
Position Paper—ToleRace: Tolerating and Detecting Races

Rahul Nagpal†, Karthik Pattabiraman‡, Darko Kirovski♦, and Benjamin Zorn♦
† IISc Bangalore, ‡ University of Illinois at Urbana-Champaign, and ♦Microsoft Research

Abstract

This paper introduces ToleRace, a software tool
that increases the reliability of multi-threaded
programs by tolerating or detecting race condi-
tions. ToleRace modifies the implementation of
critical sections at runtime to provide the follow-
ing benefits. ToleRace allows programs with cer-
tain classes of races to operate as though the race
did not exist. ToleRace probabilistically allows
programmers to detect many of the remaining
races when they happen, with low performance
overhead. ToleRace achieves its ability to tol-
erate and detect races by judiciously duplicating
shared data inside a critical section, thereby pro-
viding an illusion of atomicity when the shared
data is updated. Our early experiments reveal
that the performance overhead of ToleRace is
considerably lower than existing dynamic race
detection tools.

1 Introduction

With increasingly concurrent hardware, the chal-
lenging task of writing correct concurrent soft-
ware becomes more important. Race conditions
are memory errors that occur when multiple
threads read and write a memory location in
an underspecified order. Because race conditions
depend on the interleaving of the memory opera-
tions of individual threads, they are notoriously
difficult to reproduce and represent a major ob-
stacle in the task of writing correct concurrent
programs. This problem has been investigated
heavily in recent literature (e.g., [3, 6]).

Current approaches to solving the problem of
race conditions focus on the problem of race
detection and face three significant obstacles.

First, both static and dynamic methods for race
detection can produce false positives that sig-
nificantly reduce their effectiveness in practice.
Because race conditions are difficult to reason
about, determining if a race reported by a de-
tection tool is a real race is time consuming
and counter-productive. Second, race detection
tools based on dynamic detection can have lower
false positive rates, but also increase execution
time significantly (ranging from 2x to 30x slow-
down without hardware support) [2, 7, 8]. Third,
when a true race is detected, it must still be
fixed, requiring code changes that may introduce
new errors. For example, fixing a race condi-
tion may require additional synchronization con-
structs, and the incorrect use of such constructs
can result in deadlock. Programmers are faced
with the choice between allowing a race that oc-
curs infrequently and creating potential new syn-
chronization problems that have broader impact.
In practice, for commercial software, such races
can require many months to correct.

In this paper, we present ToleRace, a runtime
system that dynamically attempts to reduce the
likelihood of a race condition. The contributions
of ToleRace include:

• Tolerates race conditions when possi-
ble, otherwise reports with high prob-
ability Unlike prior work, ToleRace allows
programs with races to tolerate their exis-
tence by increasing the likelihood that races
will not cause incorrect program interleav-
ings. Increasing a program’s tolerance to
races reduces the need for the race to be de-
bugged and patched. In many cases where
ToleRace cannot tolerate a race condition,
it detects and reports that races have oc-
curred.

1



• Precise detection. ToleRace only identi-
fies races that happen in practice. ToleRace
detects a race has happened when the criti-
cal section where the race takes place exits.1

• Proactive resolution of dynamically
detected races ToleRace enables the pro-
grammer to add compensation code at the
exit of a critical section with an objective
to design a custom resolution of a detected
race. This allows the programmer to toler-
ate a suspected race in the software without
ever identifying the exact source of the bug.

• Low overhead ToleRace adds overhead at
runtime only to code that executes within a
critical section and only to code that poten-
tially modifies a shared variable.

2 ToleRace in Practice

ToleRace uses replication and redundancy to
provide error tolerance and detection, and is in-
spired by DieHard [1] and Samurai [4, 5], two
runtime systems that use replication to achieve
the same goal. ToleRace creates the illusion of
atomicity in critical sections by creating local
copies of shared variables when a critical section
is entered, and propagating the appropriate copy
when the critical section is exited.

ToleRace detects asymmetric races, a class of
races caused by two threads accessing a shared
variable, one that correctly acquires and releases
a lock (thus creating a critical section) and an-
other that does not. While this prevents ToleR-
ace from tolerating and preventing other races
(e.g., where neither thread uses a lock to pro-
tect the shared variable), asymmetric races are
important for several reasons. First, most code
is written correctly—in many cases local reason-
ing about concurrency, including taking proper
locks has been done correctly, leaving a majority

1ToleRace reports no false positives using a definition
commonly used in the literature, however, ToleRace may
report a race for thread interleavings that without ToleR-
ace would not exhibit a race but that would exist in other
possible interleavings.

of remaining concurrency errors as asymmetric
races.

Second, asymmetric races are caused when
software evolves and assumptions are invali-
dated. For example, code might be developed
with the assumption that application initializa-
tion never occurs in a multi-threaded context.
However, new code might be introduced (e.g., a
second start-up thread) that violates the original
invariant.

Thread 1: Thread 2:

// gScript is shared

EnterCriticalSection(); ...

if (gScript == NULL) { gScript = NULL;

baseScript = default; ...

} else {

baseScript = gScript;

}

ExitCriticalSection();

...

baseScript->Compile();

Figure 1: Example RwR Race

Figure 1 is an example inspired by a real race
detected in the Mozilla application suite [2]. In
this example, we see that Thread 1 is correctly
using a critical section to protect its read accesses
to the shared variable gScript. Thread 2 is in-
correctly updating gScript without a lock, cre-
ating an asymmetric RwR race (where Thread
1 is reading and Thread 2 is writing). The race
occurs infrequently, when Thread 2’s update is
interleaved between the test for NULL and the
then part of the conditional in Thread 1.

While we envision a number of different im-
plementations of ToleRace, ranging from pure
software to hardware-assisted, in this paper we
outline a low-overhead software implementation
based on only modifying the code in critical sec-
tions. ToleRace modifies the critical section to
determine if a race has occurred, identifies pos-
sible races that can be tolerated, and reports or
allows the programmer to address races that can-
not automatically be tolerated. The ToleRace
modifications have three components:

• Prolog When the critical section is entered,
ToleRace makes two additional copies of

2



the shared data that the lock protects. A
boolean flag tracks whether the shared data
is updated in the critical section.

• Body The body of the critical section is
modified so that updates to the shared vari-
able are instead made to a local copy. The
replacement assures that the updates are
atomic with respect to actions taken by
other threads.

• Epilog When the critical section is exited,
ToleRace uses the values of the copies and
the shared variable to determine if a race
may have occurred. Depending on the val-
ues, ToleRace may tolerate the race, allow
the programmer to compensate for the race,
or report the race as a runtime error.

Figure 2 shows how the code in the critical sec-
tion from Figure 1 is modified by ToleRace. In
this example, because the test for NULL takes
place on the local copy, l gScript, Thread 2
setting the value to NULL has no effect, and the
race is tolerated. If Thread 2 executes simulta-
neously with the critical section in Thread 1, its
update to gScript is detected, and because there
are no local changes, the value is left as it is. The
effect is that the threads ran with the order T1
then T2. Note that because the critical section
does not update gScript, gScript dirty is not
used in this example.

A second scenario, where Thread 1 only writes
the value of the shared variable, and Thread 2
only reads it (WrW race), is also completely
tolerated by ToleRace. In that case, the epi-
log notes that the local copy is dirty (because
gScript dirty is set to true at the first up-
date in the critical section), determines that the
value of the shared variable is the same as it
was originally, and copies the local copy back to
the shared variable. Note that the unlikely case
where Thread 2 modifies the shared variable and
then sets it back to its original value remains and
undetected race by ToleRace, but is surprisingly
tolerated. This occurs because ToleRace will as-
sume Thread 2 did not modify the variable and
allow Thread 1’s changes to remain, resulting in
an execution sequence T2 then T1. This is a

EnterCriticalSection();

// Prolog - create copies

gScript_dirty = false; // track writes

o_gScript = gScript; // original copy

l_gScript = gScript; // local copy

// Body - replace references to shared variables

if (l_gScript == NULL) { // operate on local copy

baseScript = default;

} else {

baseScript = l_gScript;

}

// Epilog - resolve outcome

if (gScript_dirty) {

// local copy has been updated

// check if global copy updated

if (gScript == o_gScript) {

// possible there was no global update

// local copy is most up-to-date

// Thread sequence is T2 then T1

gScript = l_gScript;

} else {

// both copies modified (Ww conflict)

// Automatic toleration may not be possible

DetectRace();

}

} else {

// no local changes

// global copy is correct

// thread sequence is T1 then T2

}

ExitCriticaSection();

Figure 2: RwR Conflict with ToleRace

correct ordering because the only impact T2 can
have on T1 is through the shared variable, and
T1 reads the right value for that variable.

The more complex scenarios arise when both
threads modify the shared variable. ToleRace
will detect these occurrences but cannot auto-
matically determine an appropriate resolution
because the operations may have interleaved in
such a way that serializing T1 and T2 is not
possible. In these cases (indicated by the call
to DetectRace in the figure), ToleRace can be
used in several different modes.

Testing For testing, ToleRace will detect and
report only races that will actually occur in prac-
tice, resulting in few false positives. ToleRace
has much lower overhead than existing race de-
tection tools (e.g., Eraser [7]) so it is more likely
to observe races in a test environment.

Deployment For deployed applications, we

3



believe the overhead of ToleRace is sufficiently
low that it can be left on all the time in many
applications. If ToleRace is on all the time,
many subtle races that occur but do not cause an
application to immediately fail will be detected
and reported. We note that ToleRace does not
provide as much detail about the cause of a
race as lock-set based race detection tools [7, 8].
Specifically, since we only modify the critical sec-
tion, ToleRace cannot directly pinpoint the er-
rant code causing the race.

Patching ToleRace is also valuable in fix-
ing observed problems after an application has
shipped. ToleRace can be selectively applied to
only those critical sections that a developer sus-
pects are likely to be involved in races, after they
have been observed. In addition, while ToleR-
ace cannot automatically tolerate Ww conflicts
without help, a developer might understand the
application sharing characteristics well enough
to write semantically sound application-specific
race resolution code that executes when a race is
detected.

3 Discussion

We have implemented ToleRace as described
above and measured its effect on small bench-
marks in which we introduce known races. The
overhead of ToleRace depends on how much data
is protected by a critical section, and how of-
ten the critical section is entered. Even in pro-
grams in which 100% of the time is spent in
critical sections, the overhead is small, typically
less than 10%. Our initial measurements sug-
gest that even in a larger synchronization-heavy
application (e.g., a parallel hash-table library),
the execution time overhead of ToleRace is still
below 10%.

ToleRace currently introduces a memory over-
head from making additional copies of shared
data, so the space overhead is proportional to
the fraction of program data that is shared be-
tween threads and the fraction of time spent in
critical sections, depending on how we allocate
the copies. In our benchmarks, ToleRace is able
to completely hide some races, and reduce the

likelihood of races in other cases by two orders
of magnitude. We are in the process of apply-
ing ToleRace to larger programs to observe its
overhead and effect on fault tolerance in those
programs.

To summarize, ToleRace provides a new and
effective approach at tolerating and detecting
races in multi-threaded programs. We have de-
scribed a low-overhead software implementation
of ToleRace and discussed how it can help de-
velopers address race-related errors throughout
the development cycle. While space prevents us
from discussing many subtle issues in the design
an implementation of ToleRace, in future work
we will discuss these issues in greater detail.

References

[1] Emery Berger and Benjamin Zorn, DieHard:
Probabilistic memory safety for unsafe languages,
PLDI’06, pp. 158–168, June 2006.

[2] Shan Lu, Joe Tucek, Feng Qin, and Yuanyuan Zhou.
AVIO: Detecting Atomicity Violations via Access-
Interleaving Invariants. ASPLOS’06, October 2006.

[3] M. Naik, A. Aiken, and J. Whalley, Effective Sta-
tic Race Detection for Java, PLDI’06, pp. 308–319,
June 2006.

[4] Karthik Pattabiraman, Vinod Grover, and Ben-
jamin Zorn. Samurai - Protecting Critical Heap
Data in Unsafe Languages. Microsoft Research Tech
Report #2006-127, Microsoft Corporation, Red-
mond, WA. August 2006.

[5] Karthik Pattabiraman, Vinod Grover, and Ben-
jamin Zorn. Software Critical Memory - All Memory
is Not Create Equal. Microsoft Research Tech Re-
port #2006-128, Microsoft Corporation, Redmond,
WA. August 2006.

[6] P. Pratikakis, J. S. Foster, M. Hicks, Locksmith:
Context-Sensitive Correlation Analysis for Race De-
tection, PLDI’06, pp. 320–331, June 2006.

[7] Stefan Savage and Michael Burrows and Greg Nel-
son and Patrick Sobalvarro and Thomas Ander-
son, Eraser: a dynamic data race detector for mul-
tithreaded programs. ACM Trans. Comput. Syst.,
15(4), 1997, pp. 391–411.

[8] Yuan Yu, Tom Rodeheffer, and Wei Chen. Race-
track: efficient detection of data race conditions via
adaptive tracking. ACM SIGOPS Oper. Syst. Rev.,
39(5), 2005.

4


