
Processor-level Selective Replication

Nithin M. Nakka, Karthik Pattabiraman, Zbigniew T. Kalbarczyk, Ravishanker K. Iyer

Abstract—Even though replication has been widely used in
providing fault tolerance, the underlying hardware is unaware
of the application executing on it. The application cannot
choose to use redundancy for a specific code section and run in
a normal, unreplicated mode for the rest of the code. In this
paper we propose Processor-level Selective Replication, a
mechanism to dynamically configure the degree of instruction-
level replication according to the applications demands. The
application can choose to replicate only code sections that are
critical to its crash-free execution. This decreases the impact
on the performance. It is also known that many of the
processor-level faults do not lead to failures observable in the
application outcome. So, selective replication also decreases
the number of false positives.

Index Terms—Replication, Reconfiguration, Critical Code

Sections

I. INTRODUCTION AND MOTIVATION
eplication, as a fault-tolerance technique, has been
widely at the application, processor and the system

levels. Replication can be introduced into the application at
compile time by duplicating the instructions in the static
source code and providing code for comparing the outputs
of the duplicated instructions [1]. This has the advantage
that the underlying hardware does not need to be modified.
The drawback of this approach is that it incurs a high
memory and performance overhead.

The two basic approaches for processor-level replication
are: hardware redundancy and time redundancy. 1)
Hardware Redundancy [2] is achieved by carrying out the
same computation on multiple, independent hardware at the
same time and corroborating the redundant results to expose
errors. 2) Time redundancy [3][4] obtains redundant
computation by repeating the same operation multiple times
on the same or idle hardware. It has lower performance
overhead than the software-implemented replication but
much higher performance overhead than hardware
redundancy.

In either type of redundancy the underlying hardware is
unaware of the application executing on it. The application
cannot choose to use redundancy for a specific code section
and run in a normal, unreplicated mode for the rest of the
code.

Recent work [e.g., [5][11]] has shown that it is feasible to
identify some critical variables in an application, which

when in error will cause system/application failure with a
high probability. Protecting the computation of these
variables can provide a high coverage against program
failures (crashes1 and fail silence violations). This
motivates replication of only those portions of the
application that compute the critical variables, instead of
replicating the entire application. To enable this at a low
performance overhead, replication at the processor-level
needs to adapt to application needs.

We propose hardware-based selective replication which
enables the application to choose which portions need to be
replicated and what would be the degree of replication. The
application is instrumented at compile-time with special
CHECK instructions, an extension to the instruction set
architecture (ISA). These CHECK instructions invoke a
reconfiguration of the underlying hardware to provide the
specified level of replication.

This paper addresses the following two questions to
provide selective replication:
• Which sections of the code need to be replicated and

to what degree?
• How can we modify the renaming, issue and commit

mechanism to handle a specified level of redundancy
for portions of the code?

II. WHAT TO REPLICATE AND HOW MUCH?
Recent experiments by Pattabiraman et. al. [5], have

shown that we can identify program variables, which when
in error lead to a program crash or hang with a high
probability. These variables will be referred to as critical
variables. Using program fanout as a metric the location
and variable that needs to be checked can be identified. It
has been demonstrated that with small number of ideal
detectors relatively high coverage (60% for crash detection
in gcc) is achievable. The claim of this paper, therefore, is
that if the computations of the critical variables can be
replicated then this can enhance application dependability
very substantially for a small performance overhead
compared to full replication.

1 Our aim is to preemptively detect program crashes as they are not always
benign [12]

 R

 1

 2

A. Procedure for extraction of Critical Code sections
Any part of the application that affects the value of a

critical variable is a critical code section (consisting of
critical instructions). Any code section includes:
• Instructions that define critical variables.
• Instructions that produce a result that is subsequently

consumed by critical instructions.
We use a reverse depth-first search algorithm for

automated identification/extraction of instructions that
directly or indirectly affect the value of critical variables.
The pseudo code (in python) implementing the algorithm is
shown in Fig. 1.

Dependencies(Metric):
set value(node) {
 "Actual computation of dependencies"
 if (node.ID) in visited: (1)
 return data[int(node.ID)] (2)
 dependSet = set([(node.PC)]) (3)
 visited.add(node.ID) (4)
 for (predNode) in node.Preds(): (5)
 predSet = value(predNode) (6)
 dependSet = dependSet.union(predSet) (7)
 numNodes += 1
 data[node.ID] = dependSet (8)
 return data[node.ID] (9)

Fig. 1. Pseudo-code for extracting critical code sections

value() accepts a dynamic instruction as its argument
and returns the set of instructions on which the given
instruction is directly or indirectly dependent. To extract the
critical code sections we invoke value() on all the
instructions that define the critical variables. The identified
critical code section can be replicated. An important point
to note is that the when using multiple critical nodes, there
may be an overlap in the instructions that affect two or
more nodes. We take advantage of the optimization that all
such instructions which affect multiple critical nodes need
to replicated only once for all nodes, instead of being
replicated for each node.

III. HARDWARE IMPLEMENTATION
In order to support selective replication, we need to

modify the control logic that updates the register alias table
(RAT) and that which commits the instructions from the
ROB (commit control logic). The register alias table
(RAT) is used in register renaming. It contains as many
entries as the number of architectural registers. The ith entry
in the RAT contains information of the source of the most
recent value of register i. The ROB contains an entry for
each in-flight instruction in the pipeline. It holds the
information about the source and destination operands of
the instruction.

The ROB is augmented with a bit (referred to as the
REPL bit) to indicate whether it contains a replicated or an
unreplicated instruction. ROB designs are of two types. One
in which the result of the instruction in the ROB entry is
written to separate physical register file, and the other in
which the result is written to the ROB entry itself. We

assume the ROB where the results are written to the ROB
entry itself. The RAT and commit control logic for the
unreplicated mode is the same as that used in the normal
superscalar out-of-order pipelines.

Let a, b, c … be the instructions in the replicated code
segment. For any instruction i in this segment let i1, i2…, ir
be the r copies of the instruction. The r copies of instruction
a (a1, a2…, ar) are allocated the first unallocated
consecutive entries in the ROB following by the r copies of
instruction b and so on. If the ROB has less than r free
entries, none of the copies of a replicated instruction are
dispatched. This ensures atomic dispatch of all copies of a
replicated instruction and facilitates updating the RAT with
the dependencies for all the copies of the instruction. The
ROB capacity is reduced by a factor of r.

1) Register Renaming: If a replicated instruction d reads
from register $x, the RAT entry for $x is looked up. If the
value of $x is available in the architectural register file then
all copies of d get the value for this source operand from the
architectural register file. Otherwise, the value of $x is the
result of an in-flight instruction, p, that is allocated the ROB
entry k.

If p is an unreplicated instruction (as indicated by the
REPL bit in entry k) for all replicas d1, d2, …, dr the source
operand register is renamed to read from entry k. If p is a
replicated instruction the register operand $x of di is
renamed to read the output from instruction pi, where i= 1,
2, 3…, r.

2) Issuing and executing instructions: With the above
renaming mechanism the issue and execution of
instructions to functional units can be done without any
modification to the already existing scheduling mechanism.
After an instruction has completed execution in the
functional unit, the result is stored in the ROB entry
corresponding to that instruction itself. For memory access
instructions, the result of the address generation is stored in
the ROB entry.

3) Committing Instructions: Each ROB entry contains a
field to indicate if the instruction is ready to commit or not.
Committing unreplicated instructions follows the same
procedure as committing an instruction in a pipeline
without support for replication.

Among replicated instructions two classes of
instructions, memory access instructions and the rest, are
treated separately. When a replicated instruction memory
access at the head of the ROB has completed execution
(generated effective address), all of its copies are checked
to see if they have completed execution. If not, the action is
postponed to the next cycle. If all r copies have generated
their effective addresses (which is stored in the result field
of the ROB entry), these results are compared against each
other. If there is a mismatch an error is raised and
appropriate recovery action is taken. If the effective
addresses of all r copies match then a single memory access
request is sent to the memory subsystem, on behalf of all
the replicas. This reduces the pressure on the memory
bandwidth, but loses the coverage over possible errors in

 3

memory access. When this memory access is complete, all
copies of the instruction are ready to commit. In case of a
load the data read is written to the architectural register file.
The entries from the ROB and the LSQ for all copies are
de-allocated. When any other replicated instruction is at the
head of the ROB, all of its copies are checked to see if they
are ready to commit. If all r copies are ready to commit the
result fields in their ROB entries are compared to verify the
computation. If all r fields match, the instruction is
committed and the result is committed to the architectural
register file.

IV. EXPERIMENTAL METHODOLOGY
The sim-outorder, cycle-accurate performance simulator

from the SimpleScalar Tool Set [8] has been augmented to
provide selective replication. The MIPS-based, PISA
instruction set has been extended to include the CHECK
instruction to invoke replication from within the application
stream, based on application needs. An important aspect of
this work is the determination of the error coverage of the
proposed approach (rarely provided by the usual
architecture-level studies of replication). The error coverage
provided by selective replication is measured along with the
performance overhead incurred.

For error coverage analysis the print_tokens benchmark
from the Siemens Suite [9] was used. The relatively short
execution times of these benchmarks facilitate conducting
large number of fault injection experiments so as to provide
statistically significant results. print_tokens breaks the input
stream into a series of lexical tokens according to pre-
specified rules. The benchmark was statically analyzed and
critical variables and code sections were identified and
replicated. Random faults were injected into dynamic
instructions and data values and the error coverage is
measured.

A. Fault Model
The following fault models are considered to evaluate the

coverage provided by selective replication:
1) Instruction Errors: Errors in instruction binary while

the instruction is being executed in the pipeline. These
errors can occur during the transfer of the instruction from
the cache to the pipeline or while the instruction is being
decoded in the pipeline.

2) Data Errors: Errors in the output of a functional unit
that may be written to a register or used as an effective
address for a memory access instruction. ECC in memory,
cache, or registers does not protect against these errors.
This is because the correct ECC would be calculated on the
wrong data and would be written to registers.

B. Results for Error Coverage
Based on the fanout metric (see discussion in Section

II.A) three variables with the highest fanout were chosen.
The critical code sections affecting the chosen variables
were extracted. There are 586 instructions in the critical
code section and the application incurs an overhead of 7.4%

to replicate these critical instructions. Full duplication
incurs an overhead of 15.2%.

The outcomes of the fault injection experiments are
classified into the following categories:

Not Activated (NA): The instruction was not executed, or
the instance of data was not calculated by a functional unit.

Not Manifested (NM): The error did not produce any
observable effect on the application or the system.

System Detection (SYS): The application crashed due to
an exception.

SELREP Detection (SELREP): The error was detected by
the selective replication mechanism.

Fail Silence Violation (FSV): The application completed
execution but produced incorrect results.

Program Hang (HANG): The program was hung.
TABLE I shows the results for injection of transient

faults in data at the output of functional unit. TABLE II
shows the results for injection of transient faults in the
binary of an instruction in the dynamic instruction stream.

TABLE I
RESULTS OF TRANSIENT FAULT INJECTION IN OUTPUT OF FUNC. UNITS FOR

PRINT_TOKENS

Outcome Baseline
(No Duplication)

Full
Duplication

Selective
Replication

faults 971 971 971
% Replicated Insns 0 100% 7.9%

NA 8.8% 0.0% 0.0%
NM 62.9% 0.0% 40.4%
SYS 10.8% 0% 2.5%

SELREP 0.0% 100% 67.5%
FSV 79.3% 0.0% 26.5%

HANG 9.9% 0.0% 3.5%

TABLE II
RESULTS OF TRANSIENT FAULT INJECTION IN BINARY OF INSTRUCTIONS

FOR PRINT_TOKENS

Outcome Full Duplication Selective Replication
faults 997 997

% Replicated Insns 100% 7.9%
NA 0.0% 0.1%
NM 22.5% 42.7%
SYS 10.5% 21.2%

SELREP 88.4% 51.5%
FSV 0.9% 21.0%

HANG 0.3% 6.3%

The results in
TABLE I show that for data errors selective replication

provides coverage of 67.5%. In contrast, full duplication
covers almost all the errors. As shown in TABLE II, for
instruction errors selective replication has a lower coverage
of about 51.5%. Full Duplication covers 88.7% of the
instruction errors. A very important drawback of using full
replication is that it detects many of the errors that were not
manifested in the baseline case. From the application
perspective, these are false positives and are undesirable.

REFERENCES [7] R. Chillarege, W-L Kao, and R. Condit, “Defect Type and its Impact
on the Growth Curve,” Proc. 13th Intl. Conference on Software
Engineering, 1991. [1] N. Oh, P.P. Shirvani, and E.J. McCluskey. “Error Detection by

Duplicated Instructions in Super-Scalar Processors,” IEEE Trans.
Reliability, Mar. 2002, pp. 63-75.

[8] D. Burger, T. Austin, and S. Bennett, Evaluating Future
Microprocessors: The SimpleScalar ToolSet, University of
Wisconsin-Madison, Computer Sciences Department, Technical
Report CS-TR-1308, July 1996.

[2] C. Weaver, T. Austin. “A Fault Tolerant Approach to
Microprocessor Design,” in Proc. of the International Conference on
Dependable Systems and Networks, pp. 411-420, July 2001. [9] M. Hiller, A. Jhumka, and N. Suri, On the Placement of Software

Mechanisms for Detection of Data Errors, Proc. Intl. Conference on
Dependable Systems and Networks (DSN), 2002.

[3] T. Vijaykumar, I. Pomeranz, K. Cheng. “Transient Fault Recovery
Using Simultaneous Multithreading,” Proc. 29th Annual Int'l Symp.
on Computer Architecture, May 2002. [10] R. K. Iyer, N. Nakka, Z. T. Kalbarczyk, S. Mitra. Recent Advances

and New Avenues in Hardware-Level Reliability Support, To appear
in IEEE MICRO Nov/Dec 2005.

[4] Joydeep Ray, James C. Hoe, Babak Falsafi. “Dual Use of Superscalar
Datapath for Transient-Fault Detection and Recovery,” in Proc. 34th
Annual Int’l Symposium on Microarchitecture, Austin, Texas, pp.
214-224, Dec 2001.

[11] M. D. Ernst, Dynamically Detecting Likely Program Invariants, PhD
Dissertation, University of Washington, Department of Computer
Science and Engineering, August 2000. [5] K. Pattabiraman, Z. T. Kalbarczyk, and R. K. Iyer. “Application-

Based Metrics for Strategic Placement of Detectors,” To appear in
the Proc. of Pacific Rim Dependability Conference 2005.

[12] C. Basile, L. Wang, Z. Kalbarczyk and R.K. Iyer, "Group
Communication Protocols under Errors," Proc. 22nd Symposium on
Reliable Distributed Systems, SRDS'03, Florence, Italy, 2003. [6] Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and

Tools, Addison-Wesley, Reading, MA, 1986.

 4

