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Abstract—Even though replication has been widely used in 
providing fault tolerance, the underlying hardware is unaware 
of the application executing on it. The application cannot 
choose to use redundancy for a specific code section and run in 
a normal, unreplicated mode for the rest of the code. In this 
paper we propose Processor-level Selective Replication, a 
mechanism to dynamically configure the degree of instruction-
level replication according to the applications demands. The 
application can choose to replicate only code sections that are 
critical to its crash-free execution. This decreases the impact 
on the performance. It is also known that many of the 
processor-level faults do not lead to failures observable in the 
application outcome. So, selective replication also decreases 
the number of false positives. 

 
Index Terms—Replication, Reconfiguration, Critical Code 

Sections 

I. INTRODUCTION AND MOTIVATION 
eplication, as a fault-tolerance technique, has been 
widely at the application, processor and the system 

levels. Replication can be introduced into the application at 
compile time by duplicating the instructions in the static 
source code and providing code for comparing the outputs 
of the duplicated instructions [1]. This has the advantage 
that the underlying hardware does not need to be modified. 
The drawback of this approach is that it incurs a high 
memory and performance overhead. 

The two basic approaches for processor-level replication 
are: hardware redundancy and time redundancy. 1) 
Hardware Redundancy [2] is achieved by carrying out the 
same computation on multiple, independent hardware at the 
same time and corroborating the redundant results to expose 
errors. 2) Time redundancy [3][4] obtains redundant 
computation by repeating the same operation multiple times 
on the same or idle hardware. It has lower performance 
overhead than the software-implemented replication but 
much higher performance overhead than hardware 
redundancy. 

In either type of redundancy the underlying hardware is 
unaware of the application executing on it. The application 
cannot choose to use redundancy for a specific code section 
and run in a normal, unreplicated mode for the rest of the 
code. 

Recent work [e.g., [5][11]] has shown that it is feasible to 
identify some critical variables in an application, which 

when in error will cause system/application failure with a 
high probability. Protecting the computation of these 
variables can provide a high coverage against program 
failures (crashes1 and fail silence violations). This 
motivates replication of only those portions of the 
application that compute the critical variables, instead of 
replicating the entire application. To enable this at a low 
performance overhead, replication at the processor-level 
needs to adapt to application needs. 

We propose hardware-based selective replication which 
enables the application to choose which portions need to be 
replicated and what would be the degree of replication. The 
application is instrumented at compile-time with special 
CHECK instructions, an extension to the instruction set 
architecture (ISA). These CHECK instructions invoke a 
reconfiguration of the underlying hardware to provide the 
specified level of replication. 

This paper addresses the following two questions to 
provide selective replication: 
• Which sections of the code need to be replicated and 

to what degree? 
• How can we modify the renaming, issue and commit 

mechanism to handle a specified level of redundancy 
for portions of the code? 

II. WHAT TO REPLICATE AND HOW MUCH? 
Recent experiments by Pattabiraman et. al. [5], have 

shown that we can identify program variables, which when 
in error lead to a program crash or hang with a high 
probability. These variables will be referred to as critical 
variables. Using program fanout as a metric the location 
and variable that needs to be checked can be identified. It 
has been demonstrated that with small number of ideal 
detectors relatively high coverage (60% for crash detection 
in gcc) is achievable. The claim of this paper, therefore, is 
that if the computations of the critical variables can be 
replicated then this can enhance application dependability 
very substantially for a small performance overhead 
compared to full replication. 

                                                 
1 Our aim is to preemptively detect program crashes as they are not always 
benign [12] 
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A. Procedure for extraction of Critical Code sections 
Any part of the application that affects the value of a 

critical variable is a critical code section (consisting of 
critical instructions). Any code section includes: 
• Instructions that define critical variables. 
• Instructions that produce a result that is subsequently 

consumed by critical instructions. 
We use a reverse depth-first search algorithm for 

automated identification/extraction of instructions that 
directly or indirectly affect the value of critical variables. 
The pseudo code (in python) implementing the algorithm is 
shown in Fig.  1. 

 
Dependencies(Metric): 
set value(node) { 
 "Actual computation of dependencies" 
  if ( node.ID) in visited:   (1) 
   return data[ int(node.ID) ]  (2) 
  dependSet = set([(node.PC)])  (3) 
  visited.add( node.ID )   (4) 
  for (predNode) in node.Preds():  (5) 
   predSet = value( predNode )  (6) 
   dependSet = dependSet.union(predSet) (7) 
  numNodes += 1 
  data[ node.ID ] = dependSet  (8) 
  return data[ node.ID ]   (9) 

Fig.  1. Pseudo-code for extracting critical code sections 

value() accepts a dynamic instruction as its argument 
and returns the set of instructions on which the given 
instruction is directly or indirectly dependent. To extract the 
critical code sections we invoke value() on all the 
instructions that define the critical variables. The identified 
critical code section can be replicated. An important point 
to note is that the when using multiple critical nodes, there 
may be an overlap in the instructions that affect two or 
more nodes. We take advantage of the optimization that all 
such instructions which affect multiple critical nodes need 
to replicated only once for all nodes, instead of being 
replicated for each node. 

III. HARDWARE IMPLEMENTATION 
In order to support selective replication, we need to 

modify the control logic that updates the register alias table 
(RAT) and that which commits the instructions from the 
ROB (commit control logic). The register alias table 
(RAT) is used in register renaming. It contains as many 
entries as the number of architectural registers. The ith entry 
in the RAT contains information of the source of the most 
recent value of register i. The ROB contains an entry for 
each in-flight instruction in the pipeline. It holds the 
information about the source and destination operands of 
the instruction. 

The ROB is augmented with a bit (referred to as the 
REPL bit) to indicate whether it contains a replicated or an 
unreplicated instruction. ROB designs are of two types. One 
in which the result of the instruction in the ROB entry is 
written to separate physical register file, and the other in 
which the result is written to the ROB entry itself. We 

assume the ROB where the results are written to the ROB 
entry itself. The RAT and commit control logic for the 
unreplicated mode is the same as that used in the normal 
superscalar out-of-order pipelines. 

Let a, b, c … be the instructions in the replicated code 
segment. For any instruction i in this segment let i1, i2…, ir 
be the r copies of the instruction. The r copies of instruction 
a (a1, a2…, ar) are allocated the first unallocated 
consecutive entries in the ROB following by the r copies of 
instruction b and so on. If the ROB has less than r free 
entries, none of the copies of a replicated instruction are 
dispatched. This ensures atomic dispatch of all copies of a 
replicated instruction and facilitates updating the RAT with 
the dependencies for all the copies of the instruction. The 
ROB capacity is reduced by a factor of r. 

1) Register Renaming: If a replicated instruction d reads 
from register $x, the RAT entry for $x is looked up. If the 
value of $x is available in the architectural register file then 
all copies of d get the value for this source operand from the 
architectural register file. Otherwise, the value of $x is the 
result of an in-flight instruction, p, that is allocated the ROB 
entry k.  

If p is an unreplicated instruction (as indicated by the 
REPL bit in entry k) for all replicas d1, d2, …, dr the source 
operand register is renamed to read from entry k. If p is a 
replicated instruction the register operand $x of di is 
renamed to read the output from instruction pi, where i= 1, 
2, 3…, r. 

2) Issuing and executing instructions: With the above 
renaming mechanism the issue and execution of 
instructions to functional units can be done without any 
modification to the already existing scheduling mechanism. 
After an instruction has completed execution in the 
functional unit, the result is stored in the ROB entry 
corresponding to that instruction itself. For memory access 
instructions, the result of the address generation is stored in 
the ROB entry. 

3) Committing Instructions: Each ROB entry contains a 
field to indicate if the instruction is ready to commit or not. 
Committing unreplicated instructions follows the same 
procedure as committing an instruction in a pipeline 
without support for replication.  

Among replicated instructions two classes of 
instructions, memory access instructions and the rest, are 
treated separately. When a replicated instruction memory 
access at the head of the ROB has completed execution 
(generated effective address), all of its copies are checked 
to see if they have completed execution. If not, the action is 
postponed to the next cycle. If all r copies have generated 
their effective addresses (which is stored in the result field 
of the ROB entry), these results are compared against each 
other. If there is a mismatch an error is raised and 
appropriate recovery action is taken. If the effective 
addresses of all r copies match then a single memory access 
request is sent to the memory subsystem, on behalf of all 
the replicas. This reduces the pressure on the memory 
bandwidth, but loses the coverage over possible errors in 
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memory access. When this memory access is complete, all 
copies of the instruction are ready to commit. In case of a 
load the data read is written to the architectural register file. 
The entries from the ROB and the LSQ for all copies are 
de-allocated. When any other replicated instruction is at the 
head of the ROB, all of its copies are checked to see if they 
are ready to commit. If all r copies are ready to commit the 
result fields in their ROB entries are compared to verify the 
computation. If all r fields match, the instruction is 
committed and the result is committed to the architectural 
register file. 

IV. EXPERIMENTAL METHODOLOGY 
The sim-outorder, cycle-accurate performance simulator 

from the SimpleScalar Tool Set [8] has been augmented to 
provide selective replication. The MIPS-based, PISA 
instruction set has been extended to include the CHECK 
instruction to invoke replication from within the application 
stream, based on application needs. An important aspect of 
this work is the determination of the error coverage of the 
proposed approach (rarely provided by the usual 
architecture-level studies of replication). The error coverage 
provided by selective replication is measured along with the 
performance overhead incurred. 

For error coverage analysis the print_tokens benchmark 
from the Siemens Suite [9] was used. The relatively short 
execution times of these benchmarks facilitate conducting 
large number of fault injection experiments so as to provide 
statistically significant results. print_tokens breaks the input 
stream into a series of lexical tokens according to pre-
specified rules. The benchmark was statically analyzed and 
critical variables and code sections were identified and 
replicated. Random faults were injected into dynamic 
instructions and data values and the error coverage is 
measured. 

A. Fault Model 
The following fault models are considered to evaluate the 

coverage provided by selective replication: 
1) Instruction Errors: Errors in instruction binary while 

the instruction is being executed in the pipeline. These 
errors can occur during the transfer of the instruction from 
the cache to the pipeline or while the instruction is being 
decoded in the pipeline. 

2) Data Errors: Errors in the output of a functional unit 
that may be written to a register or used as an effective 
address for a memory access instruction. ECC in memory, 
cache, or registers does not protect against these errors. 
This is because the correct ECC would be calculated on the 
wrong data and would be written to registers. 

B. Results for Error Coverage 
Based on the fanout metric (see discussion in Section 

II.A) three variables with the highest fanout were chosen. 
The critical code sections affecting the chosen variables 
were extracted. There are 586 instructions in the critical 
code section and the application incurs an overhead of 7.4% 

to replicate these critical instructions. Full duplication 
incurs an overhead of 15.2%. 

The outcomes of the fault injection experiments are 
classified into the following categories: 

Not Activated (NA): The instruction was not executed, or 
the instance of data was not calculated by a functional unit. 

Not Manifested (NM): The error did not produce any 
observable effect on the application or the system. 

System Detection (SYS): The application crashed due to 
an exception. 

SELREP Detection (SELREP): The error was detected by 
the selective replication mechanism. 

Fail Silence Violation (FSV): The application completed 
execution but produced incorrect results. 

Program Hang (HANG): The program was hung.  
TABLE I shows the results for injection of transient 

faults in data at the output of functional unit. TABLE II 
shows the results for injection of transient faults in the 
binary of an instruction in the dynamic instruction stream. 

TABLE I 
RESULTS OF TRANSIENT FAULT INJECTION IN OUTPUT OF FUNC. UNITS FOR 

PRINT_TOKENS 

Outcome Baseline 
(No Duplication) 

Full 
Duplication 

Selective 
Replication 

# faults 971 971 971 
% Replicated Insns 0 100% 7.9% 

NA 8.8% 0.0% 0.0% 
NM 62.9% 0.0% 40.4% 
SYS 10.8% 0% 2.5% 

SELREP 0.0% 100% 67.5% 
FSV 79.3% 0.0% 26.5% 

HANG 9.9% 0.0% 3.5% 

TABLE II 
RESULTS OF TRANSIENT FAULT INJECTION IN BINARY OF INSTRUCTIONS 

FOR PRINT_TOKENS 

Outcome Full Duplication Selective Replication 
# faults 997 997 

% Replicated Insns 100% 7.9% 
NA 0.0% 0.1% 
NM 22.5% 42.7% 
SYS 10.5% 21.2% 

SELREP 88.4% 51.5% 
FSV 0.9% 21.0% 

HANG 0.3% 6.3% 
 

The results in  
TABLE I show that for data errors selective replication 

provides coverage of 67.5%. In contrast, full duplication 
covers almost all the errors. As shown in TABLE II, for 
instruction errors selective replication has a lower coverage 
of about 51.5%. Full Duplication covers 88.7% of the 
instruction errors. A very important drawback of using full 
replication is that it detects many of the errors that were not 
manifested in the baseline case. From the application 
perspective, these are false positives and are undesirable. 
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