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Abstract— This paper presents a technique to derive and
implement error detectors to protect an application from data
errors. The error detectors are derived automatically using
compiler-based static analysis from the backward program
slice of critical variables in the program. Critical variables are
defined as those that are highly sensitive to errors, and deriving
error detectors for these variables provides high coverage for
errors in any data value used in the program. The error
detectors take the form of checking expressions and are
optimized for each control flow path followed at runtime. The
derived detectors are implemented using a combination of
hardware and software.

Index Terms—  Static  Analysis, Application-aware,
Path-tracking, Backward Slicing, Reliability. Diverse Execution.

I. INTRODUCTION

his paper presents a methodology to derive error detectors

for an application based on compiler (static) analysis. The

derived detectors protect the application from data errors.
A data error is defined as a divergence in the data values used in
the application from an error-free run of the program. These
errors can result from incorrect computation and would not be
caught by generic techniques such as ECC in memory. They
can also arise due to software defects, such as pointer errors and
timing and synchronization errors.
Many static analysis [1] and dynamic analysis [2] approaches
have been proposed to find bugs in programs. These
approaches have proven effective in finding known kinds of
errors prior to deployment of the application in an operational
environment. However, studies have shown that the kinds of
errors encountered by applications in operational settings are
subtle errors (such as timing and synchronization errors) [8],
which are not caught by static and dynamic methods. In order to
detect runtime errors, we need mechanisms that can provide
high-coverage, low-latency (rapid) error detection to: preempt
uncontrolled system crash/hang and prevent error propagation.

Duplication has traditionally been wused to provide
high-coverage at runtime for software errors and
hardware-errors.  However, in order to prevent
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error-propagation and preempt crashes, duplication needs to
make a comparison after every instruction, which in turn results
in high performance overhead. Therefore, duplication
approaches compare the results of replicated instructions at
selected program points such as stores and branches [4]. While
this reduces the performance overhead, it sacrifices coverage as
the program may crash before reaching the comparison point.
Further, duplication-based techniques offer limited protection
from software errors and permanent hardware faults because
the original program and the duplicated program can suffer
from common mode errors.

Diverse execution techniques that execute two different
versions of the same program, can offer protection from
common-mode errors. ED4I [5] is a software-based diverse
execution technique to protect against transient and permanent
hardware faults. The original program is transformed into a
different program in which each data operand is multiplied by a
constant value k. The original program and the transformed
program are both executed on the same processor and the
results are compared. Since the transformed program operates
on a different set of data operands than the original program, it
is able to mask certain kinds of hardware errors in processor
functional units and memory. However, ED4l cannot detect
errors in instruction issue and decode logic as it introduces
diversity only in the data values used in the program and not in
the instructions that compute the data values.

The approach presented in this paper derives runtime error
detectors (or checks) based on static analysis. It takes into
account the placement of checks to preempt crashes and
provides high-coverage to detect errors that result in
application failures. The approach is complementary to existing
static analysis techniques and detects subtle errors such as
timing errors in the program. In addition, the derived checks
can naturally detect hardware errors that occur in the processor
and the memory.

The main contribution of this paper is that it derives runtime
error detectors based on application properties extracted using
static analysis. The derived detectors recompute the values of
critical program variables in a diverse way in order to
minimize the possibility of common-mode errors. The derived
detectors are implemented wusing a combination of
programmable hardware and software.

Il. APPROACH

This section presents an overview of the detector derivation
approach. The approach is based on program slicing [6].



A. Terms and Definitions

Backward Program Slice of a variable at a program location is
defined as the set of all program statements/instructions that
can affect the value of the variable at that program location [6].
Slicing techniques can be static or dynamic in nature.

Critical variable: A program variable that exhibits high
sensitivity to random data errors in the application is a critical
variable. Placing checks on critical variables achieves high
detection coverage.

Checking expression: A checking expression is a sequence of
instructions that recomputes the critical variable, and is
optimized aggressively and differently from the rest of the
program code. The instruction sequence is computed from the
backward slice of the critical variable for a specific control path
in the program. Checking expressions are referred to
synonymously as checks in the paper. Checks are placed after
the computation of the critical variable in the original program.

B. Slicing Algorithm

The slicing algorithm used is a static slicing technique that
considers all possible dependences between instructions in the
program regardless of program inputs. It does not perform
inter-procedural slicing allowing the analysis to be scaled to
large applications. This can affect the coverage of the derived
detectors. However, by placing multiple detectors in the
program at critical variables, it is possible to achieve high
coverage. This is because at least one of the detectors placed in
the program will be able to detect the error.

C. Steps in Detector Derivation

The main steps in the derivation of error detectors are as
follows:

Identification of critical variables: The critical variables are
identified based on an analysis of the dynamic dependence
graph of the program presented in [3]. This analysis is carried
out on a per-function basis in the program i.e. each function in
the program is considered separately for identification of
critical variables.

Computation of backward slice of critical variables: A
backward traversal of the static dependence graph of the
program is performed starting from the instruction that
computes the value of the critical variable going back to the
beginning of the function. The slice is specialized for each
acyclic control path that reaches the computation of the critical
variable from the top of the function.

Check derivation, Check insertion and instrumentation:

Check derivation: The specialized backward slice for each
control path is optimized considering only the instructions on
the corresponding path, to form the checking expression.
Check insertion: The checking expression is inserted in the
program immediately after the computation of the critical
variable (check placement point).

Instrumentation:  Program is instrumented to track
control-paths followed at runtime in order to choose the
checking expression for that specific control path.

Runtime checking in hardware and software:

The control path followed is tracked by the inserted
instrumentation in hardware at runtime. The path-specific

inserted checks are executed at appropriate points in the
execution depending on the runtime control path.

The checks recompute the value of the critical variable for the
runtime control path. The recomputed value is compared with
the original value computed by the main program. In case of a
mismatch, the original program is stopped and recovery is
initiated. Otherwise, execution continues normally.

D. Hardware Implementation

In the proposed technique, the analysis of the program,
derivation of the checking expression and the addition of
instrumentation is entirely done at compile-time. At runtime,
the added instrumentation keeps track of the path followed and
executes the checking expression corresponding to the path.
While the runtime checking can be performed in hardware or
software, we provide a combined hardware-software
implementation in this paper.

There are two sources of runtime overhead for the detector: (1)
the overhead of keeping track of the control path followed and
(2) the overhead of executing the check.

Path Tracking: The overhead of tracking paths can be
significant (4x) when done in software. Therefore, a prototype
implementation of path tracking is presented in hardware. This
hardware is integrated with the Reliability and Security Engine
(RSE) [10]. RSE is a hardware framework that provides a
plug-and-play environment for including modules that can
perform a variety of checking and monitoring tasks in the
processor’s data-path level. The path-tracking hardware is
implemented as a module in the RSE framework and is
configured at application load-time. The monitoring is done in
parallel with the main program, thereby reducing the
performance overhead of the monitoring.

In this paper, the behavior of the path-tracking module is
simulated in software and the conceptual design of the
hardware module is presented in Section 1V.

Checking: In order to further reduce the performance overhead,
the check execution itself can be moved to hardware. This
would involve compiling the checking expressions directly to
hardware and implementing them in the RSE. In our
implementation, the checking is done in software.

E. Fault Model

Hardware transient errors that results in corruption of

architectural state are considered. Examples of such errors are:

e Errors in Instruction Fetch and Decode: Either the wrong
instruction is fetched, (OR) a correct instruction is decoded
incorrectly resulting in data value corruption.

e Errors in Execute and Memory Units: An ALU instruction
is executed incorrectly inside a functional unit, (OR) the
wrong memory address is computed for a load/store
instruction, resulting in value corruption.

e Errors in Cache/Memory/Register File Errors: A value in
the cache, memory, or register file experiences a soft error
that causes it to be incorrectly interpreted in the program
(assuming that ECC is not used).

Software transient errors such as buffer overflows (memory

errors) and race conditions (timing errors), which can corrupt

data values used in the program, are also considered.



I1l. COMPILER-BASED DETECTOR DERIVATION

The LLVM compiler [7] is used for the analysis and derivation
of error detectors. The derivation of detectors is done by
introducing a new pass into LLVM, called the Value
Recomputation Pass (VRP). The VRP performs the backward
slicing starting from the instruction that computes the value of
the critical variable to the beginning of the function. It also
performs check derivation, insertion and instrumentation. The
output of the pass is provided as input to other optimization
passes in LLVM. By extracting the path-specific backward
slice and exposing it to other optimization passes in the
compiler, the Value Recomputation pass enables aggressive
compiler optimizations to be performed on the slice that would
not be possible otherwise.

loopentry:

br bool tmp.6, label no_exit, label loop_exit

!
no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, then ], [tmp.i, endif ]
tmp.i = add indvar.i, 1
i.1 = cast tmp.i to int
tmp.9 = getArrayElement sortlist, tmp.i
tmp.10 = load [ tmp.9 ]
tmp.12 =addi.l, 1
tmp.13 = getArrayElement sortlist , tmp.12
tmp.14 = load [tmp.13]
tmp.15 = setgt tmp.10, tmp.14
br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]
store tmp. 10, [tmp.13]
br endif

endif:
tmp.16 = setlt tmp.12, top
br tmp.16, no_exit, loop_exit

ll
loopexit:

Figure 1: LLVM intermediate code corresponding to inner
while loop of a Bubble sort program

no_exit:.
indvar = phi [0, loopentry], [tmp.i, then ], [tmp.i, endif ]
old.tmp..i = tmp..i
tmp.i = add indvar.i, 1
i.1 = cast tmp.i to int
tmp.9 = getArrayIndex sortlist, tmp.i
tmp.10 = load [ tmp.9 ]
pathVal = getState( )

br falh\/al‘ ?ath.o‘ gath.l
pathO:

new.0.tmp.9 = getArrayindex sortList, 1
new.0.tmp.10 = load [ new.0.tmp.9 ]

br Check
\ br Check
Check:

new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, pathl]
compare = seteq new.10, tmp.10
br compare, errorBlock, restBlock

[
. !
errorBlock:

call errFunc()

pathl:
new.1.tmp.i = add old.tmp.i, 1
new.1.tmp.9 = getArrayindex sortlist, new.1.tmp.i
new.1.tmp.10 = load [ new.1.tmp.9 ]

restBlock:

tmp.12 = add inti.1, 1

tmp.13 = getArrayIindex sortlist, tmp.12
tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14

br bool tmp.15, label then, label endif

Figure 2: Transformations introduced by the VRP and
other optimization passes for code shown in Figure 1.

Figure 1 shows the LLVM intermediate code for the inner
while loop of a bubble sort program. The LLVM code is in SSA

form [9], which is an intermediate representation used by

compilers to represent data dependences. In SSA form, each

variable (value) is defined exactly once in the program, and the
definition is assigned a unique name [9]. This unique name
makes it easy to identify dependences among instructions.

A Algorithm

The instruction that computes the critical variable is called the

critical instruction. In order to derive the backward program

slice, a backward traversal of the Static Dependence Graph

(SDG) is performed starting from the critical instruction. The

traversal continues until one of the following conditions is met,

(1) The beginning of the current function is reached (only

intra-procedural slices are considered) or (2) A basic block that

had been previously encountered in the backward traversal is
revisited (loops are not recomputed) or (3) The critical
instruction occurs in-between the producer instruction of the
dependence and the consumer instruction of the dependence

(only previous loop iterations are considered when traversing

loop-carried dependences) or (4) A memory dependence is

encountered in the backward traversal.

The rationale for each of these cases is presented below:

o Intra-procedural Slices: As already mentioned, it is
sufficient to consider intra-procedural slices in the
backward traversal because each function is considered
separately for the detector placement analysis. For
example in Figure 2a, the array sortList is passed in as an
argument to the function from the main function. The slice
does not include the computation of sortList in main. If
sortList is a critical variable in the main function, then a
check will be placed for the variable in the main function.

e No recomputation of loops: During the backward traversal,
if a dependence within a loop is encountered, the loop is
not recomputed in the checking expression. Instead, the
check is broken into two checks, one placed on the critical
variable and one on the variable that affects the critical
variable within the loop. This second check ensures that
the variable within the loop is computed correctly and
hence the variable can be used directly in the check.

o Only the previous loop iteration is considered in traversing
loop carried dependences: When a
loop-carried-dependence across two or more iterations is
encountered, the dependence is truncated and the loop
dependence is not included in the slice. This is because
duplicating across multiple loop iterations can involve
loop unrolling or buffering intermediate values that are
rewritten in the loop. Instead, the check is broken into two
checks, one for the dependence-generating variable and
one for the critical variable.

e Memory Dependences not considered. While LLVM does
not represent memory objects in SSA form, it promotes
most memory objects to registers prior to running a pass
(including the Value Recomputation pass). Since there is
an unbounded number of virtual registers for storing
variables in SSA form, the compiler is not constrained by
the number of physical registers.

The details of the VRP are omitted due to space constraints.

The VRP algorithm may be found in the technical report

version of this paper [11].



B. Derived Checks

The VRP creates two different instruction sequences to
compute the value of the critical variable corresponding to the
control paths in the code. The first control path corresponds to
the control transfer from the basic block loopentry to the basic
block no_exit in Figure 1. The optimized set of instructions
corresponding to the first control path is encoded as a checking
expression in the basic block path0 in Figure 2.

The second control path corresponds to the control transfer

from the basic block endif to the basic block no_exit in Figure 1.

The optimized set of instructions corresponding to the first
control path is encoded as a checking expression in the basic
block pathl in Figure 2.
The instructions in the basic blocks pathO and pathl recompute
the value of the critical variable tmp.10. These instruction
sequences constitute the checking expressions for the critical
variable tmp.10. The basic block Check in Figure 2(c)
compares the value computed by the checking expressions to
the value computed in the original program. A mismatch
signals an error and the appropriate error handler is invoked in
the basic block error. Otherwise, control is transferred to the
basic block restBlock, which contains the instructions
following the computation of tmp.10 in Figure 2, and execution
proceeds normally.
C. Discussion

As illustrated in the example in Figure 2, the instructions in the
checking expression are optimized separately from the rest of
the program. As a result, the check introduces a level of
diversity in the recomputation of the critical variable. This
diversity provides detection of errors in the instructions
involved in the critical variable’s computation.
Consider what happens when an error affects an instruction that
is involved in the computation of the critical variable. Assume
that the error affects the instruction that computes tmp.i in
Figure 1 (this instruction indirectly impacts the computation of
the critical variable tmp.10).
We now describe how this error is detected by the checking
expressions in path0 and pathl, when the corresponding
control paths are executed by the program.
First consider the case when the runtime path followed
corresponds to the execution of the checking expression in the
basic block pathO (Figure 2). In pathO, the compiler performs
constant propagation and replaces the computation of tmp.i
with the constant 1 in Figure 2. As a result, the error in the
computation of tmp.i is not manifested in pathO. Hence, the
value of the critical variable computed in pathO, namely
new.0.tmp.10, is different from the value of the critical variable
computed in the original program (Figure 2). Therefore the
error in the computation of tmp.i is detected along pathO.

Now consider the case when the path followed corresponds
to the execution of the checking expression in pathl (Figure 2).
The VRP inserts code to copy the original value of tmp.i into
old.tmp.i before tmp.i is overwritten in the program. The value
old.tmp.i is used in the checking expression in pathl to
recompute the value of tmp.i, namely new.1.tmp.i, which in
turn is used to recompute the critical variable in pathl. The
value new.tmp.i is computed and stored separately from the
original value tmp.i, and consequently does not suffer from the
error that affected the computation of tmp.i. As a result, the

value of the critical variable computed in pathl, namely
new.1.tmp.i is different from the one computed in the original
program (Figure 2). Therefore the error in the computation of
tmp.i is detected along pathl.

In the first case, the checking expression performed a
recomputation of the critical variable with diversity in
instructions (path0) while in the second case it performed the
recomputation with diversity in data (pathl). In both cases, the
diversity was introduced by the transformations carried out by
the VRP and subsequent optimization passes. Therefore, the
diversity introduced by the checking expressions allows the
detection of errors that may not have been detected due to
simple duplication alone.

IV. HARDWARE-BASED PATH TRACKING

The path-tracking hardware keeps track of the control paths
encoded as finite state machines. The Value Recomputation
pass synthesizes the state machines for each check
automatically from the program. The algorithm to convert the
control-flow paths corresponding to each check into state
machines is straightforward and is not described here.

As explained in Section I1.D, the path-tracking hardware is
implemented as a module in the RSE [10] and monitors the
main processor data path. The state machines corresponding to
each check in the application are programmed into the
path-tracking module at application load time.

A Interface with main processor

The main processor uses special instructions called CHECK
instructions to invoke the RSE modules. The path tracking
module supports three primitive operations encoded as
CHECK instructions. The operations are as follows:
emitEdge(from, to): Triggers transitions in the state machines
corresponding to one or more checks. Each basic block in the
program is assigned a unique identifier assigned by the Value
Recomputation pass. This operation indicates that control is
transferred from the basic block with identifier from to the basic
block with identifier to.

getState(checkID): Returns the current state of the state
machine corresponding to the check, and is invoked just before
the execution of the check in the program.
resetState(checklD): Resets the state-machine for the check
given by checkID. This operation is invoked after the execution
of the check in the program.

B. Module Components

The path-tracking module is shown in Figure 3. It consists of
three main components as follows:

Edge Table: Stores the mapping from control-flow edges to
edge-identifiers for instrumented edges in the program. Each
instrumented control-flow edge is assigned a unique index and
is mapped to the identifiers assigned to the source and sink
basic blocks for that edge.

State Vector: Holds the current state of the state machine
corresponding to the checks, with one entry for each check
inserted in the program.

State Transition Table: Contains the transitions corresponding
to the state machines. The rows of the state transition table
correspond to the edge indices, while the columns correspond
to the checks.
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Figure 3: Hardware module for tracking paths

RSE Interface: Converts the CHECK instructions from the

main processor into signals specific to the path-tracking

module. Similarly, converts signals from the path-tracking

module into special flags in the main processor. This is a

common component shared by all RSE modules.

C. Module Operation

The operation of the path-tracking module for each of the

following operations (executed in the processor) is considered:

CHECK instruction with emitEdge operation:

o RSE interface asserts the emitEdge signal and sends the basic
block identifiers that constitute the edge in the from and to
lines.

The from and to identifiers are looked up in the edge table
and the edge index corresponding to the edge is sent to the
state transition table.

The row corresponding to the edge is looked up in the state
transition table.

For each non-empty table-entry in the column corresponding
to the checks, the states in the LHS of the transitions stored
in the table entry are compared to the current state of the
check in the state vector.

If the states match, then the transition is fired and the state
vector entry corresponding to the check is updated with the
state in the RHS of the transition that matched.

CHECK instruction with the getState operation:

e RSE interface asserts the getState signal and sends the
identifier of the check on the checkID line to the
path-tracking module.

e The path tracking module looks up the state in the state
vector and sends it to the RSE interface through the
currentState line. This in turn is sent to the main processor
and is returned as the value of the CHECK instruction
(through a special register in the RSE).

CHECK instruction with resetState operation: This is similar to

the getState operation, except that no value is returned.

Function calls/returns: The state vector needs to be preserved

across function calls and returns. This is done by pushing the

state vector on a separate stack (different from the function call
stack) along with the return address upon a function call and by
popping the stack upon a return.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a technique to error detectors for
protecting an application from data errors (both due to
hardware and software). The error detectors were derived
automatically using compiler-based static analysis from the
backward program slice of critical variables in the program.
The slice is optimized aggressively and differently (from the
rest of the code) based on specific control-paths in the
application, to form a checking expression. At runtime, the
checking expression corresponding to the executed control path
is tracked using specialized hardware and the checking
expressions corresponding to the control-path are executed.
The checking expression recomputes the value of the critical
variable and a mismatch between the recomputed and original
values indicates an error.

Future work will involve evaluating the performance overhead
and error detection coverage of the derived detectors. We also
plan to implement the checking expressions derived in
hardware and joint synthesis of the path-tracking module.
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