
Discovering Application-level Insider
Attacks using Symbolic Execution

Karthik Pattabiraman

Zbigniew Kalbarczyk

Ravishankar K. Iyer

Motivation: Insider Attacks

• Malicious insiders can plant logic-bombs/back-doors in apps
– Many libraries distributed in binary form (source unavailable)
– Even if source is available, original developer may have left and

nobody understands the code anymore
– Outsourcing/off-shoring compound the problem

• Both closed-source and open-source equally vulnerable
– Study of 100 closed-source packages found 79 had dead-code and 23

had unwanted code (back-doors) [Veracode ‘09]
– Open-source no panacea (attempts to plant backdoor in the Linux

kernel took 4 days to discover – may be more for less freq. used S/W)

• Malicious system-administrators can modify/recompile code
– Widely-penetrated fraud scheme in organization went undetected
– Sys. Admin commented out a single line of source code [CERT’09]

Application-level Insiders

• Insider can corrupt both registers and memory
– Malicious third-party library or plugin

– Logic flaw planted by disgruntled programmer

– Malicious operating system/higher privileged process

• Insider wants to elude detection (as far as possible)
– Cannot directly execute code that hijacks application

– Cannot perform large-scale corruptions of app data

• Insider does not want to crash the application
– Denial-of-service attacks not considered

Attack Scenario

Application

F
I
R
E
W
A
L
L

Logic-
Bomb

Regular
User

Interacts
with
application

Triggers
logic-bomb

Colluding
User

Nothing to
distinguish the
two users

Malicious Insider

Insider knows the input
that will be given

Existing Techniques

5

Formal Methods for
Security

Attack Graphs: Model Attack Graphs: Model
attackers at the network-

node level
[Jha’01][Upadhyaya’04]

Symbolic Execution:
Generating attack inputs for

known vulnerabilities
[EXE’06][Bouncer’07]

Static Analysis: Finding
vulnerabilities in programs

[SPLINT’01][MOPS’04]

Process Calculii: Model
attackers at process level

[Probst’06]

External

Attacks

Internal

Attacks
Need for a formal framework to automatically explore all possible insider

attacks on the application at the code-level

Problem Statement

• Given a program and a set of attack points, can
we discover all possible insider attacks to
achieve a certain goal (for the attacker) ?

– E.g. Make the program print “authenticated” even if
wrong password is supplied by the user

– Identify both the data item to be corrupted (AND) the
precise value that it must be corrupted with

• Key Idea: Symbolically execute program under
all possible malicious value perturbations

Assumptions

• Attacker can corrupt a single data item at specific
points in the program execution
– Data item can be register/memory address
– Control-data can also be corrupted e.g. function ptrs

• Only one corruption allowed per run, but corrupted
value can be any valid program value
– Value must be represented in the assembly code

• Corruption only allowed at fixed program points
(attack points), e.g. Calls to 3rd party functions

SymPLAID: Approach

• Goal: Explore all insider attacks that may be launched
in an application (expressed in assembly language)

• Attack Model
– Attacker may corrupt any data in program

(stack/heap/reg.)

– Attacker has a specific goal state (in terms of the
application)

– Attacker launches attack at attack points in applications

• Output: Enumeration of all possible attacks in the
model that lead to the attacker’s goal undetected

8

Insider Attack Example

void authenticate(void* src, void* dest, void*
temp, int len){
readInput1(temp);
strncpy(src, temp, len)
readInput2(temp);
untrusted_function();
strncpy(dest, temp, len);
if (! strncmp(dest, src, len))

return 1;
return 0;

}
9

src

dest

tmp

Src buf

len

Dst buf

Tmp buf

Call to malicious 3rd

party function -

Attack point

W

R

O

N

G

\0

Set tmp to

srcBuf –

len(input)

Both point to

empty strings

Attacker’s Goal: Make the above function

return 1 even if the wrong password is given

SymPLAID Tool
(Written using Maude rewriting logic engine)

Program expressed in
assembly language

Set of attack points
in the application

Attacker’s goal as a
first-order logic formula

Comprehensive enumeration of insider attacks that
can be launched on the program at the specified
attack points and lead to the specified goal state

SymPLAID: Tool

SymPLAID: Difference with SymPLFIED
 SymPLFIED
 More concerned about

effect of the error than its
origins

 Merges multiple value
errors into a single class

 May incur false-positives

 SymPLAID
 Both the origin and effect

of the security attack

 Tracks each value
individually without
merging

 Few false-positives

11

Accuracy

Scalability in no.

of errors/attacks

SymPLFIED

SymPLAID

SymPLFIED emphasizes scalability over accuracy for reasoning about errors
SymPLAID emphasizes accuracy over scalability for reasoning about attacks

SymPLAID: Case Study

 Demonstrated on SSH authentication stub
 200 lines of C code, 500 assembly language instructions
 Checks if user name is in list of allowed users, AND
 Checks if user password matches system password

 Attacker Goal: To authenticate him/herself with
 Wrong username, Wrong password
 Wrong username, Correct password (= default password)
 Correct username, Wrong password

 Ran task on a 50 node AMD Opteron cluster
 Ran for approximately two full days (maximum of all times)
 Equivalent time to running on a single node for a month

12

SymPLAID: Case Study Results
• Real Attack Example

– Overwriting stack/frame
pointers of calling
functions

• Spurious Attack Example
– Overwriting the current

variable in chunk allocator

13

OK

sy
s_

au
th

_p
as

sw
d

au
th

_p
as

sw
o

rd

strncmp

frame

pointer

Stack

Growth

direction

Allocated

chunk
Unallocated

chunk

current maxstart

Heap growth

direction

Summary

• SymPLAID: Formal technique to systematically
consider effect of security attacks on programs
– Generate all possible insider attacks for a given goal

– Can guide development of defense mechanisms

• Tracks value corruptions at assembly code level
– Attacker can corrupt program value(s) at specific

points in the program (attack points)

• Demonstrated on real application (OpenSSH) to
find non-intuitive attack scenarios

14

Future Directions

• Scale the technique to larger programs
– Requires efficient constraint-solving capabilities
– Truncate paths that do not seem “promising”

• Eliminate the need to specify the attack goal
– Dictionary of common attack goals in applications
– Specify good behavior rather than bad behavior

• Technique to protect apps from insider attacks
– Information-Flow Signatures (IFS) to protect security

critical data in applications using static analysis

