directions

* Scale the technique to larger programs
— Requires efficient constraint-solving capabilities
— Truncate paths that do not seem “promising”

* Eliminate the need to specify the attack goal
— Dictionary of common attack goals in applications
— Specify good behavior rather than bad behavior

* Technique to protect apps from insider attacks

— Information-Flow Signatures (IFS) to protect security
critical data in applications using static analysis

