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Abstract 

As computer systems become more and more complex, it becomes harder to ensure that 

they are dependable i.e. reliable and secure. Existing dependability techniques do not take 

into account the characteristics of the application and hence detect errors that may not 

manifest in the application. This results in wasteful detections and high overheads. In 

contrast to these techniques, this dissertation proposes a novel paradigm called 

“Application-Aware Dependability”, which leverages application properties to provide 

low-overhead, targeted detection of errors and attacks that impact the application. The 

dissertation focuses on derivation, validation and implementation of application-aware 

error and attack detectors. 

The key insight in this dissertation is that certain data in the program is more important 

than other data from a reliability or security point of view (we call this the critical data). 

Protecting only the critical data provides significant performance improvements while 

achieving high detection coverage. The technique derives error and attack detectors to 

detect corruptions of critical data at runtime using a combination of static and dynamic 

approaches. The derived detectors are validated using both experimental approaches and 

formal verification. The experimental approaches validate the detectors using random 

fault-injection and known security attacks. The formal approach considers the effect of 

all possible errors and attacks according to a given fault or threat model and finds the 

corner cases that escape detection. The detectors have also been implemented in 

reconfigurable hardware in the context of the Reliability and Security Engine (RSE) [1].  
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CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION 

The increasing complexity of computer systems and their deployment in mission- and 

life-critical applications are driving the need to build reliable and secure computer 

systems. Compounding the situation, the Internet‟s ubiquity has made systems much 

more vulnerable to malicious attacks that can have far-reaching implications on our daily 

lives. Traditionally, reliability has meant expensive mainframe computers running in 

lock-step and security has meant access control and cryptography support. However, the 

Internet‟s phenomenal growth has led to the large-scale adoption of networked computer 

systems for a diverse cross section of applications with highly varying requirements. In 

this all-pervasive computing environment, the need for reliability and security has 

expanded from a few expensive, proprietary systems to something that is a basic 

computing necessity. This new paradigm has important consequences: 

 Networked systems stretch the boundary of fault models from a single application or 

node failure to failures that could propagate and affect other components, subsystems, 

and systems, and  

 Attackers can exploit vulnerabilities in operating systems and applications with 

relative ease. Due to the complex interlinking of systems, attacks on even a single 

component of the system can lead to a compromise of the entire system. 
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Users ultimately want their applications to continue to operate without interruption, 

despite attacks and failures, but as systems become more complex, this task becomes 

more difficult. The traditional one-size-fits-all approach to security and reliability is no 

longer sufficient or acceptable from the end-user‟s perspective. Spectacular system 

failures due to malicious tampering or mishandled accidental errors call for novel, 

application-specific approaches. This dissertation proposes the concept of application-

aware dependability as an alternative to traditional heavyweight dependability 

approaches such as duplication and cryptography. 

Application-aware dependability extracts application‟s characteristics and presents it to 

the underlying system, so that the system can tune itself to provide the optimal level of 

reliability and security to the application. This fits in with the idea of utility computing [2, 

3]; or cloud computing [4, 5], in which large computing farms configure themselves to 

execute complex applications for long periods of time with guaranteed performance and 

dependability. In this environment, the reliability or security of the physical hardware on 

which the application executes is less important than the dependability of the application. 

Further, as more and more computing shifts to the cloud, the value of a cloud-computing 

platform is governed more by the services provided to the application (be they for 

enhancing the application‟s performance, reliability or security) than the platform itself.  

Hardware-based techniques have the advantage of low performance overheads because 

the hardware modules can perform security and reliability checking in parallel with the 

application. Because these techniques can detect errors close to their points of 
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occurrence, low levels of detection latency are possible. This in turn ensures speedy 

recovery before errors and attacks can propagate in the system [2].  

Application-aware techniques also expose knowledge of the underlying hardware 

platform to the application, so that the application can invoke the services exposed by the 

hardware at critical points in its execution to request reliability and security support. This 

allows the protection obtained and the performance overheads incurred to be configured 

based on the application‟s needs and characteristics. Clearly, it is very hard for the 

application-developer or system administrator to coordinate this complex interaction with 

the hardware.  Therefore, it is important to develop automated techniques that can (1) 

Extract application properties and expose them to the underlying hardware, (2) Configure 

the hardware-based checks based on the extracted properties and (3) Instrument the 

application‟s code to invoke the hardware-based checks at strategic points in its 

execution.  Further, it is necessary to validate the derived checks and evaluate their 

efficacy against both accidental and malicious errors. 

The research question we address in this dissertation is as follows: How do we 

automatically extract and validate application properties to provide low-latency, high-

coverage error and attack detection using a combination of programmable hardware and 

software? We first provide an overview of the reliability techniques and security 

techniques developed in this dissertation. We then provide an overview of the fault- and 

attack- models considered in this dissertation and outline its main contributions. Finally, 

we detail the overall frameworks developed in this dissertation for derivation, 

implementation and validation of application-aware error and attack detectors.  



4 

 

1.2 PROPOSED RELIABILITY TECHNIQUES  

1.2.1 Introduction 

Reliability techniques may be broadly classified into fault-avoidance and fault-tolerance 

techniques. Fault-avoidance techniques attempt to eliminate errors at software 

development time, prior to its deployment. Examples include program testing and static 

analysis techniques. Typically, fault-avoidance techniques target specific classes of errors 

(e.g. memory errors, uninitialized variables). Although these methods have been applied 

extensively, studies have shown that subtle software defects such as timing and 

synchronization errors persist in applications, and lead to application failures in 

operational settings [6-8].  

In contrast to fault-avoidance techniques, fault-tolerance techniques provide detection of 

(and recovery from) general hardware and software errors. By far the most widely 

deployed fault-tolerance technique is duplication, which involves running two or more 

copies of a program and comparing their outputs. While duplication has been 

successfully deployed on selected commercial systems such as IBM mainframes and 

Tandem Non-stop computers [9], it has not found wide acceptance in Commodity Off-

the-Shelf systems (COTS). This is because duplication incurs high performance 

overheads (up to 100 %), and may require the provision of special-purpose hardware to 

alleviate the performance overheads. However, the special hardware requires chip area 

(up to 33 % in the IBM Mainframe G5 processor [10]) and increases the complexity of 

the overall design. Further, the errors detected by duplication-based approaches that may 
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not ultimately matter to the application, due to significant fault masking at the device 

level (80-90 %) [11] and at the architectural level (50-60 %) [12].  

Failure-oblivious computing [13] takes the view that most errors do not affect the 

application‟s execution, and hence does not recover from or correct errors as long as the 

system operates within its acceptability envelope. The acceptability envelope is defined 

as the set of acceptable (but not necessarily correct) behaviors of the system. For 

example, a web-server is considered to be operating within its acceptability envelope if it 

processes a request without writing to an undefined memory location. An aircraft 

controller is operating within its acceptability envelope as long as it does not lead to the 

aircraft accelerating beyond a certain threshold. While failure-oblivious computing is a 

promising approach if the acceptability envelope is well-defined, in practice it is hard to 

isolate the range of acceptable behaviors for a system. Further, failure-oblivious 

computing allows errors to stay undetected and propagate, which in turn can lead to 

massive failures. Hence, the failure-oblivious approach may not be well-suited for 

applications that exhibit high degrees of error propagation before crashing (if they crash). 

This dissertation proposes a novel, low-overhead approach for providing high reliability 

to applications. It proposes insertion of error detectors (runtime checks) in the 

application‟s code based on the application‟s properties. This is achieved by extracting 

application properties using compiler-driven static and dynamic analysis, and converting 

the extracted properties into runtime checks. The properties are obeyed in any error-free 

execution of the program, but not in an erroneous execution. As a result, the checks can 
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detect general hardware and software errors that impact program correctness and are not 

confined to particular types of faults.  

While the detectors are application-specific and are derived on a per-application basis, 

the method for deriving and implementing detectors can be applied to any application. 

The method is completely automated and requires no intervention from the programmer. 

1.2.2 Detector Placement 

Studies have shown that undetected error propagation leads to extended system 

downtimes [14-16]. It is therefore essential, that errors are detected before they propagate 

and cause application failure. An effective error detection mechanism must necessarily 

limit the extent of error propagation and preempt application failure in order to enable 

speedy and sound recovery (after the error is detected). 

The error detectors derived in this dissertation are placed at strategic locations in the 

application in order to prevent error propagation and preempt application failures 

(crashes). The locations encompass both the program variable that must be checked as 

well as the program point at which the check must be performed. The locations are 

chosen based on the application‟s dynamic dependence graph, which is constructed using 

the application‟s execution profile under representative inputs. For example, for a large 

application such as gcc, the detector placement methodology identifies a small number of 

strategic locations (10-100), at which placing (ideal) detectors can provide high coverage 

(80-90%) for errors leading to application failure [17].  
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1.2.3 Detector Derivation 

Once the detector placement points and variables have been identified, error detectors are 

derived for the program variables (critical variables) at the identified points.  The error 

detectors for critical variables are arithmetic and logical expressions that check whether 

the value of the critical variable was computed correctly i.e. according to the 

applications‟ code and/or semantics. Two approaches to derive error detectors are 

proposed as follows: 

1. Based on dynamic execution traces of the application, gathered by instrumenting the 

values of critical variables and executing the application under representative inputs. 

An automatic approach learns the characteristics of the variable(s) based on pre-

defined template patterns, and embeds the learned patterns as runtime checks in the 

application. The runtime checks are implemented in a programmable hardware 

framework, and are invoked through special instructions embedded in the application 

code at the detector placement points. 

2. Based on the statically-generated backward program slice [18] of the critical variables 

at the detector placement points. The backward slice is specialized for each control-

flow path in the application by the detector derivation technique. This specialization 

allows the compiler to optimize the backward slice aggressively and derive a 

minimized symbolic expression for the slice (called the checking expression). 

Programmable hardware is used to track control-paths at runtime and choose the 

checking expression corresponding to the executed path. The checking expression 
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recomputes the value of the critical variable and flags any deviation from the original 

as an error. 

1.2.4 Detector Validation 

Fault-injection is a commonly used approach to evaluate the efficacy of fault-tolerance 

mechanisms [19]. Fault-injection involves perturbing the code or data of the system (for 

example, by flipping a single bit) and studying the behavior of the system under the 

perturbation. We have evaluated the derived detectors through fault-injections in 

application data, and have shown that the detectors provide nearly duplication-levels of 

error-detection coverage for errors that matter to the application (at a fraction of the 

corresponding overheads).  Because fault-injection is statistical in nature, it is not 

guaranteed to expose all errors under which the detector may fail. In order to ensure that 

the errors missed by the derived detectors do not lead to catastrophic consequences in 

safety- or mission- critical systems, it is important to evaluate the derived detectors 

exhaustively under all possible errors. However, exhaustive fault-injection often incurs 

considerable time and resource overheads.  

Formal verification is a complementary approach to fault-injection that can exhaustively 

enumerate the effects of errors on fault-tolerance mechanisms (such as. detectors) and 

expose corner case scenarios that may be missed by traditional fault injection. We build a 

formal verification framework, SymPLFIED, to comprehensively enumerate all errors 

that evade detection and cause the program to fail. SymPLFIED operates directly on the 

assembly language representation of the program, and uses symbolic execution and 
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model-checking to systematically consider the effect of all possible transient errors on the 

program according to a given fault-model. For each error, SymPLFIED finds whether the 

error was detected and if not, whether the error led to a failure in the application.   

1.3 PROPOSED SECURITY TECHNIQUES 

1.3.1 Introduction 

Many existing approaches for security are piece-meal approaches, in the sense that they 

either protect from very specific types of attacks (e.g. Stackguard, which protects from 

certain types of stack-buffer overflow attacks [20]) or they suffer from high false-positive 

rates (e.g. system-call based intrusion detection [21]).  

Techniques such as memory-safety checking [22-24] and taintedness [25-27], while 

providing comprehensive protection from security attacks, incur high performance 

overheads when done in software, which in turn limits their deployment in operational 

settings. When done in hardware, they high-false positive rates thereby necessitating 

traps to software, and in turn incur high performance overheads. Further, they require the 

entire application‟s code to be available for analysis, which is often not the case. Thus, 

they leave open the possibility that an untrusted third-party module may be used to attack 

the application (i.e. insider attacks).  

Randomization is a low-overhead technique that has been used to protect programs from 

targeted attacks. By randomizing the layout of the stack, heap or static data items in a 

program [28-30], it is possible to obscure potential targets of an attacker, and hence foil 

the attack. The randomization can be carried out transparently to the application, with 
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minimal modifications to the hardware or operating system. However, randomization 

based techniques can be broken by repeated undetected attacks on the application [31], or 

by carrying out targeted attacks through information-leaks in the program. Further, 

randomization techniques may not be effective against attacks launched by trusted 

insiders, as an insider may be able to determine the seed value used for randomization 

and hence identify the locations of the target objects. 

Thus, we see that existing security techniques either incur high-performance overheads or 

are ineffective against trusted insiders in the same address space as the application. In 

contrast to these techniques, we propose a technique called Information-Flow Signatures 

(IFS) to protect critical data in applications from both external and insider attacks. The 

technique extracts the properties of the critical data based on the application‟s source 

language semantics, and enforces the extracted properties through runtime monitoring in 

software. Because the monitored properties are based on the inherent properties of the 

application, the technique incurs no false-positives. Further, by focusing on a subset of 

application data (critical data), the technique is able to ensure the integrity of the data 

with modest performance overheads.  

1.3.2 Information-flow Signatures 

Information-flow Signatures (IFS) encapsulate the dependencies among the instructions 

that are allowed to influence the value of the critical variables as per its source-level 

semantics. The reason for memory-corruption and insider attacks is the gap between a 

program‟s source-level semantics and its runtime execution semantics [32]. Hence, the 
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proposed technique derives the Information-flow signature of the program‟s critical 

variables (identified by programmer using annotations) from its source-level semantics 

and checks the program at runtime for conformance to the signature. It is assumed that 

attackers will attempt to influence the critical variable by introducing new code in the 

system (e.g. code-injection attacks and insider attacks) or by overwriting the critical 

variable through instructions that are not allowed to write to the critical variable 

legitimately (e.g. memory corruption attacks). Both categories of attacks will cause the 

runtime behavior of the program to deviate from its statically derived Information-Flow 

Signature, and will hence be detected.  

The proposed technique extracts the information-flow signatures of the program based on 

the backward slice of the critical variables in the program. This is similar to the static 

detector derivation technique in section 1.2.3 (Table 2 presents the main differences).  

1.3.3 Formal Validation 

The formal methodology for verification of error detectors has also been extended to 

verify security attack detectors. Similar to the SymPLFIED tool for evaluating error 

detectors, we developed an automated tool SymPLAID, to systematically enumerate all 

security attacks that evade detection and allow the attacker to achieve his/her goals. The 

attacks considered by SymPLAID include both memory corruption attacks as well as 

insider attacks. Given the application‟s code (in assembly language) and a set of attacker 

goals (in first-order logic), SymPLAID automatically identifies all possible attacks (value 

corruptions) that will allow the attacker to achieve his/her goals. However, unlike 
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SymPLFIED, SymPLAID precisely tracks the propagation of corrupted values in the 

program, thus identifying the value that must be corrupted by the attacker and the precise 

value that must be used to replace the original value in order to carry out the attack. 

1.4 FAULT AND ATTACK MODELS 

This section summarizes the fault- and attack- models used in this dissertation. The goal 

is to provide a broad overview of all faults and attacks that can be addressed using the 

techniques developed in this dissertation, rather than to provide a detailed 

characterization of the coverage of individual techniques (these are discussed in the 

relevant chapters).  

The error and attacks can be classified into four broad categories as follows: 

1. Transient hardware errors: These include soft-errors caused by radiation, 

single-event upsets due to timing and electrical defects or (in rare cases), faults 

due to design bugs in the processor that manifest only in exceptional or stressful 

circumstances. 

2. Transient software errors: These include (1) memory-corruption errors caused 

by pointers writing outside their memory intended region (and corrupting other 

data), (2) race conditions and synchronization errors which may leave a data item 

in an inconsistent or corrupted state, and (3) errors due to missing or incorrect 

initialization of data.  These are caused by software defects and may not be 

repeatable unless the environment and inputs to the program are replicated 
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exactly, which is hard to achieve in practice. Hence, their behavior is similar to 

the behavior of hardware transient errors. 

3. Control and data attacks: These include memory corruption attacks such as 

buffer overflows and format-string attacks, which overwrite the program‟s 

control-flow and data to achieve a malicious purpose (e.g. executing a root shell).  

4. Insider attacks: Insider attacks are those in which parts of the application and/or 

the operating system may be malicious and overwrite the application‟s data or 

alter its control-flow for malicious purposes. These also include code-injection 

attacks and hardware-based attacks (e.g. smart-cards). 

Table 1 shows the coverage of the different techniques considered in this dissertation for 

each category of error or attack. As can be seen from the table, there is no one technique 

that can cover all errors/attack categories, yet together, the techniques cover all categories 

of errors and attacks considered. Thus, the techniques in this dissertation address a wide 

range of both random errors as well as malicious attacks that impact the application and 

cause system failure or compromise. 

Table 1: Coverage of techniques for different error/attack categories 

Fault/Attack Category Dynamically-derived 

detectors 

Statically derived 

Detectors 

Information-flow 

Signatures 

Transient hardware 

errors (e.g. soft errors, 

timing errors, logic 
bugs) 

Yes Yes No 

Transient software 

errors (memory errors, 
race conditions, 

uninitialized variables) 

Yes Yes, except for 

uninitialized variables 

Yes for memory 

corruption errors 

Control and data attacks 
(e.g.  buffer overflow, 

format-string) 

No No Yes 

Insider attacks (e.g. 

malicious third-party 
libraries) 

No No Yes 
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1.5 OVERALL FRAMEWORK 

This dissertation proposes an approach to building dependable (reliable and secure) 

systems using the notion of application-aware dependability, which uses the 

application‟s properties to detect errors and security attacks that matter to the application. 

Application properties are automatically extracted using compiler-based static and 

dynamic analysis techniques, and are converted to error and attack detectors. The 

detectors are formally validated using model-checking and symbolic execution. The 

detectors are implemented efficiently using programmable hardware as a part of the 

Reliability and Security Engine (RSE), which is a hardware framework for executing 

application-aware checks [1].  

The main contribution of this dissertation is a unified approach to reliability and security. 

By treating reliability and security as two sides of the same coin and proposing joint 

solutions for them, it is possible to achieve significant gains in the economy and 

efficiency of the solutions. The dissertation proposes unified frameworks for the 

following.  

1. Deriving application-aware error and attack detectors through compiler analysis, 

2. Validating the efficacy of the derived detectors using formal verification methods,  

3. Implementing the derived detectors in a common, programmable hardware 

framework 
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The first two frameworks are unique contributions of this dissertation, while the third 

framework is based on the RSE framework proposed in prior work [33]. The rest of this 

section provides an overview of each of the above frameworks. 

1.5.1 Unified Framework for Detector Derivation 

This section describes the unified framework for derivation of error and attack detectors, 

which presents a way of unifying the techniques in Sections 1.2 and 1.3.  

 

Figure 1: Conceptual unified framework for reliability and security 

Figure 1shows the components of the framework. The left side of the figure shows the 

process for derivation of error detectors, while the right side shows the process for 

derivation of security attack detectors. The middle of the figure shows the common steps 

in both processes.  
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The major steps in the framework are as follows: 

1) Identification of critical variables: From a reliability perspective, these are variables 

that are highly sensitive to errors in the application. From a security perspective, these 

are variables that are desirable targets for an attacker for taking over the application. 

For reliability, it is possible to automate the selection of sensitive or critical variables 

through Error Propagation Analysis. This can be done based on analysis of the 

dynamic dependences in the application and is described in [17]. For security, we 

require the programmer to identify security-critical variables in the application 

through annotations based on knowledge of the application semantics.  An example 

of a security critical variable is a Boolean variable that indicates whether the user has 

been authenticated, as overwriting the variable can lead to authentication of a user 

with an incorrect password.  

2) Extraction of backward program slice: Once the critical variables and the program 

points at which checks must be placed have been identified, the next step is to derive 

the properties of these variables from the application code. These properties can be 

computed based on the backward program slice of the critical variable from the 

check placement point.  The backward program slice of a variable at a program point 

is defined as the set of all program statements that can potentially affect the value of 

the variable at that program point[18]. The slice is computed through static analysis 

for all legitimate program inputs. For error-detection, we are interested in re-

executing the statements in the slice of the critical variable to ensure that the value of 

the critical variable computed at the check placement point is correct, and hence the 
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slice of the critical variable computed for error-detection needs to preserve the 

execution order of program statements. For attack detection, we are only interested in 

checking that only the statements/instructions in the static program slice of the critical 

variable, in fact, write to the critical variable (directly or indirectly) at runtime.  

3) Encoding of slice: The third step is to encode the slice computed for the critical 

variable in the form of a runtime check. For error-detection, the check takes the form 

of an executable expression that recomputes the critical variable, whereas for attack-

detection, the check takes the form of a signature that contains the addresses of the 

instructions that can write to the critical variable (directly or indirectly). The compiler 

inserts calls to the checks (expressions or signatures) into the executable file and 

configures the hardware monitors with the checks at application load time.  

4) Runtime Checking: The final step is performed at runtime where the application is 

monitored (using hardware or software) and the checks inserted by the compiler are 

executed at the appropriate points in the execution. In the case of error-detection, the 

checks compare the value of the critical variable computed by the original program 

with the value of the expression derived using static analysis. A value mismatch 

indicates an error. In the case of attack-detection, the checks compare the signature 

derived using static analysis with the signature computed at runtime based on the 

instructions that write to the critical variable (directly or indirectly). A signature 

mismatch indicates an attack. In both cases, the execution of the program is stopped 

and suitable recovery action for the error or attack.  
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Table 2 summarizes the differences between the derivation of error and attack detectors 

for each of the steps shown in Figure 1.  

Table 2: Differences in the derivation process for error and attack detectors 

Step Error Detectors Attack Detectors 

Choosing critical variables 
Automatically done based on error 
propagation analysis 

Manually selected based on knowledge of 
security semantics 

Extraction of backward slice 
Needs to preserve execution order of the 

slice to generate a checking expression 

Only needs to preserve instruction-level 

dependences to generate signatures 

Encoding of slice 
Encoded as an expression that captures 
the computation of the critical variable – 

Checking expression 

Encoded as a signature that captures the 

dependences – Information-flow Signature 

Runtime checking 

Recomputation of critical variable by the 

checking expression to check the 
computation in the original program 

Tracking of instruction dependencies to check 

whether they conform to the statically-
extracted information-flow signature 

The error and attack detectors have both been derived through the introduction of new 

passes in the LLVM compilation framework [30]. Currently, the two design flows are 

independent of each other, but it is possible to combine them into a single, unified flow. 

1.5.2 Unified Framework for Detector Validation 

This section describes the unified framework to formally validate the application-aware 

error and attack detectors using formal verification techniques. To the best of our 

knowledge, the framework is the first of its kind to use formal verification to validate the 

properties of arbitrary detectors in general-purpose programs, and can be used to 

identify corner cases of errors and attacks that evade detection. Figure 2 shows a 

conceptual view of the formal framework. 

The input to the framework is an assembly language representation of the program with 

embedded error and/or attack detectors. The advantage of using assembly language is that 

it is possible to represent a wide variety of errors and attacks at the assembly language 

level. This is because the assembly language representation of the program includes (1) 
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the source-level characteristics of the program, (2) runtime libraries that are linked with 

the program, and (3) runtime support code that is added by the compiler (e.g. function 

prologs and epilogs). Thus, the assembly language representation of the program is 

closest to the form that is executed in hardware, and consequently can express both 

software and hardware errors. The program is augmented with special instructions to 

express error and attack detectors in line with its code. 

 

Figure 2: Unified formal framework for validation of detectors 

The framework identifies for each error (attack) in the fault (threat) model, whether the 

error (attack) leads to application failure (compromise) before it is detected. If so, the 

error (attack) is printed along with a detailed trace of how the error (attack) propagated in 

the application. This can help the application developer improve the coverage of the 

detectors if desired. The main advantage of using formal verification is that it can 

enumerate all errors (attacks) that evade detection and cause failure (compromise). This 

can help expose rare corner cases that may be missed by the detectors, which are hard to 

find through manual inspection alone.  
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The formal framework consists of the following key structural components: (1) Machine 

model, which specifies the execution of instructions in the processor, (2) Detection 

model, which specifies the semantics of detectors, and the (3) Fault/threat model, which 

specifies the impact of errors and attacks on the program‟s execution. All three models 

are expressed in rewriting logic and implemented using the Maude system [34]. The 

framework has been implemented in the form of two tools – SymPLFIED for verifying 

error detectors, and SymPLAID for verifying attack detectors. These are described briefly 

as follows: 

SymPLFIED considers the effect of all possible transient hardware errors on 

computation, memory and registers when a program is being executed under a specific 

input. It uses symbolic execution and model-checking to exhaustively reason about the 

effect of the error on the program. The key innovation in SymPLFIED is that it groups an 

entire set of errors into a single abstract class and symbolically reasons about the effects 

of the error class as a whole. This grouping effectively collapses into a single state the 

entire set of errors that would be considered by an exhaustive injection approach. This in 

turn greatly enhances the scalability of SymPLFIED compared to exhaustive fault-

injection. However, the scalability is obtained at the cost of accuracy, as the abstraction 

can lead to false-positives i.e. erroneous outcomes that occur in the model but not in the 

real system. Nevertheless, the loss in accuracy is acceptable in practice as the detectors 

can be conservatively over-designed to protect against a few false-positives. 

SymPLAID considers the effects of insider attacks on the execution of a program. An 

insider is assumed to corrupt one or more elements of a program‟s data at runtime in 
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order to achieve his/her malicious goals. Similar to SymPLFIED, SymPLAID tracks 

corruptions of data values in applications using symbolic execution, and exhaustively 

considers the effects of data corruptions using model-checking. However, the difference 

is that SymPLAID tracks each data corruption individually rather than abstracting 

multiple corruptions into a single class. This is because security attacks are mounted by 

an intelligent adversary (in contrast to randomly occurring errors) and it is important to 

identify the exact steps leading to the attack for effective prevention. Further, unlike 

random errors, an attacker is limited both in the places where the attack may be launched 

as well as in the values used for the attack. This in turn limits the number of (unique) 

attacks that may be launched by an attacker. As a result, SymPLAID emphasizes 

accuracy in tracking individual value corruptions over scalability in terms of the number 

of corruptions that can be tracked. It does this by precisely tracking the dependencies 

among corrupted values using error expressions and solving them at decision points (e.g. 

branches and loads and stores). 

Thus, both SymPLFIED and SymPLAID represent different points in the accuracy versus 

scalability spectrum of formal modeling techniques. Both tools are implemented using a 

common framework and differ only in the details of the implementation. They can be 

combined to jointly reason about errors and attacks on programs.  

1.5.3 Unified Framework for Detector Implementation 

The detectors derived by the technique in Section 1.5.1 are implemented as a part of the 

Reliability and Security Engine (RSE), which is a processor level framework for 
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application monitoring and error detection [1]. The RSE was proposed as part of Nithin 

Nakka‟s dissertation [33] at the University of Illinois at Urbana-Champaign. 

The RSE interface taps into the processor‟s pipeline and exposes signals to the various 

reliability and security modules. This allows the modules to be oblivious of the 

processor‟s internals and for the processor designer to be unencumbered by the 

implementation details of the RSE modules. A module implements a specific reliability 

or security mechanism using the signals exposed to it by the RSE interface. The RSE has 

been implemented on the LEON-3 processor [35] supporting the SUN SPARC 

instruction set . 

The error and attack detectors derived in this dissertation are implemented as RSE 

modules. Figure 3 shows how the detectors fit into the RSE framework. The left side of 

Figure 3 shows the security modules and the right side shows the reliability modules. The 

figure shows a five-stage in-order pipeline with the signals tapped by the RSE interface.  

 

Figure 3: Hardware implementation of the detectors in the RSE Framework 
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We summarize the RSE modules that implement the derived detectors here. 

1. Information-flow Signatures Module: This module implements the hardware-side 

of the information-flow signature tracking scheme outlined in Chapter 7. It consists of 

a signature accumulator to track the signatures at runtime, as well as a critical 

variable signature map to store the statically derived signature for comparison with 

the accumulated signature. 

2. Critical Variable Recomputation: This module implements the hardware 

components of the statically derived error detectors described in Chapter 4. It consists 

of the path-tracking sub-module and the checking sub-module. The path-tracking sub-

module keeps tracks of the program‟s control-flow path and the checking sub-module 

executes the checking expressions corresponding to the path determined by the path-

tracking sub-module.  

3. Template-based Checking: This module implements the template-based checks 

based on the dynamic execution of the program. The template based checks are pre-

configured into the RSE framework. The method for deriving these checks is 

described in Chapter 3. 

The other two modules shown in Figure 3, namely Pointer Taintedness checking [26] and 

Selective Replication [12] were not developed in this dissertation but are closely related 

to the ideas developed in this dissertation. We hence omit detailed description of these 

modules. 
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1.6 CONTRIBUTIONS 

In addition to the three frameworks described in Section 1.5, this dissertation makes the 

following contributions: 

1. Introduces a methodology to place error detectors in application code to preemptively 

detect errors that result in application failures. The proposed placement method can 

provide 80-90% error detection coverage with relatively few ideal detectors placed at 

the identified locations (Chapter 2). 

2. Derives error detectors based on dynamic characteristics of the application using pre-

defined rule-based templates. The templates are customized to application 

requirements based on dynamic learning over representative inputs to the application 

and embedded as runtime checks in the code (Chapter 3). 

3. Derives error-detectors based on static characteristics of the application. Compiler -

based static analysis is used to extract the backward program slice of critical variables 

in the program. The slices are specialized based on the executed control path to derive 

optimized checking expressions that recompute the value of the critical variable at the 

detector placement points - Critical Variable Recomputation (Chapter 4). 

4. Introduces a formal-verification framework to validate the coverage of the derived 

error detectors and find corner-cases in which the derived detectors may be unable to 

detect the error. The framework uses symbolic execution and model-checking to 

enumerate all failure-causing errors (according to a given fault-model) that evade 

detection (Chapter 5). 
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5. Extends the formal verification framework to automatically discover security attacks 

that evade detection in applications. This includes both memory corruption attacks 

and insider attacks. Memory corruption attacks are usually launched by an external 

attacker, while Insider attacks are launched by a malicious part of the application 

itself (Chapter 6).  

6. Extends the methodology for derivation of error detectors to derive detectors for 

security attacks in applications (also based on static analysis). The proposed 

methodology uses Information Flow Signatures to detect both memory-corruption 

attacks and insider attacks. (Chapter 7).  

1.7 SUMMARY 

Existing techniques for reliability and security are “one-size-fits-all” techniques and incur 

considerable overheads. In contrast to these techniques, this dissertation proposes 

“application-aware dependability”, in which reliability and security checkers exploit 

application-specific properties to detect errors and attacks. The dissertation proposes a 

methodology to extract, validate and implement application-aware error and attack 

detectors.   

The dissertation proposes unified frameworks for reliability and security in order to 

1. Derive detectors using compiler-based static and dynamic analysis for critical 

variables in the application. The detectors are expressed as runtime checks at strategic 

places in the application. 
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2. Validate detectors using symbolic execution and model-checking on the assembly 

code of the application with the detectors embedded in the application. This can be 

used to improve the coverage of the detectors. 

3. Implement the derived detectors as modules in the Reliability and Security Engine 

(RSE) which is a hardware framework for application-aware detection. The detectors 

are executed in parallel with the application to provide concurrent error and attack 

detection with low runtime overheads.  

The dissertation shows that by extracting application properties using automated 

techniques and configuring the properties into reconfigurable hardware, it is possible to 

detect a wide variety of errors and security attacks in the application at a fraction of the 

cost of traditional techniques such as duplication. 

The rest of this dissertation is organized as follows: Chapter 2 presents a technique to 

strategically place error detectors in application code, while Chapter 3 and Chapter 4 

present respectively the dynamic and static techniques to derive error detectors. Chapter 5 

presents the formal technique to validate error detectors, while Chapter 6 presents the 

formal technique to validate attack detectors for insider attacks. Chapter 7 present 

techniques to derive attack detectors for insider attacks, and Chapter 8 concludes. 
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CHAPTER 2 APPLICATION-BASED METRICS FOR 

STRATEGIC PLACEMENT OF DETECTORS 

2.1 INTRODUCTION 

This chapter presents a technique to insert detectors or checks into programs to 

prevent/limit fault propagation due to value errors.  Value errors are errors that can cause 

a divergence from the program values seen during the error-free execution of the 

application. These errors can lead to application crash, hang or fail-silent violations 

(when the program produces an incorrect result). It is a common assumption that crashes 

are benign and that there is a mechanism in a system that ensures that when the program 

encounters an error (that ultimately leads to a crash), the application will crash 

instantaneously (crash-failure semantics). Data from real systems has shown that while 

many crashes are benign, severe system failures often result from latent errors that cause 

undetected error propagation [36]. These latent errors can cause corruption of files [14], 

propagate to other processes in a distributed system [37] or result in checkpoint 

corruption [38] prior to the system crash (if indeed the error leads to a crash).  

To guarantee crash-failure semantics for a program, we need some form of checking 

mechanisms in the system. Such support can take many forms including protection at 

multiple levels and duplication both in hardware and software. Recent commercial 

examples of such approaches include: (i) IBM G5, which, at the processor level, employs 

two fully duplicated lock-step pipelines to enable low-latency detection and rapid 

recovery [10] and (ii) HP NonStop Himalaya, which, at the system level, employs two 
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processors running the same program in locked step. Faults are detected by comparing 

the output of the two processors at the external pins on every clock cycle [39]. Although 

these are very robust solutions, due to their high cost and significant hardware overhead, 

their deployment is restricted to high-end mainframes and servers intended for mission-

critical applications. 

The detector‟s coverage depends on two factors: (i) the effectiveness (coverage) of the 

placement of the detectors, i.e., how many errors manifest at the location where the 

detector is embedded and (ii) the effectiveness (coverage) of the detector itself, i.e., what 

fraction of errors manifested at the detector‟s location are captured.  

This chapter introduces metrics to guide strategic placement of detectors and evaluates 

(using fault injection) the coverage provided by ideal detectors
1
 at program locations 

selected using the computed metrics. Results show that a small number of detectors, 

strategically placed, can achieve a high degree of detection coverage. The issues of 

development of actual detectors and performance implications of embedding the 

detectors into the application code are not addressed in this study. Examples of potential 

detectors are consistency checks on the values in the program, such as range-checks and 

instruction sequence-checks[40].  In this chapter, 

1. The program‟s code and dynamic execution is analyzed and an abstract model of 

the data-dependences in the program called the Dynamic Dependence Graph 

(DDG) is built. 

                                                 

1 An ideal detector is one that detects 100 % of the errors that are manifested at its location in the program. 
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2. Several metrics such as fanout and lifetime are derived from the DDG and used to 

strategically place/embed (i.e., to maximize the coverage) detectors in the 

program code. 

3. The coverage of ideal detectors placed according to the above metrics is evaluated 

using fault-injection experiments.  

The key findings from this work are: 

 A single detector placed using the fanouts metric can achieve 50 to 60 % crash-

detection coverage for large benchmarks (gcc and perl). 

 A small number of detectors placed using the lifetimes metric can achieve high 

coverage for large benchmarks. For example, it is possible to achieve about 80 % 

coverage with 10 detectors and 90 % coverage with 25 detectors embedded in the 

gcc benchmark.  

 Although the placement of detectors is geared towards providing low-latency 

detection and preventing propagation by preemptively detecting potential crashes, 

the placed detectors are also effective at detecting fail-silence violations (i.e., the 

application terminates normally but produces incorrect results) (30% to70%) and 

hangs (50% to 60%). 

2.2 RELATED WORK 

In the recent years, several studies addressed the issue of strategic placement of detectors 

in application code. Hiller et al [40] uses Error Propagation Analysis (EPA) to determine 
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where detectors or checks should be inserted in an embedded control system. It is 

assumed that the checks have ideal coverage (100%) and are inserted at points (signals) at 

which error detection probability is the highest. Voas [41] proposes the “avalanche 

paradigm”, which is a technique to place assertions in programs before faults in the 

program propagate to critical states. Goradia [42] evaluates the sensitivity of data values 

to errors, from a software testing perspective.  

Daikon [43] is a dynamic analysis system for generating likely program invariants to 

detect software bugs. Narayanan et. al. [44] use the invariants produced by DAIKON to 

detect soft errors in the data cache. DAIKON places assertions at the beginning and ends 

of loops and procedure calls. However, this may not be sufficient to provide low-latency 

error detection as the application/system may misbehave long before the assertion point is 

reached. Benso et. al. [45] presents a compiler technique to detect critical values in a 

program. The criticality of a variable is calculated based upon the lifetime of the variable 

and how many other variables it affects. This technique can protect against faults that 

originate in the critical variable and propagate to other variables, but does not protect 

against faults that are propagated to the critical variable from other locations in the 

program. 

2.3 MODELS AND METRICS 

This section presents the computation model, crash model and fault-model used in the 

technique. It also considers metrics derived from the models for detector placement. 
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2.3.1 Computation Model – Dynamic Dependence Graph (DDG) 

The computation is represented in the form of a Dynamic Dependence Graph (DDG), a 

directed-acyclic graph (DAG) which captures the dynamic dependences among the 

values produced in the course of the program execution. In this context, a value is a 

dynamic definition (assignment) of a variable or memory location used by the program at 

runtime. A value may be read many times but it is written only once. If the variable or 

location is rewritten, it is treated as a new value. Thus a single variable or memory 

location may be mapped onto multiple values.  

A node in the DDG represents a value produced in the program, and is associated with 

the dynamic instruction that produced the value. In the DDG, edges are drawn between 

nodes representing the operands of an instruction and nodes representing the value 

produced by the instruction. The edge represents the instruction; the source node of the 

outgoing edge corresponds to an instruction operand and the destination node to the value 

produced by the instruction. Figure 4 shows a sample code fragment and its 

corresponding DDG. The code computes the sum of elements of an array A of 5 integers 

(denoted by size) and stores the sum in the variable sum. The table in the figure shows the 

mapping between the DDG nodes and the instructions, as well as the effect of executing 

the instructions. Not all nodes in the DDG correspond to the instructions, e.g., nodes 1, 3, 

8, 13, 23, and 28 represent memory locations used by the code fragment.  
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Code Fragement Explanation Nodes in DDG 

               ADDI R1, R0, 0 

               LW R2, [size] 

               ADDI R4, R0, 0  

LOOP:   LW R3, R1[ A ] 

               ADD R4, R4, R3 

               ADDI R1, R1, 1 

               BNE R1, R2, LOOP 

               SW [Sum], R4 

R1  R0                               

R2  [ size ]                               

R4  R0                               

R3  A[ R1 ]                               

R4  R4 + R3                             

R1  R1 + 1                               

If (R1!=R2) then goto Loop       

[Sum]  R4                                 

6 
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0 

5, 10, 15, 20, 25 
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Figure 4: Example code fragment and its dynamic dependence graph (DDG)  

The following observation can be made based on the DDG: 

 Every value-producing instruction has a corresponding node in the DDG (shown by 

an arrow from the instruction to its node label in the DDG) 

 Memory locations are represented as DDG nodes when they are first read or written 

e.g., in Figure 4, Nodes 1 and 28 represent memory locations size and sum 

respectively and nodes 3, 8, 13, 18 and 23 represent the array locations A[0] to A[4].  
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Constants are not represented in the DDG (e.g., 0 and 1 are not represented in the DDG, 

though they appear as instruction operands). Similarly, register names and memory 

addresses are not stored in the DDG (though they are shown in the figure for 

convenience). 

 The same register/memory location can be mapped onto multiple nodes in the DDG 

just as a given register or memory location can have multiple value instances during 

the execution, e.g., in Figure 4, value produced in register R1 is mapped onto nodes 6, 

11, 16, 21, 26, one for each loop iteration.  

 Each edge of the DDG is marked with the letter, which represents the role of the 

operand in the instruction: M – a memory operand, A – an address operand, P – a 

regular operand, B – an operand used as a branch target, F – a function address 

operand and S – a system call operand. 

 The data dependences resulting from control transfer instructions are directly stored 

in the DDG. In Figure 4, the program executes a jump statement and control is 

transferred to the location LOOP at the end of a loop iteration. The data dependences 

across loop iterations are represented directly in the DDG, without storing the fact 

that they are dependent upon the control transfer instruction.  

Function calls and returns are also represented in the DDG (not present in the example in 

Figure 4). Most of the semantics of function calls such as setting up and tearing down of 

the stack frame and parameters passing already present in the assembly code are 

automatically included as part of the DDG. However, calling conventions cannot be 
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extracted from the machine code and are explicitly specified in the DDG. For example, in 

the SPARC architecture, the register R2 is used to store the return value of a function and 

this must be incorporated in the DDG to analyze dependences across function calls and 

returns. The DDG also incorporates dependences caused by system calls (not present in 

the example in Figure 4). 

In this study, the method used to construct the DDG is similar to the one proposed in 

[46]. The reader interested in techniques for DDG generation can refer to [47]. 

2.3.2 Fault Model 

This study considers the impact of faults in data values produced during the course of a 

program‟s execution. Our fault model assumes that any dynamic value in a program can 

be corrupted at the time of the value‟s definition. This corresponds to an incorrect 

computation of the value mainly due to transient (or soft) errors and includes all values 

written to memory, registers and the processor cache. Note that the assumed fault model 

also covers errors that arise due to some categories of software faults, e.g., 

assignment/initialization (an un-initialized or incorrectly initialized value is used) and 

checking (a check performed on the variable fails, which is the equivalent of an incorrect 

value of a variable being used) [48].  

2.3.3 Crash Model 

 Since the ultimate goal is to ensure crash-failure semantics for an application, we first 

introduce a crash model. It is assumed that crashes can occur as a result of: (i) illegal 

memory references (SIGBUS and SIGSEGV), (ii) divide-by-zero and overflow exceptions 
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(DIVBYZERO, OVERFLOW), (iii) invocation of system calls with invalid arguments, and 

(iv) branch to an incorrect or illegal code (SIGILL). These four categories can be 

represented in the Dynamic Dependence Graph (DDG) described in the previous section 

as follows: 

1. A value used as an address operand in a load or store instruction is corrupted and 

causes the reference to be misaligned or outside a valid memory region. 

2. A value used in an arithmetic or logic operation is corrupted and causes a divide-by-

zero exception or arithmetic overflow. 

3. A value used as a system call operand is incorrect or the program does not have the 

permissions to perform a particular system call.  

4. An operand used as the target of a branch or as the target address of an indirect 

function call is corrupted, causing the program to jump to an invalid region or to a 

valid (part of the application) but incorrect (from the point of view of the application 

semantic) region of code. 

Usually, corruption of pointer data is much more likely to cause a crash than non-pointer 

data, as shown by earlier studies, e.g.Kao [49],. Therefore, this study considers only 

crashes due to: (i) corruption of values used as address operands of load/store instructions 

(the first category) and (ii) corruption of values used as targets of branches and function 

calls (the last category discussed above). While the model does not consider corruption of 

system call operands and operands of arithmetic and logic instructions, we found that in 

practice (i.e., in real programs), the percentage of crashes missed by the model is small. 
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Analysis of error propagation. The dynamic execution traces provided by DDG are used 

to reason about error propagation from one value to another. It is assumed that a fault 

originating in a node (value) of the DDG can potentially propagate to all nodes that are 

successors of this node in the DDG.  

2.3.4 Metrics Derived from the Models 

In order to strategically place detectors, we develop a set of metrics for selecting 

locations in the program which can provide high crash detection coverage. The metrics 

are derived based on the DDG of the program. In order to enable placement of detectors 

in the code, a notion of static location of a value is introduced. The static location of a 

value is defined as the address of the instruction that produces the value. Metrics 

employed are as follows: 

1. Fanout: The fanout of a node is the set of all immediate successors of the node in the 

DDG. In terms of values, it is the set of uses of the value represented by the node. 

The fanout of a node indicates how many nodes are directly impacted by an error in 

that node.  

2. Lifetime: The lifetime of a node is the maximum distance (in terms of dynamic 

instructions) between the node and its immediate successors. In terms of values, it is 

the maximum dynamic distance between the def and use of a value. The lifetime 

evaluates the reach of the error in the program‟s execution, as typically values with a 

long lifetime are global variables or global constants, and an error in these values can 

affect values that are distant from the current execution context of the program.  
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3. Execution: The execution of a node is the number of times the static location 

(program counter) associated with the value is executed. Execution reflects the 

intuition that locations that are executed more frequently are a good place to embed a 

detector.  

4. Propagation: The propagation of a node is the number of nodes to which an error in 

this node propagates before causing a crash. The propagation is somewhat similar to 

the fanout, but while the fanout considers only the first level of error propagation, the 

propagation metric characterizes error propagation across multiple levels.  

5. Cover: The cover of a node is the number of nodes from which an error propagates to 

a given node before causing a crash. Nodes with a high cover usually have many 

error-propagation paths passing through them and consequently, these nodes are a 

good location for placing detectors to enable preemptive crash detection. 

Since detectors are placed in the static code of the program, each node selected (based on 

the computed metrics) to place a detector must be mapped onto the static locations in the 

program. Note that multiple nodes in the DDG can be mapped onto a single static 

location.  Consequently, aggregation functions must be defined to compute overall 

metrics corresponding to a given static program location based on the metrics of the 

nodes that map onto this location. In the case of fanout, propagation and cover metrics, 

set union operation is used to compute the aggregate set and the cardinality of the 

aggregate set is calculated as the aggregate fanout, propagation and cover of that 
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location. For lifetimes and execution, the aggregate value of the metric at a location is 

computed as the average of the metric values of the nodes that map onto this location. 

For the example in Figure 4, nodes 6, 11, 16, 21, 26 map onto the value produced by the 

static instruction ADDI R1, R1, 1. The instruction has the following metric values: 

 The aggregate fanout of the instruction is the cardinality of the union of the set of 

immediate successors of 6, 11, 16, 21 and 26, namely the cardinality of the set which is 

equal to 15.  

 The aggregate lifetime of the instruction is the average of the lifetimes of the nodes 6, 

11, 16, 21, and 26. The lifetime of each of these nodes is 4 dynamic instructions (the 

length of a loop iteration), except for 26 for which it is only one dynamic instruction (the 

last loop iteration). Therefore, the aggregate lifetime of the instruction is 4.25.  

 The aggregate execution value for the instruction is 5, as the loop is executed 5 times. 

For computing the propagation and cover metrics, we need to locate the points at which 

the program can crash. The crash-set of a node in the DDG is the set of all nodes at 

which a crash can potentially occur due to an error in that node. The crash-point of a 

node is the earliest point in the error‟s propagation (not to be confused with the 

Propagation metric) at which a crash can occur because of a pointer corruption or 

corruption of a branch/function call target address
2
. For each node N in the DDG, we 

                                                 

2 This follows from the crash model defined in Section 4, in which only corruptions of pointers and function/branch targets are 
assumed to cause crashes. 
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denote by Crash(N)  the crash-point of N
3
. In case there is no crash due to a fault at N, 

we assume that Crash(N) is nil. For the example in Figure 4, the crash-points of nodes 6, 

11, 16, 21 and 26 are nodes 5, 10, 15, 20, 25 respectively as these are used as address 

operands in the instruction LW R3, A(R1).   

The crash-distance of a node is the distance between the node and its crash-point in the 

DDG and can be defined in terms of the successor nodes. 
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The aggregate propagation of a location can be computed as the cardinality of the union 

of the propagation sets of the nodes in the DDG, which map onto this location. For the 

example in Figure 4, the aggregate propagation of the node corresponding to the 

instruction ADDI R1, R1, 1 is 10, as the union of the propagation sets of its DDG nodes 

6, 11, 16, 21, 26 is the set of nodes {6, 11, 16, 21, 26, 5, 10, 15, 20, 25}. Note that 

although the nodes 7, 12, 1, 22, 27 are successors of the nodes 6, 11, 16, 21 and 26, they 

                                                 

3
 In the rare case a node has multiple crash points, we arbitrarily pick one of them to be Crash(N) 
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do not appear in the propagation sets as their distance from these nodes (4) is greater than 

the crash-distance of the nodes (2). 

Once the propagation metric is computed, the cover metric can be computed as follows: 

A node M is in the cover of N if and only if N belongs to the propagation of M. This is 

because any fault in N must propagate to M before causing a crash if M belongs to the 

Cover of N (by definition). In the example in Figure 4, the aggregate cover of the node 

corresponding to the instruction LW R3, R1(A) is the cardinality of the union of the cover 

sets of its nodes in the DDG, namely 5, 10, 15, 20 and 25. This is the set {6, 11, 16, 21, 

26}, as the nodes 5, 10, 15, 20 and 25 collectively appear in the propagation sets of nodes 

6, 16, 11, 21 and 26. Hence, the aggregate cover is 5, which is the cardinality of the set. 

2.4 EXPERIMENTAL SETUP  

This section describes the experimental infrastructure and application workload used to 

evaluate the model and the metrics. The experiment is divided into three parts: 

 Tracing: The application program is executed and a detailed execution trace is 

obtained containing all the dynamic dependences, branches and load/store instructions.  

 Analysis: The trace is analyzed, the dynamic dependence graph (DDG) constructed 

and the metrics for placing detectors are computed; this part is done offline.  

 Fault-injection: Fault-injections are performed to evaluate the choice of the detector 

points. A fault is injected at random into a value used in the program. The values at the 

detector points are recorded and compared with the corresponding values in the golden 
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(error-free) run of the application. Any deviation between the values in the golden run 

and the faulty run indicates successful detection of the error. 

2.4.1 Infrastructure 

The tracing of the application and the fault-injections are performed using a functional 

simulator in SimpleScalar family of processor simulators [50]. The simulator allows fine-

grained tracing of the application without perturbing its state or modifying the application 

code and provides a virtual sandbox to execute the application and study its behavior 

under faults.  

We modified the simulator to track dependences among data values in both registers and 

memory by shadowing each register/location with four extra bytes
4
 (invisible to the 

application) which store a unique tag for that location. For each instruction executed by 

the application, the simulator prints (to the trace file) the tag of the instruction‟s operands 

and the tag of the resulting value to the trace. The trace is analyzed offline by specialized 

scripts to construct the DDG and compute the metrics for placing detectors in the code. 

The top hundred points according to each metric are chosen as locations for inserting 

detectors.  

The effectiveness of the detectors is assessed using fault injection. Fault locations are 

specified randomly from the dynamic set of tags produced in the program. In this mode, 

the tags are tracked by the simulator, but the executed instructions are not written to the 

                                                 

4 This allows upto 2^32 unique tags or IDs to be tracked simultaneously, which was sufficient for the programs in our experiments. 
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trace. When the tag value of the current instruction equals the value of a specified fault 

location, a fault is injected by flipping a single-bit in the value produced by the current 

instruction. Once a fault is injected, the execution sequence is monitored to see if a 

detector location is reached. If so, the value at the detector location is written to a file for 

offline comparison with the golden run of the application. Table 3 shows the errors 

detected by the simulator and their mapping into consequence in a real system. It also 

explains the detection mechanism in the simulator. 

Table 3: Types of errors detected by simulator and their real-world consequences 
Type of error detected Consequence in a real system Simulator detection mechanism 

Invalid Memory Access Crash (SIGSEGV) Consistency checks on address range 

Memory alignment Error Crash ( SIGBUS) Check on memory address alignment 

Divide-by-Zero Crash (SIGFPE) Check before DIV operation 

Integer Overflow Crash (SIGFPE) Check after every integer operation 

Illegal Instruction Crash (SIGILL) Check instruction validity before decoding 

System Call Error Crash (SIGSYS) None, as simulator executes system calls on 

behalf of application 

Infinite loops Program Hang (live-lock) 

Program continuously issues 

instructions and never terminates 

Program executes of a double number of 

instructions as compared with the golden run  

Indefinite wait due to 

blocking system calls or 

interminable I/O  

Program Hang (deadlock) 

Program stops issuing instructions 

and never terminates  

Program execution takes substantially longer 

time (five times in our experiments) than the 

golden run 

Incorrect Output Fail-Silent Violation 

(silent data corruption)  

Compare outputs at the end of the run 

2.4.2 Application Programs 

The system is evaluated with four programs from the Siemens suite [51] and two 

programs from the SPEC95 benchmark suite . These benchmark applications range from 

a few hundred lines of code (Siemens)
5
 to hundreds of thousands of lines of code 

(SPEC95). A brief description of benchmarks is given in Table 4. 

                                                 

5 tcas from the Siemens suite is omitted as it is very small program (less than 200 lines of C code) and there was insufficient 
separation among the different metrics used in the study.  
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Table 4: Benchmarks and their descriptions 
Benchmark Name Suite Description 

Replace Siemens Searches a text file for a regular expression and replaces all occurrences of the 

expression with a specified string 

Schedule2 Siemens A priority scheduler for multiple job tasks 

Print_tokens Siemens Breaks the input stream into a series of lexical tokens according to pre-specified rules 

Tot_info Siemens Offers a series of data analysis functions 

Gcc95 SPEC95 The gcc compiler,  compiled with gcc (optimization level 0) 

Perl SPEC95 The perl interpreter, compiled with gcc (optimization level 0) 

 

Each of these applications is executed for three inputs. For the Siemens programs, the 

inputs are chosen from the provided set of inputs. For gcc95 and perl, we created inputs 

of reduced size (as compared to the original SPEC workloads) since our analysis scripts 

were unable to handle the extremely large dynamic traces of the SPEC workloads. Also, 

for the SPEC benchmarks, infrequently executed dynamic control paths that contributed 

to less than 20 % of the cumulative execution time are removed from the DDG (this 

constitutes 80 % of program paths).  

For each program, the dynamic trace from one of the inputs is chosen to build the DDG 

and to perform the analysis to choose detector points (the top 100 locations according to 

each metric). Fault-injections are then performed at randomly-chosen values in the 

application‟s execution for all three inputs. For each application, input, and metric used to 

choose the detector points, faults are injected at 500 random locations, randomly flipping 

a single bit of a value. This is done 10 times for each location leading to a total of 5000 

fault injections for each combination of application, input and metric. One fault is 

injected per run to eliminate the possibility of latent errors due to earlier injected faults.  
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2.5 RESULTS 

The results obtained from the experiments are analyzed with the objective to answer the 

following questions: 

 What is the detection coverage provided by individual detectors placed according to 

a given metric? 

 What is the rate of benign errors of individual detectors placed according to a given 

metric? 

 What is the detection coverage provided jointly by multiple detectors placed 

according to a given metric? 

 What is the rate of benign errors of multiple detectors placed according to a given 

metric? 

2.5.1 Detection Capability of Metrics for Single Detectors 

This section evaluates the detection coverage provided by individual detectors placed 

according to different metrics. All results represent the average calculated for each 

application across three inputs. The detector points that registered a value deviation for an 

injection are associated with the outcome of the injection. The results for each outcome 

category (crash, hang, fail-silent violation, success) are normalized across the total 

number of errors observed under that category (for each benchmark-metric combination) 

and are shown in Figures 5, 6, 7 and 8 for crash, successes, fail-silent violations, and 

hangs, respectively. The following results can be concluded from the graphs: 
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Detectors placed according to the fanout and propagation metrics are the best at detecting 

crashes. They are followed by detectors placed according to the cover metric. Random 

detector placement is the worst in detecting crashes across all benchmarks (see Figure 5). 

The maximum coverage provided by fanouts and propagation detectors is more than 90 

% for the Siemens benchmarks (with the exception of tot_info). For the SPEC 

benchmarks (and for tot_info), the coverage is between 50% and 60 %.  

The percentage of benign errors is relatively small – less than 2 % for all benchmarks 

except replace (see Figure 6). The higher false positive rates for gcc95 and perl are 

registered by detectors placed using fanout (1.5%) and propagation (2 %) metrics.  

Although the detector points were chosen to support crash-detection, they also detect a 

significant percentage of fail-silent violations (30% to 70 % for detectors placed using 

fanout and propagation metrics as shown in Figure 7).  

Hangs are best detected by detectors placed using the fanout and the propagation metric 

for all benchmarks except tot_info (Figure 8).  The coverage is 80% to 90 % for the 

Siemens benchmarks and 50% to 60 % for the SPEC95 benchmarks. 
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Figure 5: Crashes detected by metrics across benchmarks 
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Figure 6: Benign errors detected by metrics across benchmarks 
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Figure 7: Fail-silent Violations detected by metrics across benchmarks 
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Figure 8: Hangs detected by metrics across benchmarks 
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2.5.2 Discussion 

Locations having high fanouts and propagation are responsible for propagating errors to 

a large number of places in the DDG, and it is likely that at least one of the propagated 

errors causes a crash. Detectors placed using fanouts are marginally better than those 

inserted using propagation. The key reasons for the differences are (i) propagation relies 

on the accuracy of the crash model in deciding on the further propagation of the error 

while fanouts does not take the crash model into account and is more conservative and 

(2) locations with a high fanout are often stack or frame pointers. These locations are 

frequently accessed by the program and hence, an error is likely to crash the program. 

The execution metric is a good indicator for placing detectors in the Siemens benchmarks 

where infrequently executed paths are not pruned. The same metric, however, does not 

perform well in the SPEC benchmarks where paths that contribute to less than 80 % of 

the execution time are already removed. 

The SPEC benchmarks are more complex that the Siemens benchmarks and execute more 

than 1 million dynamic instructions, while the Siemens benchmarks typically execute less 

than 100,000 dynamic instructions (only tot_info in the Siemens suite executes between 

100000 and a million instructions). As a result, the probability of the error reaching the 

detector is higher in the case of the Siemens benchmarks than for the SPEC95 

benchmarks. Hence, the detection coverage for replace, schedule2 and print_tokens 

ranges between 80% and 90 % as compared with 50% to 70 % for gcc, perl and tot_info. 
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Detectors placed using the lifetime metric do not have high crash-detection coverage as 

the error is likely to remain latent for a long time in a high lifetime node and a crash is 

unlikely to occur due to this error.  

The lower effectiveness of detectors placed using the cover metric as compared to 

propagation and fanout stems from the fact that cover aims at placing detectors along 

paths leading to potential crash-points while propagation and fanouts place detectors 

along paths that can potentially spawn errors in many nodes. Typically, the number of 

locations with high fanouts or propagation is small (these metrics follow a Pareto-Zipf 

law like distribution) while the number of potential crash-points of the application is 

much larger.  This result shows that it is more beneficial to place detectors to protect 

these few highly-sensitive values, rather than place detectors along the paths that lead to 

potential crash points.  

The false-positive rate for all metrics is less than 2 % for all benchmarks except replace. 

A false positive means that the error was detected by a detector point, but the program 

completed successfully (and produced correct output). The number of instructions 

executed by replace is around 10000, and hence the probability of an error reaching the 

detector is high even if the error does not trigger a failure. For gcc and perl, the benign 

error detection rates are higher than schedule2, print_tokens and tot_info as hot-paths are 

considered for these two programs. 
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2.5.3 Detection Capabilities of Metrics for Multiple Detectors 

The previous section considered the detection provided by placing a single detector in 

each of the benchmark programs. For the Siemens benchmarks (except tot_info), this was 

sufficient to provide a coverage of 90 %. However, for applications such as gcc and perl, 

a single detector could achieve up to 60 % coverage. In this section, we evaluate the 

coverage provided jointly by multiple detectors placed in the gcc95 and perl applications.  

The top hundred detector locations selected by each metric are grouped into bins of a 

predefined size and the cumulative coverage of detectors placed at locations indicated by 

a bin is evaluated. For example, to evaluate the coverage of the fanout metric with a bin 

size of 10, the top 100 locations with the highest fanouts are arranged in decreasing order 

by their fanout value. The top 10 locations are then grouped into a bin 1, the next ten 

locations into a bin 2 and so on up to a bin 10. The crash-detection coverage of each bin 

as a whole is evaluated and the average coverage of the 10 bins is the crash-detection 

coverage for the fanout metric with the bin size of 10. The results for crash detection, 

benign error detections, fail-silent violations and hangs are shown in Figures 9 to 14 as a 

function of the bin size. The results for gcc95 are summarized below, and similar trends 

are observed for perl. 



50 

 

Crash-Detection Coverage versus Bin Size (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y Fanouts

Lifetimes 

Random

Execution

Propagation

Cover

 
Figure 9: Effect of bin size on crash detection 

coverage for gcc  

 

Crash Detection versus Bin Size (perl)
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Figure 10: Effect of bin size on crash 

detection coverage for perl 

 

False-Positives versus Bin size (gcc95)
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Figure 11: Effect of bin size on benign error detection 

rate for gcc 
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Figure 12: Effect of bin size on benign 

error detection rate for perl 
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Figure 13: Effect of bin size on fail-silent violation 

coverage for gcc 
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Figure 14: : Effect of bin size on fail-

silent violation coverage for perl 
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For detectors placed using fanouts and propagation, the crash-detection coverage is less 

than 60 % when the bin size is 1 (as discussed in Section 8.1). Increasing the bin size to 

10 improves coverage to 80% (see Figure 9). 

For a bin size of 1, the coverage provided by detectors placed according to lifetime is less 

than 40 %. However, for a bin size of 10, the coverage is almost equal to the one 

provided by detectors placed according to fanout and propagation metrics. For a bin size 

of 25 and 100, it even surpasses the coverage of detectors placed using fanouts, providing 

coverage values of 90 % and 99 %, respectively (see Figure 9). 

The percentage of benign error detections also increases with increasing bin-size, but not 

as much as the crash-detection coverage. For example for detectors placed using the 

fanout metric, the coverage is around 80% when the bin size is 10, but the number of 

benign error detections remains around 5% (see Figure 11).  

The increase in the benign error detection rate for lifetimes is much lesser than fanouts. 

The benign error detection percentage for lifetimes is only 5 % for a bin size of 100 

compared to 10 % for fanouts for the same bin size. When 10 or more detectors are 

considered, placement based on the lifetime metric provides the best coverage and the 

lowest rate of benign error detections (see Figure 11). 

Random detector placement provides coverage of 95 % (see Figure 9) when the bin size 

is 100. Further, it has the smallest percentage of benign error detections (2.5 %; see 

Figure 11), making random placement of multiple detectors a good choice when 

minimizing benign error detections is critical.  
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The fail-silent violation coverage is the highest for detectors placed using the fanout 

metric (70 % for a bin size of 10, see Figure 13). For a bin size of 100, detectors placed 

using the execution metric surpass the detectors placed using fanout.  

2.5.4 Discussion 

For all metrics, the coverage increases with increase in the bin size as the number of 

detector points increases. The increase in the coverage however flattens out as the bin 

size increases, as there is considerable overlap among the multiple detector points in 

detecting crashes. For example, for detectors placed using the fanout metric, grouping 

detectors into bins of size 5 increases the coverage to 75 % (from the 60% coverage 

provided by individual detectors). However, the increase in coverage is lesser when the 

bin size increases to 10 (coverage 80%). 

Detectors at locations with a high lifetime provide limited coverage individually, but 

several of them jointly achieve very high coverage. This is because each detection point 

covers a different set of errors. Closer analysis of the results indicates that there is usually 

one hot-detector in each bin, which detects the majority of errors covered by that bin, and 

the other detectors complement the coverage by detecting errors that escape the hot-

detector. These errors are also not easily detectable by the detectors placed using other 

metrics 

2.5.5 Summary of Results 

This section summarizes the results from the previous two sections as follows: 
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Detectors placed using the fanouts metric have the best coverage in the program, when 

single detectors are considered. The coverage provided is 90 % for the Siemens 

benchmarks and 50-60 % for the SPEC benchmarks. The percentage of benign error 

detections detected by the detectors is less than 5 % for all the programs considered. 

When multiple detectors are placed using the fanouts metric, the coverage increases to 97 

% by inserting detectors at less than 1 % of the hot-paths (and to 80 % at less than 0.1 % 

of the hot-paths). There is considerable overlap in the detection capabilities of assertions 

which leads to the diminishing increase in coverage as the number of assertions is 

increased. The knee of the curve seems to be about 25 detectors. 

In the multiple detector case, the coverage provided by the detectors placed using the 

lifetimes metric is higher than the coverage provided by detectors placed using the 

fanouts metric (when 10 or more detectors are inserted). Further, the percentage of false 

positives for detectors placed using lifetimes is smaller than the percentage of false 

positives for detectors placed using fanouts.  

2.6 CONCLUSIONS  

This chapter explores the problem of detector placement in programs to preemptively 

detect crashes arising due to errors in data values used within the program. A model for 

error propagation and crashes is developed and metrics for placing detectors are derived 

from the model. The metrics are evaluated on six applications, including two SPEC95 

benchmarks. It is found that strategic placement of detectors can increase crash coverage 

by an order-of-magnitude compared to random placement. 
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CHAPTER 3 DYNAMIC DERIVATION OF ERROR 

DETECTORS 

3.1 INTRODUCTION 

This chapter presents a technique to derive and implement error detectors that protect 

programs from data errors. These are errors that cause a divergence in data values from 

those in an error-free execution of the program. Data errors can cause the program to 

crash, hang, or produce incorrect output (fail-silent violations). Such errors can result 

from incorrect computation, and they would not be caught by generic techniques such as 

ECC (in memory).  

Many static and dynamic analysis techniques (Prefix [52], LCLint [53], Daikon [43]) 

have been proposed to find bugs in programs. However, these techniques are not geared 

toward detecting runtime errors as they do not consider error propagation. To detect 

runtime errors, we need mechanisms that can provide high-coverage, low-latency (rapid) 

error detection to: (i) preempt uncontrolled system crash/hang and (ii) prevent 

propagation of erroneous data and limit the extent of the (potential) damage. Eliminating 

error propagation is essential because programs, upon encountering an error that could 

eventually lead to a crash, may execute for billions of cycles before crashing [14]. During 

this time, the program can exhibit unpredictable behavior, such as writing corrupted state 

to a checkpoint [38] or sending a corrupted message to another process [37], which in 

turn could result in extended downtimes [8].  
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It is common practice for developers to write assertions in programs for detecting runtime 

errors. For example, Andrews [54] discusses the use of executable assertions (checks for 

data reasonableness) to support testing and fault-tolerance. Assertions are usually specific 

to the application require considerable programmer effort and expertise to develop 

correctly.  Further, placing assertions in the wrong places could hinder their detection 

capabilities [55].  

Hiller et al. propose a technique to derive assertions in an embedded application based on 

the high-level behavior of its signals [56]. They facilitate the insertion of assertions by 

means of well-defined classes of signal patterns. In a companion paper, they also describe 

how to place assertions by performing extensive fault-injection experiments[40]. 

However, this technique requires that the programmer has extensive knowledge of the 

application. Further, performing fault-injection may be time-consuming and cumbersome 

for the developer. Therefore, it is desirable to develop an automated technique to derive 

and place detectors in application code.  

Our goal is to devise detectors that preemptively capture errors impacting the 

application and to do so in an automated way without requiring programmer intervention 

or fault-injection into the system. In this chapter, the term “detectors” refers to 

executable assertions used to detect runtime errors. This chapter contributes with the 

following techniques: 

1. Derivation of error detectors based on the dynamic execution traces of the 

application instrumented at strategic points 



56 

 

2. Synthesis of custom hardware (VHDL code) to implement the derived detectors, 

in order that they can be executed in parallel with the execution of the application  

3. Evaluation of the coverage of the derived detectors using fault-injection 

experiments,  

4. Evaluation of the overhead of the detector hardware through synthesis of VHDL 

code 

3.2 APPROACH AND FAULT-MODELS 

The derivation and implementation of the error detectors in hardware and software 

encompasses four main phases as depicted in Figure 15. The analysis and design phases 

are related to the derivation of the detectors, while the synthesis and checking phase are 

related to the implementation and deployment of the derived detectors at run-time 

respectively.  

 

Figure 15: Steps in detector derivation and implementation process 
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During the analysis phase, the program locations and variables for placing detectors to 

maximize coverage are identified, based on the Dynamic Dependence Graph (DDG) of 

the program. Fault-injections are not required to choose the detector variables and 

locations. We choose the locations for detector placement based on the Fanouts 

heuristic[17].  

The program code is then instrumented to record the values of the chosen variables at the 

locations selected for detector placement. The recorded values are used during the design 

phase to choose the best detector that matches the observed values for the variable, based 

on a set of pre-determined generic detector classes (Section 3.3).  

After this stage, the detectors can either be integrated into application code as software 

assertions or implemented in hardware. In this chapter we consider a hardware 

implementation of the derived detectors. The synthesis phase converts the generated 

assertions to a HDL (Hardware Description Language) representation that is synthesized 

in hardware. It also inserts special instructions in the application code to invoke and 

configure the hardware detectors. This is explained in Section 3.5.  Finally, during the 

checking phase, the custom hardware detectors are deployed in the system to provide 

low-overhead, concurrent run-time error detection for the application. When a detector 

detects a deviation from the application‟s behavior learned during the design phase, it 

flags an error. 

Fault Model - The fault model covers errors in the data values used in the program‟s 

execution. This includes faults in: (1) the instruction stream that result in the wrong op-
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code being executed or in the wrong registers being read or written by the instruction, (2) 

the functional units of the processor which result in incorrect computations, (3) the 

instruction fetch and decode units, which result in an incorrect instruction being fetched 

or decoded (4) the memory and data bus, which cause wrong values to be fetched or 

written in memory and/or processor register file. Note that these errors would not be 

detected by techniques such as ECC in memory, as they originate in computation. 

The fault-model also represents certain types of software errors that result in data-value 

corruptions such as: (1) synchronization errors or race conditions that result in 

corruptions of data values due to incorrect sequencing of operations, (2) memory 

corruption errors, e.g., buffer-overflows and dangling pointer references that can cause 

arbitrary data values to be overwritten in memory, and (3) use of un-initialized or 

incorrectly initialized values, as these could result in the use of unpredictable values 

depending on the platform and environment.  

3.3 DETECTOR DERIVATION ANALYSIS 

In this chapter, an error detector is an assertion based on the value of a single variable
6
 of 

the program at a specific location in its code. A detector for a variable is placed 

immediately after the instruction that writes to the variable. Since a detector is placed in 

the code, it is invoked each time the program location at which the detector is placed is 

executed. 

                                                 

6 In this chapter, the term variable refers to any register, cache or memory location that is visible at the assembly-code level.  
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Consider the sample code fragment in Table 5. Assume that the detector placement 

methodology has identified variable k as the critical variable to be checked within the 

loop. Although this example illustrates a simple loop, our technique is general and does 

not depend on the structure of the source program. In the code sample, variable k is 

initialized at the beginning of the loop and incremented by 1 within the loop. Within the 

loop, the value of k is dependent on its value in the previous iteration. Hence, the rule for 

k can be written as “either the current value of k is zero, or it is greater than the previous 

value of k by 1.” We refer to the current value of the detector variable k as ki and the 

previous value as ki-1. Thus, the detector can be expressed in the form: (ki – ki-1 == 1) or 

(ki == 0). 

Table 5: Example code fragment 

void foo() { 
         int k = 0;   

         for (; k<N; k++) { 

       …. 
      } 

} 

 

As seen from the above example, a detector can be constructed for a target variable by 

observing the dynamic evolution of the variable over time. The detector consists of a rule 

describing the allowed values of the variable at the selected location in the program, and 

an exception condition to cover correct values that do not fall into the rule. If the detector 

rule fails, then the exception condition is checked, and if this also fails, the detector flags 

an error. Detector rules can belong to one of six generic classes and are parameterized for 

the variable checked. The rule classes are shown in Table 6.  
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Table 6: Generic rule classes and their descriptions  

Class Name Generic Rule (ai , ai-1) Description 

Constant ( ai == c ) 
The value of the variable in the current invocation of the detector is a constant 
given by parameter c.  

Alternate 
(( ai == x /\ ai-1== y )) \/ ( ai 

== y /\ ai-1== x ) 

The value of the variable in the current and previous invocations of the detector 

alternates between parameters x and y respectively. 

Constant-
Difference 

 ( ai - ai-1 == c ) 
The value of the variable in the current invocation of the detector differs from its 
value in the previous invocation by a constant c. 

Bounded-

Difference 
( min <= ai - ai-1 <= max ) 

The difference between the values of the variable in the previous and current 

invocations of the detector lies between min and max. 

Multi-Value ai є { x, y, … } 
The value of the variable in the current invocation of the detector is one of the 
set of values x, y,  

Bounded-

Range 
( min <= ai  <= max ) 

The value of the variable in the current invocation of the detector lies between 

the parameters min and max. 

 

These rule classes are broadly based on common observations about the behavior of 

variables in the program. Note that, in all cases, the detector involves only the values of 

the variable in the current invocation (ai ) and/or the previous invocation (ai-1) in the same 

execution. 

The exception condition involves equality constraints on the current and previous values 

of the variable, as well as logical combinations (and, or) of two of these constraints. The 

equality constraints take the following forms: (1) ai == d, where d is a constant 

parameter; (2) ai-1== d, where d is a constant parameter; and (3) ai==ai-1. However, not 

all combinations of the above three clauses are logically consistent. For example, the 

exception condition (ai==1 and ai==2) is logically inconsistent, as ai cannot take two 

different values at the same time. Of the twenty seven possible combinations of the 

clauses, only eight are logically consistent.  

For the example involving the loop index variable k, discussed at the top of this section, 

the rule class is Constant-Difference of 1, and the exception condition is (ki == 0). This 

was derived automatically using the procedure detailed in this section. 
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3.4 DYNAMIC DERIVATION OF DETECTORS 

This section describes our overall methodology for automatically deriving the detectors 

based on the dynamic trace of values produced during the application‟s execution. By 

automatic derivation, we mean the determination of the rule and the exception condition 

for each of the variables targeted for error detection. The basic steps are as follows:  

The program points at which detectors are placed (both variables and locations) are 

chosen based on the Dynamic Dependence Graph (DDG) of the program as shown in 

[17].  

The program is instrumented to record the run-time evolution of the values of detector 

variables at their respective locations, and executed over multiple inputs to obtain 

dynamic-traces of the checked values.  We refer to the sequence of values at a detector 

location as a value stream for that location. 

The dynamic traces of the checked values obtained are analyzed to choose a set of 

detectors (both rule class and exception condition) that matches the observed values.  

A probabilistic model is applied to the set of chosen detectors to find the best detector for 

a given location. The best detector is characterized in terms of its tightness and execution 

cost of the detector. These terms are explained in the next subsection. 

3.4.1 Detector Tightness and Execution Cost 

A qualitative notion of tightness of a detector was first introduced in [57]. However, we 

define tightness in a precise, mathematical sense as the probability that a detector detects 

an erroneous value of the variable it checks. In mathematical terms, the tightness is the 
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probability that the detector detects an error, given that there is an error in the value of the 

variable that it checks. The coverage of the detector, on the other hand, is the probability 

that the detector detects an error given that there is an error in any value used in the 

program. Hence, in addition to the tightness, coverage also depends on the probability 

that an error propagates to the detector variable and location in the first place. The 

estimation of this probability is outside the scope of our technique.   

In order to characterize the tightness of a detector, we need to consider both the rule and 

the exception condition (introduced in section 3.3) as the error will not be detected if 

either passes. The tightness also depends on the parameters of the detector and the 

distribution of the observed stream of data values in a fault-free execution of the 

program. For an incorrect value to go undetected by a detector, either the rule or the 

exception condition or both must evaluate to true. This can happen in one of four 

mutually exclusive ways, as Table 7 shows.  

Table 7: Probability values for computing tightness 

Symbol Explanation 

P( R | R ) Probability that an error in a value that originally satisfied the rule (in a correct execution) also causes 
the incorrect value to satisfy the rule. 

P( R | X ) Probability that an error in a value that originally satisfied the exception condition (in a correct 

execution) causes the incorrect value to satisfy the rule. 

P( X | R ) Probability that an error in a value that originally satisfied the rule (in a correct execution) causes the 
incorrect value to satisfy the exception condition. 

P( X | X ) Probability that an error in a value that originally satisfied the exception condition (in a correct 

execution) causes the incorrect value to satisfy the exception condition. 

 

The tightness of a detector is defined as (1 – P(I)), where P(I) is the probability of an 

incorrect value passing undetected through the detector. This probability can be 

expressed using the terms in Table 7 as follows: 

P(I) =  P( R ) [ P( R | R ) + P( X | R ) ] + P( X ) [ P( R | X) + P( X | X ) ]                      (1) 
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where, P(R) is the probability of the value belonging to the rule, and the P(X) is the 

probability of the value belonging to the exception condition. 

The computation of tightness can be automated, since there are only a limited number of 

rule-exception pairs
7
. These probabilities can be pre-computed as a function of the 

detector‟s parameters as well as on the frequency of elements in the observed data stream 

for each rule-exception pairs. We will not list all the probabilities, but instead illustrate 

with an example. 

Example. Consider a detector in which the rule belongs to the class Bounded-Range with 

parameters min = 5 and max = 100 and the exception condition is of the form (ai==0).  

We make the following assumptions about errors in the program. 

(1) The distribution of errors in the detector variable is uniform across the range of all 

possible values the variable can take (say, N),  

(2) An error in the current value of the variable is not affected by an error in the previous 

value of the variable, and  

(3) Errors in one detector location are independent of errors in another detector location.  

These are optimistic assumptions, and hence the estimation of tightness is an upper bound 

on the actual value of detector tightness (and hence coverage). Relaxing these 

assumptions may require apriori knowledge of the application and error behavior in the 

application. 

                                                 

7 There are six types of rule classes and eight types of exception conditions, leading to a total of 48 rule-exception pairs. 
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Table 8 shows the pre-computed probability values for this detector in terms of N and the 

detector‟s parameters. Substituting these probability values in equation (1), we find: 

P(I) = P(R) [ 95/N + 1/N ] + P(X) [96/N + 0 ] 

 = (96/N)[ P(R) + P(X) ] = 96/N 

The above derivation uses the fact that P(R) + P(X) = 1,since the value must satisfy 

either the rule or the exception in an error-free execution of the program.  

Now, assume that the rule belongs to the Constant class (with parameter 5). Let us 

assume that the exception condition is the same as before. For this new detector,  

P(R|R) = 0, P(R|X) = 1/N, 

P(X|X) = 0 and P(X|R) = 1/N 

Substituting in equation (1), yields the following expression for P(I). 

P(I) = P(R) [ 0 + 1/N ] + P(X) [1/N + 0 ]= (1/N)[ P(R) + P(X) ]= 1/N 

Note that the probability of a missed error in the first detector is 96 times the probability 

of a missed error in the second detector. Hence, the tightness of the first detector is 

correspondingly much less than the tightness of the second detector (which is intuitive 

based on the detectors). 

The above model is used only to compare the relative tightness of the detectors, and not 

to compute the actual probabilities (which may be very small). The range of values for 

the detector variable represented by the symbol N gets eliminated in the comparison 

among detectors for the same variable and does not influence the choice of the detector.  
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Execution Cost. The execution cost of a detector is the amortized additional computation 

involved in invoking the detector over multiple values observed at the detector point. The 

execution cost of a detector is calculated as the number of basic arithmetic and 

comparison operations that is executed in a single invocation of the detector. An 

operation usually corresponds to a single arithmetic or logical operator.  Note that the 

computation of the execution cost assumes an error-free execution of the program. 

Table 8: Probability values for detector “Bounded-Range (5, 100) except: (ai==0)” 

Symbol Probability Value Explanation 

P (R | R) ( 95 / N ) Each rule value can turn into any of the other 95 rule values with equal probability. 

P (R | X) ( 96 / N )  An exception value can turn into one of 96 rule values with equal probability 

 P (X | R) ( 1 / N )  A rule value can incorrectly satisfy the exception condition if it turns into 0. 

P (X | X) 0 An exception value cannot change into another exception value, as there is only one value 

permitted by the exception condition (in this example). 

3.4.2 Detector Derivation Algorithm 

For each location identified by the detector placement analysis, the following steps are 

executed by the algorithm for detector derivation. 

1. To derive the detector, the rule class corresponding to the detector is chosen and 

the associated exception condition is formed. The algorithm to derive a detector 

for a particular variable and location is given below. We refer to the evolution of a 

program variable over time as the stream of values for that variable. 

2. To derive the rule, the rule classes in Table 6 are each tried in sequence against 

the observed value stream to find which of the rule classes satisfy the observed 

value stream. The parameters of the rule are learned based on appropriate samples 

(for each rule class) from the observed stream. For the same location, it is possible 
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to generate multiple rules that are considered as candidates for exception 

derivation in the next step.   

3. For each rule derived, the associated exception condition is derived based on the 

values in the stream that do not satisfy the rule. Each of the values that do not 

satisfy the rule is used as a seed for generating exception conditions for that rule. 

If it is not possible to derive an exception condition for the observed value as per 

the conditions in section 3.2, the current rule is discarded and the next rule is tried 

from the set of rules in step 2.  

4. For each rule-exception pair generated, the tightness and execution cost of the 

detector is calculated. The detector with the maximum tightness to execution cost 

ratio is chosen as the final detector for that location and is embedded as an 

assertion in the program‟s code 

3.5 HARDWARE IMPLEMENTATION 

In this chapter, we discuss the hardware implementation of the derived error detectors 

in context of the Reliability and Security Engine (RSE) framework [1]. The RSE is a 

reconfigurable processor-level framework that can provide a variety of reliability features 

according to the requirements and constraints imposed by the user or the application. The 

RSE Framework hosts (1) RSE modules, providing reliability and security services and 

(2) the RSE Interface that provides a standard, well-defined and extendible interface 

between the modules and the main processor pipeline. The interface collects the 

intermediate pipeline signals and converts it to the format required by the hardware 
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modules. The application interfaces with the RSE modules using special instructions 

called CHECK instructions.  

The detectors are implemented as a separate module of the RSE called the Error 

Detector Module (EDM). The detectors are invoked through the CHECK instructions. 

3.5.1 Synthesis of Error Detector Module 

The output of the algorithm to derive detectors in Section 3.4.2 is a list of detectors, 

one for each location. This list is used to synthesize hardware modules that interface with 

the RSE. The hardware implementation of error detectors chosen in the design stage 

encompasses two steps: (i) instrumentation of the target software application
 
with special 

instructions to invoke the hardware checkers, and (ii) generation of the Error Detector 

Module (EDM), a piece of customized hardware to check at run-time the execution of the 

program, and flag a signal when one of the detectors fires. These two phases are carried 

out at compile time. 

Each detector in the list of detectors derived in the design phases is characterized by the 

following attributes: (1) location of the detector in terms of the Program Counter (PC) 

value at which it is to be invoked, (2) processors‟ registers to check and (3) detector class 

and exception parameters. Special instructions are used to load the detectors into the 

EDM, one for each word of the detector. Figure 16 shows the format of each detector. As 

can be observed, each detector spans 6 words, and hence requires 6 instructions to be 

loaded into the EDM. 
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PC 

Rule Class Exception Condition 

Class 
Logical 
Register 

Param1 Param2 
Combination 
Rule 

Class1 Class2 
Exception 
Param1  

Excepti
on 

Param2 

32 bit 3 bit 5 bit 32 bit 32 bit 2 bit 2 bit 2 bit 32 bit 32 bit 

Figure 16 - Format of each detector and bit width of each field 

In our current deployment, the application code is in the form of assembly code. The 

header of the code is instrumented with CHECK instruction loading all the detectors 

needed for the execution of the entire code. This solution minimizes the performance 

overhead but requires larger storing units in hardware, as explained in Section 7.1. After 

the instrumentation, the modified code is assembled and converted (Assembling/Linking 

phase) into an executable. 

Figure 17 shows the automated design flow starting from the application code to the 

hardware. Given the application code (in the form of assembly code or program binary), 

the design flow delivers the instrumented application code and the hardware description 

of the Error Detector Module tailored for the target application. The target processor 

description (a DLX-like processor in the current implementation [58]) and the 

configuration information are used to extract (from the main pipeline of the processor) 

the signals that are needed by the EDM. 

The output of the Error Detector Module generation phase in Figure 17 is a VHDL 

representation of the EDM. The synthesis procedure then instantiates hardware 

components from the VHDL representation. These are considered in detail in Section 

3.5B.  
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Figure 17: Design flow to instrument application and generate the EDM 

3.5.2 Structure of Error Detector Module 

Figure 18 shows the overall architecture of the Error Detector Module (EDM). As 

mentioned before, the EDM is implemented as a module in the Reliability and Security 

Engine (RSE). 

 

Figure 18: Architectural diagram of synthesized processor 
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The main components of the EDM are as follows: 

Shadow Register File (SRF) – keeps track of current and last values of the 

microprocessor‟s registers checked by the detectors (i.e., ai and ai-1, where a can be any 

architectural register). This component delivers the required values ai and ai-1 when a 

detector is executed as required by the expressions in Table 1. When a new value 

regValue is written at time i by the processor in the register R of the processor file (based 

on the value regSel), a copy of the new value Ri is stored in the SRF. The old value Ri-1 is 

also retained. Since not all the registers of the processor architecture have to be checked 

by the detectors, a mapping between the physical addresses of the microprocessor 

registers and the logical addresses of the corresponding registers in the SRF is kept in the 

block Phys2Log.  

Detector Table – stores the information needed for a detector. The size of the Detector 

Table grows linearly with the number of detectors needed by an application. It is 

implemented by the following component: (1) comparators checking the current PC 

against the PCs of the detectors and triggering them if necessary; (2) a RAM hosting the 

parameters of rules and exceptions. When a detector is triggered by the current PC, the 

Detector Table selects (1) the register R that has to be checked from the SRF forcing the 

values Ri-1 and Ri-1 to be placed on the dual data-path busses, and (2) activates the Rule 

and Exception Checkers to compute the detector conditions. The Error Signal 

Computation flags the Violation Detection signal to indicate a detected error. 
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Rule and Exception Checkers – are the actual data-paths used to carry out the 

computation of the detector rules and exception conditions. A number of checker 

components are instantiated to perform the required computations according to the rule 

classes and exceptions needed by an application. Note that the set of checkers instantiated 

is equal to the number of detector classes and exceptions (at most forty eight) rather than 

to the number of detectors inserted in an application (which are essentially unbounded).  

Architectural Extensions for High-performance Processors – We are currently 

working on extending our work for processors where a larger amount of speculation and 

parallelism is present. This requires enhancing the current architecture of the Error 

Detector Module. Example extensions are discussed below: (1) Targeting a CISC 

architecture requires the Error Detector to access the memory bus of the main processor, 

since some instructions can use memory operands. In the current implementation we 

assume a load/store RISC architecture, which means that only register operands can be 

used, and it is sufficient that the Error Detector checks only the content of the processor 

register file; (2) The use of multiple execution units requires the execution of several 

checks concurrently and hence the need for (i) multi-ported Detector Table and Shadow 

Register file, and (ii) independent execution data-path units in the Error Detector; and (3) 

The use of branch and value speculation requires the ability to execute detectors 

speculatively and a tighter coupling of the Error Detector Module with the reservation 

station to keep track of the issued, ready and committed instructions.  
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3.6 EXPERIMENTAL SETUP 

This section describes the experimental infrastructure and application workload used to 

evaluate the coverage and overheads of the derived detectors.  We use fault-injection to 

evaluate the coverage and implementation on FPGA hardware to evaluate the overheads. 

3.6.1 Application Programs 

The system is evaluated with six of seven programs from the Siemens suite
8
 of programs 

[51]. These programs are comprised of a few hundred lines of C code, and are 

extensively used in software testing and verification. A brief description of benchmarks is 

given in Table 9.  

Table 9: Benchmarks and their descriptions 

Benchmark  Description 

Replace Searches a text file for a regular expression and replaces the expression with a string 

Schedule, 

Schedule2 

A priority scheduler for multiple job tasks 

Print_tokens, 

Print_tokens2 

Breaks the input stream into a series of lexical tokens according to pre-specified rules 

Tot_info Offers a series of data analysis functions 

3.6.2 Infrastructure 

The tracing of the application‟s execution and the fault-injections are performed using a 

functional simulator in SimpleScalar family of processor simulators [50]. The simulator 

allows fine-grained tracing of the application without modifying the application code and 

provides a virtual sandbox to execute the application and study its behavior under faults.  

                                                 

8
 tcas from the Siemens suite is omitted as it is very small  and had insufficient separation among the different metrics in the study  
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We modified the simulator to track dependences among data values in both registers and 

memory by shadowing each register/location with four extra bytes (invisible to the 

application) which store a unique tag for that location. For each instruction executed by 

the application, the simulator prints (to the trace file) the tag of the instruction‟s operands 

and the tag of the resulting value to the trace. The trace is analyzed offline by specialized 

scripts to construct the DDG and compute the metrics for placing detectors in the code 

according to the procedure in Chapter 2.  

The effectiveness of the detectors is assessed using fault injection. Fault locations are 

specified randomly from the dynamic set of tags produced in the program. In this mode, 

the tags are tracked by the simulator, but the executed instructions are not written to the 

trace. When the tag value of the current instruction equals the value of a specified fault 

location, a fault is injected by flipping a single-bit in the value produced by the current 

instruction. Once a fault is injected, the execution sequence is monitored to see if a 

detector location is reached. If so, the value at the detector location is written to a file for 

offline comparison with the derived detectors for the application. The above process is 

continued till the application ends. Note that only a single fault is injected in each 

execution of the application.  

3.6.3 Experimental Procedure 

The experiment is divided into four parts as follows: 

1. Placement of detectors and instrumentation of code. The dynamic instruction trace 

of the program is obtained from the simulator and the Dynamic Dependence Graph 
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(DDG) is constructed from the trace. The detector placement points (both variables 

and locations) are chosen based on the technique described in [17]. For each 

application, up to 100 detector points are chosen by the analysis, which corresponds 

to less than 5% of static instructions in the assembly code of the benchmark programs 

(excluding library functions). 

2. Deriving the detectors based on training set. The simulator records the values of 

the selected variables at the detector locations for representative inputs. The dynamic 

values obtained are used to derive the detectors based on the algorithm in Section 3.4. 

The training set consists of 200 inputs
9
, which are randomly sampled from a test suite 

consisting of 1000 inputs for each program. These test suites are provided as part of 

the Siemens benchmark suite [51]. 

3. Fault-injections and coverage estimation. Fault-injection experiments are 

performed by flipping single bits in data-values chosen at random from the set of all 

data values produced during the course of the program‟s execution. After injecting 

the fault, the data values at the detector locations are recorded and the outcome of the 

simulated program is classified as a crash, hang, fail-silent violation or success 

(benign). The values recorded at the detector locations are then checked offline by the 

derived detectors to assess their coverage.  The coverage of a detector is expressed in 

terms of the type of program outcome it detects i.e. a detector is said to detect a 

                                                 

9
 The rationale for the choice of 200 inputs is explained in Section 3.7.3 
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program crash if the program would have crashed had the detector not detected the 

error.  In case the detector does not detect the error at all, its coverage is counted as 

zero for all four outcome categories. 

For the fault-injection experiments, each application is executed over 10 inputs 

chosen at random from those used in the training phase. For each input, 1000 

locations are chosen at random from the data values produced by the application. A 

fault-injection run consists of a single bit-flip in the one of the 1000 locations. For 

each application-input combination, five runs are performed, which corresponds to a 

total 50,000 fault-injection runs per application. 

4. Computation of false positives.  The application code instrumented with the derived 

detectors is executed for all 1000 inputs, including the 200 inputs that were used for 

training. No faults are injected in these runs. If any one of the derived detectors 

detects an error, then that input is considered to be a false positive (as there was no 

injected error). 

3.7 RESULTS 

3.7.1 Detection Coverage of Derived Detectors 

The coverage of the detectors derived using the algorithm in Section 3.4 is evaluated 

using fault-injections as described in Section 3.6.3.  Figure 19, Figure 20 and Figure 21 

show the coverage for crashes, fail- silence violations (fsv) and hangs obtained for the 

target applications (in percentages) as a function of the number of detectors placed in 

each application (ranging from 1 to 100). Figure 22 shows the percentage of total 
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manifested errors that are detected by the derived detectors. .The coverage for each type 

of failure increases as the number of detectors increases, but less than linearly, as there is 

an overlap among the errors detected by the detectors. The individual error coverage of 

the derived detectors depends on the type of failure (crash, FSV, hang).  

 

Figure 19: Crash coverage of derived detectors 

 

 

Figure 20: FSV coverage of derived detectors 

 

 

Figure 21: Hang coverage of derived detectors 
 

Figure 22: Total error coverage for derived 

detectors 

 
 

 

 

Table 10: Average detection coverage for 100 detectors 

Type of Failure Minimum Coverage Maximum Coverage 

Program Crash 45% (print_tokens) 65% (tot_info) 

Fail-Silent Violation (FSV) 25% (schedule2) 75% (tot_info) 

Program Hang 0% (print_tokens2) 55% (replace) 

Program Failures 

50 %  

(replace, schedule2, print_tokens, 
tot_info) 

75 % 

(schedule, print_tokens2) 
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The coverage obtained for each type of failure is summarized in Table 10 when 100 

detectors are placed in each the application. The derived detectors can detect 50% to 75% 

of the errors that manifest in the application. This is because the majority of errors that 

manifest in an application are crashes (70-75%) and the rest are fail-silent violations (20-

30%) and hangs (0-5%). 

The results for coverage correspond to any error that occurs in the data values used by the 

program, and not just for errors that occur in the detector locations. For example, if even 

a single bit-flip occurs in a single instance of any data value used in the program, and 

this error results in a program crash, hang or fail-silence violation, then one of the 100 

detectors placed will detect the error 50-75 % of the time. As mentioned in Section 3.6.1, 

100 detectors correspond to less than 5% of program locations in the static assembly code 

of the benchmark programs. 

To put these results in perspective, Hiller et al.[56] obtain a coverage of 80% with 7 

assertions for (random) errors that cause failure in an embedded system application. 

However, in their study about 2000 errors are injected into the system during a short 

period of 40 seconds, and if one of their executable assertions detects one of the errors in 

this period, it is considered a successful detection. In contrast, we inject only a single 

error in each run. Furthermore, 7 out of 24 signals are targeted for detection in the 

embedded system considered in their paper, whereas we place detectors in just 5% of the 

instructions in the applications considered. 
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3.7.2 False Positives 

False positives can occur when a detector flags an error even if there is no error in the 

application. A false positive for an input can occur when the values at the detector points 

for the input do not obey the detector‟s rule and exception condition learned from the 

training inputs (because the training was not comprehensive enough).  

The training set for learning the detectors consists of 200 inputs and the false positives 

are computed across all 1000 inputs for each application. No faults were injected in these 

runs. If even a single detector detects an error for a particular input, then the entire input 

is treated as a false positive even if no other detector detects an error for the input. 

Figure 23 presents the percentage of false positives for each of the target applications 

across 1000 inputs. Across all applications the false positives are no more than 2.5% 

(with 100 detectors). For the replace, schedule2, print_tokens and print_tokens2 

applications, the false positives observed are less than 1%. For the schedule and tot_info 

application, the false positive rate is around 2%. While the number of false positives 

increases as the number of detectors increases, it reaches a plateau as the number of 

detectors is increased beyond 50. This is because a false positive input is likely to trigger 

multiple detectors once the number of detectors passes a certain critical threshold (in our 

case, this critical threshold is 50). However, no such plateau was reached for the coverage 

results in Figure 22. This suggests that inserting more detectors in the application can 

increase coverage without increasing the percentage of false positives.  
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Figure 23: Percentage of false positives for 1000 inputs of each application 

When a detector raises an alarm, we need to determine whether an error was really 

present or whether it is a false-positive. If the error was caused by a transient fault (as we 

assume in this chapter), then it is likely to be wiped out when the program is re-executed 

[22]. If on the other hand, the detection was a false positive and hence, a characteristic of 

the input given to the program, the detector will raise an alarm again during re-execution. 

In this case, the alarm can be ignored, and the program is allowed to continue. Thus, the 

impact of a false positive is essentially a loss in performance due to re-execution 

overhead.  Since the percentage of false positives is less than 2.5%, the overhead of re-

execution is small. It is possible to reduce the overhead further using checkpointing and 

restarting scheme as done in Wang and Patel [59]. 

3.7.3 Effect of Training Set Size  

The results reported so far for coverage and false positives of the derived detectors used a 

training set of 200 inputs from a total of 1000 inputs for each benchmark application. In 

this section, we consider the effects of varying the size of the training set from 100 

inputs, 200 inputs and 300 inputs. In these experiments, the number of detectors is fixed 
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at 100 and the error-detection coverage and false positives are evaluated for each 

application. The results are shown in Figure 24, Figure 25, Figure 26 and Figure 27. 

 
Figure 24: Crash coverage for different training 

set sizes 

 
Figure 25: FSV coverage for different training set 

sizes 

 
Figure 26: Hang coverage for different training set 

sizes 

 
Figure 27: Benign errors for different training set 

sizes 

The following trends may be observed from the graphs: 

 The false positives decrease from 5% to 2% as the training set size is increased 

from 100 inputs to 200 inputs, and to less than 1% for 300 inputs, except tot_info 

(1.5%.). 

 The coverage for crashes and hangs remain constant as the training set size 

increases (Figure 8, Figure 10), except in the case of tot_info where the coverage 
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first decreases from 100 to 200 inputs and then remains constant from 200 to 300 

inputs (for crashes and hangs). 

 The coverage for fail-silent violations decreases marginally as the size of the 

training set increases from 100 inputs to 300 inputs (Figure 9). This decrease in 

fail-silent violations is less than 2% for all benchmarks except tot_info (5%). 

For the applications studied, increasing the training set size from 100 to 200 decreases the 

false positives significantly, while increasing it from 200 to 300 does not have as large an 

impact on false positives. The impact on coverage from increasing the training set size is 

minimal. This suggests that the detectors, once learned, are relatively stable across 

different inputs, and that their detection capabilities are not affected by the input (beyond 

a certain number of training inputs). Hence, in this chapter we choose a training set size 

of 200, which corresponds to 20% of the inputs used for each program.  

3.7.4 Comparison with Best-value Detectors 

As seen in Section 3.7.1, the derived detectors detect about 45-65% of crashes and 25-

80% of fail-silent violations in a program. This section investigates why the remaining 

errors are not detected and how the detectors can be improved.  To form the basis of the 

discussion, we consider a hypothetical detector that keeps track of the entire history of 

data values observed at a detector location and uses this knowledge to flag an error. We 

call these best-value detectors, as they represent the maximum coverage that can be 

obtained by a value-based detector. 
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The best-value detector may not be achievable in practice, as in addition to requiring 

enormous space and time overheads (to store the entire history of values), it assumes 

apriori knowledge of all possible inputs to the program. Nevertheless, the coverage of the 

best-value detector provides an upper bound on the coverage that can be obtained with 

data-value based detectors such as the detectors considered in this chapter
10

. We build the 

best-value detector by executing the program under a specific set of inputs and storing the 

entire sequence of values observed at each location where a detector is placed. This fault-

free execution is referred to as the golden run of the program. In this study, we fix the 

number of best-value detectors in the program to be 100. For each application both the 

best-value detectors and the derived detectors are placed at the same variables and 

locations. The program is executed under the same set of inputs that were used to derive 

the best-value detectors. The same set of faults is injected in both cases. 

Figure 28, Figure 29, Figure 30 and Figure 31 compare the coverage of the derived 

detectors with coverage of the best-value detectors for crashes, fail-silent violations 

(FSV), hangs and manifested errors. The results are summarized below. 

Crashes - the coverage of the derived detectors is between 75% (replace) and 100% 

(schedule2, print_tokens2 ) of the coverage that can be obtained by the best-value 

detectors (Figure 28) 

 

                                                 

10 Note that the best-value detectors are different from the ideal detectors we introduced in Chapter 2. An ideal detector makes use of 
complete timing and data information to detect an error in a variable, whereas the best-value detector employs only data information. 
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Figure 28: Comparison between best-value detectors and derived detectors for crashes 

Comparison with Best-Value Detectors (FSV)
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Figure 29: Comparison between best-value detectors and derived detectors for FSV 

Comparison with Best-Value Detectors (Hangs)
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Figure 30: Comparison between best-value detectors and derived detectors for hangs 

 
Figure 31: Comparison between best value detectors and derived detectors for manifested errors 

 

FSV - the coverage of the derived detectors is between 40% (print_tokens2) and 85% 

(tot_info) of the coverage that can be achieved by the best-value detectors (Figure 29). 

Comparison with Best-Value Detectors (Manifested Errors) 
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Hangs - the coverage of the derived detectors is between 50% (tot_info) and 100% 

(schedule2, print_tokens2) of the coverage of the best-value detectors. (Figure 30). 

Manifested errors - the coverage of the derived detectors is between 70% (replace) and 

90% (print_tokens2) of the coverage that can be achieved by the best data detectors 

(Figure 31) 

We examine the reasons for the difference in coverage between the best-value and 

derived detectors as follows: 

 The best-value detectors are tailored for each input (based on the golden run of 

the application for the input) and have 100% knowledge of the application 

execution for that input. The derived detectors must work across inputs, or they 

will have an increased false-positive rate. One way to address this problem is to 

design detectors that are functions of the input or are based on input 

characteristics;  

 The best-value detectors store the entire history of values observed at the 

detector„s location for that variable in the golden run and can check the value of 

the variable in the actual run against the value observed in the golden run. The 

derived detectors, store only the current and previous value of the variable, and 

use a generic rule and exception condition to check for an error. Thus, increasing 

the amount of historical information stored in the detector can increase its 

coverage. 
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 The derived detectors have much lower coverage compared to the best-value 

detectors, with respect to fail-silent violations. This is because the derived 

detectors are general across program inputs, whereas the best-value detectors are 

specialized for specific inputs.  The coverage for crashes however, is not impacted 

by the generality of the detector, as typically crashes are caused due to corruptions 

of data values that are illegal or invalid across all inputs. However, the coverage 

for a fail-silent violation may be affected as a value that is illegal for one input 

may be valid for another input, but lead to the program printing the wrong output. 

As pointed out earlier, the coverage for FSVs can be improved by making the 

detectors a function of the program‟s inputs. This is a subject of future 

investigation. 

3.8 HARDWARE IMPLEMENTATION RESULTS 

The proposed design of the DLX processor, the RSE Interface and the Error Detector 

Modules for different applications were synthesized using Xilinx ISE 7.1 tools targeting a 

Xilinx Virtex-E FPGA. The Xilinx Virtex series of FPGAs consists mainly of several 

type of logic cells: (1) 4-input Look-Up Tables (LUTs) statically programmed during the 

bootstrap with the configuration bit-stream, (2) flip-flops (FFs), storage elements in the 

user visible system state, and (3) Block RAM (BRAMs), which are memory blocks that 

can store up to 4096 bits. Four LUTs and four FFs compose a logic unit called Slice.  



86 

 

Area and Clock Period Overhead - Table 11 reports the synthesis results in terms of 

area (i.e., FFs, LUTs, BRAM and total Slices) and minimum clock frequency, for the 

reference DLX processor and the complete RSE Interface.  

Table 11: Area and timing results for the DLX processor and the RSE Framework 

 FFs LUTs BRAMs Slices 

Clock 
Period 
[ns] 

DLX processor 4873 16395 0 9526 58.8 

Complete RSE Interface 2465 2329 0 1420 2.01 

 

The synthesis results (in terms of area and minimum clock period for different 

configurations show that, for different workloads, the number of slices required for the 

implementation of the Error Detector modules ranges between 2685 and 2915, while the 

number of additional BRAMs is 9. The area overhead (with respect to the single 

superscalar DLX processor) of the single EDM is about 30%, while the area overhead of 

the complete (including the RSE Interface and the Error Detector module) is about 45%.  

Performance Overhead - A measure of the performance overhead is given by the 

formula: 

Overhead = [ Extra Clock Cycles * (TCK, with ED - TCK, without EDM) ] / ( Total Clock Cycles * 

TCK, without EDM) 

where Twith EDM and Twithout EDM are the total execution times with and without Error 

Detector module respectively, Extra clock cycles is the number of additional clock cycles 

required to execute the code instrumented with the CHECK instructions, TCK with ED and 

TCK without ED are the minimum clock period of the overall system with and without the 

Error Detector module, respectively.  In our implementation each CHECK instruction is 
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assumed to load 32 bits and hence 6 CHECK instructions are used for loading a single 

detector. Due to space constraints, we do not report the results for all the workloads, but 

we report only the workload with the largest time overhead, i.e., schedule2. The number 

of extra clock cycle is 594, while the total number of clock cycles is nearly 1 million, TCK 

with ED is 58.82 ns and TCK without ED is 55.55 ns. Plugging these numbers in the time 

overhead formula, we found out that the total execution overhead for the detectors is 

about 5.6%. 

3.9 RELATED WORK 

Broadly, error detection techniques can be classified based on two criteria:  

(1) How the detectors are derived (static or dynamic) and, 

 (2) How the checking is performed (static or dynamic) 

These lead to 4 categories of detectors that span the spectrum of purely static techniques 

(e.g. Prefix  [52], CCured [60], LCLint [53], Engler et al. [61] to purely dynamic 

techniques (e.g. DIDUCE [62], Maxion et al.[63]). This categorization also includes 

hybrid techniques in which the detectors are derived statically and checked dynamically 

(Voas et al.[57], Zenha-Rela et al. [64] and Hiller et al.[56]) and those in which the 

detectors are derived dynamically but checked statically (for example, DAIKON [43]). 

These techniques are described in Table 12.  
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Table 12: Descriptions of related techniques and tools 

Technique Description Drawbacks 

Prefix [52] 
Uses symbolic execution through selected paths 
in a program to find known kinds of errors (e.g. 

NULL pointer dereferences) 

1. Requires programmer to write annotations in the 
source code  

2. High false-positive rate due to infeasible paths 

C-Cured [60] 

Verifies that points do not write outside their 

intended memory objects, thereby ensuring 

memory safety 

1. Protects only against errors that violate memory 

safety – does not protect computation errors  
2. Does not handle hardware errors or errors 

originating in unverified code. 

LCLINT [53] 

Checks if a program conforms to its 

specification and if it adheres to predefined 
programming rules 

1. Requires programmer to provide specifications or 
write annotations in code 

2. Only finds those errors that violate the predefined 

rules 

Engler et al. [61]  

Analyzes source files to find application-

specific programming patterns and identifies 
violation of the discovered patterns as bugs 

1. May incur false-positives i.e. the violation of the 
pattern may not necessarily be a bug.  

2. Does not handle runtime errors or hardware faults 

– coverage limited to pattern violations  

DAIKON [43]  
Infers invariants from dynamic execution of 

program based on representative training inputs 

1. Does not take placement of detectors into account 

- program may crash before the execution reaches 

the detector location.  
2. Requires programmer intervention to filter out 

real bugs from false identifications 

Voas et al. [57]  

Considers a general methodology to embed 

detectors in programs to detect errors. 
Characterizes properties of good detectors.  

1. Does not consider how to derive the detectors 

2. Detector placement methodology relies heavily 
on programmer‟s knowledge of application. 

Zenha-Rela et al. 
[64] 

Evaluates the coverage provided by existing 

assertions in a program vis-à-vis control-flow 
error detection techniques and algorithm-based 

fault-tolerance  

Does not consider deriving or embedding assertions 

in a program. Assume that assertions have already 
been inserted by programmer. 

 

Hiller et al. [56] 

Places error detectors in an embedded system 
to detect data errors. Consider different classes 

of detectors based on properties of the signals 

in an embedded system and the detectors are 
placed in the system to maximize the coverage 

1. Programmer needs to specify class and 
parameters of each detector - detector derivation is 

not automated. 

2. Detector placement based on extensive fault-
injections, which are time-consuming 

DIDUCE [62] 

Uses software anomaly detection to locate 

corner cases and find bugs. Formulates strict 

hypothesis about program behavior in 
beginning and gradually relaxes them as 

program executes to learn new behavior. 

1. Program may crash before reaching detector 

point, and the error will not be detected 

2. Does not address errors that occur when 
invariants are being learned (at the beginning of 

program execution) 

Maxion et al. [63] 
Characterize the generic space of anomaly 
detectors for embedded applications.  

Do not define specific types of error detectors or 
how they are derived from the application. 

 

We published this work in the European Conference on Dependable Systems (EDCC) 

[27]. Since then three papers have been published based on the idea of using dynamically 

derived program invariants for runtime error detection. These papers use online or offline 

profiling of the program to build value-based invariants, and use special hardware to 

check the invariants at runtime.  Racunas et al. [65] and Dimitrov and Zhou [66] consider 

detection of transient errors (similar to our technique), while Sahoo et al. [67] consider 

detection of permanent hardware errors.  These techniques are considered in this section. 
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3.9.1 Perturbation-based Fault Screening 

Perturbation-based fault screening detects deviations in the valid value spaces of static 

instructions in a program [65]. They define an instruction‟s valid space as “the set of 

result values that could be produced in the next dynamic instance of the instruction 

without being consistent with the current application state” [65]. A fault-screener is a 

mechanism to detect perturbations. This is similar to our notion of a detector, with the 

difference that we focus on selected critical variables (and the static instructions that 

compute them), whereas [65] considers all static instructions in the program. The fault-

screeners considered in [65] are as follows: 

1) Extended History Scanner: Keeps track of the set of values that a variable can 

assume. This is similar to the Multi-Value detector class in Table 6. 

2) Dynamic Range Scanner: Checks if a value belongs to one or more range sets. 

This is a generalization of the BoundedRange class in Table 6. 

3) Invariance Based Scanner: This checks if specific bits of a value are constant. 

This is a generalization of the Constant class in Table 6. 

The other two fault-scanners considered in [65], namely TLB-based scanner and Bloom 

filter scanner have no corresponding representation in our technique. 

The main difference between our technique and the one in [65] is that we employ 

detectors learned from multiple runs of the program over different inputs. The learning 

algorithm is performed offline and the invariants learned are inserted as detectors in the 

code. The technique in [28] on the other hand, learns the invariants while the program is 
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executing and detects violations of the invariants as errors. This involves running the 

learning algorithm online, and extensive hardware support is required to keep the 

performance overheads low. Further, the fault-screeners are specific to a single execution 

of the application, and are discarded at the end of the execution. Our detectors on the 

other hand, are general across application inputs and are persistent across multiple 

executions. This allows them to detect errors even during the startup phase of the 

application, before the invariants are established. Finally, while a direct comparison of 

coverage between the two techniques is not possible (due to differences in the 

experimental techniques used), our technique detects between 50 to 75 % of manifested 

errors in an application, while the technique in [65] detects between 25 % and 60 % of 

manifested errors. 

3.9.2 Limited Variance in Data Values (LVDV) 

This technique uses hardware support to track program invariants at run-time, and uses 

the learned information to detect both hardware transient errors and selected software 

bugs [66]. The invariant considered in the paper is a value-based invariant known as 

“limited variance in data values (LVDV)”. This capitalizes on the observation that in a 

typical, error-free execution of the program, multiple instances of a static instruction 

differ only a small extent in the result bits [66]. Any large-scale deviation in the result 

bits is attributed to either a soft error (caused by radiation) or a software bug (introduced 

by the application developer).  
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The paper uses a hardware cache called an LVDV table to store the invariant bits of an 

instruction‟s result [66]. The structure is tagged with the instruction‟s address and is 

referenced during every cycle with the program counter (PC) of an instruction. The 

LVDV table is similar to the detector table in our technique, with the difference that the 

detector table is stored separately from the main processor, and is accessed using special 

CHECK instructions.  

The LVDV technique operates in two modes – soft-error protection and software bug 

detection. For soft error protection, the invariants are learned on the fly during the initial 

phase of the program‟s execution and are used for detection in the subsequent phases. 

The main problem with this technique is that the program may experience errors in the 

initial phase or may exhibit substantially different behavior in later phases compared to 

the initial phase. The former may result in false-negatives and the latter may result in 

false-positives. In the software bug detection mode, the invariants learned during an 

execution of the program are reused during another execution. This identifies unusual or 

corner cases in programs, where bugs are likely to congregate. The goal of the LVDV 

technique is to present the violated invariants to the programmer, who can then make a 

judgment about whether the violation was due to a software error. However, this may 

result in both error-propagation (as the program is not stopped due to the error) as well as 

false-positives (as a large deviation in a value need not signify a software bug). 



92 

 

3.9.3 Software Anomaly Treatment (SWAT) 

The SWAT technique detects permanent hardware errors by monitoring software for 

anomalies or symptoms [67]. Examples of symptoms include high activity in the 

operating system and fatal traps executed by the application. In addition, SWAT uses 

program-level invariants inserted by the compiler to detect residual errors that do not 

manifest as symptoms [30]. The invariants are derived by executing the program over 

multiple inputs and collecting dynamic traces. The traces are then analyzed offline to 

extract invariants on data values in the program. The only kinds of invariants considered 

in [67] are range-based, i.e. check if a value lies within a range.  

Of the techniques considered in this section, the SWAT technique is closest to our 

work [67]. Both techniques use an offline process to derive error detectors based on 

dynamic execution traces of the application. The main difference between SWAT and our 

technique is that SWAT targets permanent hardware errors whereas we target transient 

hardware and software errors. Examples of permanent errors include stuck-at-faults in the 

decode unit or latch outputs of the integer ALU. These errors typically cause corruptions 

of values in multiple instructions and are consequently easier to detect than transient 

errors. However, false-positives present a much more severe problem as a permanent 

error will not disappear upon re-execution and SWAT uses diagnosis mechanisms to deal 

with false-positives. Table 13 summarizes the other differences between the techniques. 
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Table 13: Comparison of our technique with SWAT 

Category Our Technique SWAT 

Detector Locations Focuses on critical locations where detection 
coverage is likely to be highest 

Focuses on values stored to memory as 
these have high potential to catch faults 

Detector Types Considers six different classes of detectors and eight 

different exception classes (48 in all) 

Considers only single detector type 

encompassing value ranges of variables 

Detector Derivation Based on a probability model to choose the detector 
and exception class 

None required as only a single detector type 
is considered 

Hardware/Compiler 

support 

No compiler support required as we insert detectors 

into the program binary 

Hardware support in the form of reconfigurable 
monitor on the same die 

Compiler support for inserting invariants in 

the program as checking code. 

Hardware support for error detection, 
diagnosis and recovery  in firmware 

Benchmarks and 

Experimental 
Methodology  

Siemens suite (100 to 1000 lines of  C) SpecInt 2K (> 10000 lines of C code) 

Enhanced Simplescalar simulator for coverage 

evaluation and synthesis on FPGA hardware for 
performance evaluation 

Virtutechs Simics full system simulator 

augmented with the Wisconsin GEMS 
timing models for both coverage and 

performance evaluation 

Detection Coverage 50 to 75 % coverage for all manifested errors in the 

program 

33 % coverage for errors that propagate to 

software and cause failures 

Training Set/False-

Positives 

Train with 200 inputs, test with 1000 inputs 

False positive rate is about  2 % 

Train with 12 inputs, unclear how many 

inputs used for testing 

False positive rate is less than 5 %  

3.10 CONCLUSIONS  

This chapter proposed a novel technique for preventing a wide range of data errors from 

corrupting the execution of a generic application. This technique consists of an automated 

methodology to derive fine-grained, application-specific error detectors by an algorithm 

based on dynamic traces of application execution. A set of error detector classes, 

parameters and locations, are derived in order to maximize the error detection coverage 

for a target application. The chapter also presents an automatic framework for 

synthesizing the detectors in hardware to enable low-overhead run-time checking of the 

application execution. The coverage of the derived detectors is evaluated using fault-

injections and the hardware implementation of the detectors is synthesized to obtain area 

and performance overheads.   



94 

 

 

CHAPTER 4 STATIC DERIVATION OF ERROR 

DETECTORS 

4.1 INTRODUCTION 

This chapter presents a methodology to derive error detectors for an application based on 

compiler (static) analysis. The derived detectors protect the application from data errors. 

A data error is defined as a divergence in the data values used in the application from an 

error-free run of the program. Data errors can result from incorrect computation and 

would not be caught by generic techniques such as ECC in memory. They can also arise 

due to software defects (bugs). 

In the past, static analysis [53]and dynamic analysis [43] approaches have been proposed 

to find bugs in programs. These approaches have proven effective in finding known kinds 

of errors prior to deployment of the application in an operational environment. However, 

studies have shown that the kinds of errors encountered by applications in operational 

settings are often subtle errors (such as in timing and synchronization)[6], which are not 

caught by static and dynamic methods.  

Furthermore, programs upon encountering an error, may execute for billions of cycles 

before crashing (if they crash)[14], during which time the error may propagate to 

permanent state[38].  In order to detect runtime errors, we need mechanisms that can 

provide high-coverage, low-latency error detection to preempt uncontrolled system crash 
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or hang and prevent error propagation that can lead to state corruption. This is the focus 

of this chapter. 

Duplication has traditionally been used to provide high-coverage at runtime for software 

errors and hardware-errors [9]. However, in order to prevent error-propagation and 

preempt crashes, a comparison needs to be performed after every instruction, which in 

turn results in high performance overhead. Therefore, duplication techniques compare the 

results of replicated instructions at selected program points such as stores to memory [68, 

69]. While this reduces the performance overhead of duplication, it sacrifices coverage as 

the program may crash before reaching the comparison point. Further, duplication-based 

techniques detect all errors that manifest in instructions and data. It has been found that 

less than 50% of these errors typically result in application failure (crash, hang or 

incorrect output) [70]. Therefore, more than 50% of the errors detected by duplication 

(benign errors) are wasteful. 

The main contribution of this chapter is an approach to derive runtime error detectors 

based on application properties extracted using static analysis. The derived detectors 

preempt crashes and provide high-coverage in detecting errors that result in application 

failures. The coverage of the derived detectors is evaluated using fault-injection 

experiments. The key findings are as follows: 

1. The derived detectors detect around 75% of errors that propagate and cause 

crashes. The percentage of benign errors detected is less than 3%. 
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2. The average performance overhead of the derived detectors across 14 benchmark 

applications is 33% (with hardware support for path-tracking). 

3.  The detectors can be implemented using a combination of software and 

programmable hardware. 

4.2 RELATED WORK 

This section considers related work on locating software bugs using static and dynamic 

analysis as well as on runtime detection of hardware and software errors.  

4.2.1 Static Analysis Techniques 

A multitude of techniques have been proposed to find bugs in programs based on static 

analysis of the application‟s source code [52, 53, 71, 72]. These techniques validate the 

program based on a well-understood fault model, usually specified based on common 

programming errors (e.g. NULL pointer dereferences). The techniques attempt to locate 

errors across all feasible paths in the program (a program path that corresponds to an 

actual execution of the program). Determining feasible paths is known to be an 

impossible problem in the general case. Therefore, these techniques make approximations 

that result in the creation of spurious paths, which are never executed. This in turn can 

result in the approach finding errors that will never occur in a real execution, leading to 

false detections.  

Consider for example, the code fragment in Figure 32. In the code, the pointer str is 

initialized to NULL and the pointer src is initialized to a constant string. The length of 
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the string src is computed in a while loop. If the computed length is greater than zero, a 

new buffer of that length is allocated on the heap and the stored in the pointer pointed to 

by str. Finally, the string pointed to by the pointer src is copied into the buffer pointed to 

by the pointer str. 

int size = 0; 

char* str = NULL; 
char* src = “A String”; 

while (src[size]!=‟\0‟) 

         ++size; 
if (size>0) { 

      str = malloc(size+1); 

} 
strcpy(str,src size ); 

Figure 32: Example code fragment to illustrate feasible path problem faced by static analysis tools 

Consider a static analysis tool that checks for NULL pointer dereferences. In the above 

program, the tool needs to resolve whether the value of str is NULL before the strcpy 

statement. For str to be NULL, the then branch of the if statement should not be executed, 

which in turn means that the predicate in the if statement, namely (size>0) should be 

false. The value of size is initialized to zero outside the while loop and incremented inside 

the loop. The tool needs to statically evaluate the while loop in order to conclude that the 

value of size cannot be zero after execution of the loop and before the if predicate
11

. 

Many static analysis tools would not perform such an evaluation in the interest of 

scalability. In fact, the evaluation of the loop may not even terminate in the general case 

(although in this example, it would terminate since the string is a constant string). 

Therefore the tool would report a potential NULL pointer dereference of str in the call to 

strcpy.  

                                                 

11 In this example, it is enough to evaluate one iteration of the loop to arrive at the conclusion that size cannot be zero. But in the 
general case, it may be necessary to evaluate the entire loop. 
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The problem arises because the control path in which the then part of the if statement is 

not executed does not correspond to a real execution of the program. However, the static 

analysis tool does not have enough resolution to determine this information and 

consequently over-approximates the set of feasible paths in the program.  

In the general case it is impossible for a static analysis tool to resolve all feasible paths in 

the program. In practice different static analysis tools provide varying degrees of 

approximations to handle the feasible path problem. We consider examples of four static 

analysis tools as follows: 

LCLINT performs data-flow analysis to find common programming errors in C 

programs [53]. The analysis is coarse-grained and approximates branch predicates to be 

both true and false, effectively considering all paths as feasible. LCLINT may produce 

many spurious warnings and requires programmer annotations to suppress such warnings. 

ESP also uses data-flow analysis to determine if the program satisfies a given temporal 

property [71]. However, the dataflow analysis is path-sensitive and takes into account 

specific execution paths in the program. In order to perform exact verification, any 

branch in the program that affects the property being verified must be modeled. The main 

approximation made by ESP is that it is sufficient to model those branches along which 

the property being verified differs on both sides of the branch. ESP is able to correctly 

identify feasible paths when two branches are controlled by the same predicate, or when 

one branch predicate implies another. However, for more complex branch predicates, 

ESP relies on programmer supplied annotations to resolve feasible paths in the program. 
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Prefix avoids the feasible path problem by performing symbolic simulation of the 

program as opposed to data-flow analysis [52]. The Prefix tool follows each path through 

a function and keeps track of the exact state of the program along that path. In order to 

keep the simulation tractable, only a fixed number of paths are explored in each function 

(typically 50). The main approximation made by Prefix is that the incremental benefit of 

finding more defects as the number of paths increases is small. It is unclear if the 

assumption holds for operational defects that may manifest along infrequently executed 

paths in the program. 

SLAM is a model checking tool developed at Microsoft to verify properties of device 

drivers [72]. SLAM  uses a technique known as predicate abstraction[73] to prune 

infeasible paths in the program. Given a C program, SLAM produces an equivalent 

boolean program in which all predicates are approximated as Boolean variables. In a 

Boolean program, there exist only a finite number of values that the predicates can 

assume, as opposed to potentially infinite values in the original program. Hence, it is 

easier to find feasible paths in the Boolean program than in the original program. The 

main problem is that a feasible path in the Boolean program need not correspond to a 

feasible path in the original program, and this can result in false-positives.  

4.2.2 Dynamic Invariant Deduction 

These techniques derive code-specific invariants based on dynamic characteristics of the 

application. An example of a system that uses this technique is DAIKON [43], which 

derives code invariants such as the constancy of variables, boundedness of a variable‟s 
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range, linear relationships among sets of program variables and inequalities involving 

two or more program variables. DAIKON‟s primary purpose is to present the invariants 

to programmers, who can validate them based on their mental model of the application. 

The invariants are derived based on the execution of the application with a representative 

set of inputs, called the training set. Inputs that are not in this set may result in the 

invariants being violated even when there is no error in the application (false-positives). 

In order to avoid false-positives during application deployment in operational settings, 

the training set must well represent the application‟s execution in operational settings.  

DAIKON derives invariants at entries and exits of procedures in the program. The 

assumption is that invariants represented as function pre-conditions and post-conditions 

are more useful to the programmer in finding bugs in the application. This limits the use 

of the generated invariants as assertions for error-detection, since the program may crash 

before reaching the assertions inserted by DAIKON.  

A recent study uses DAIKON to infer data-structure invariants and repair data structures 

at runtime [74]. The idea is to infer constraints about commonly used data-structures in 

the program and monitor the data structure with respect to these constraints at runtime. If 

a constraint violation is detected, the data-structure is “repaired” to satisfy the constraint. 

The repaired data-structure may or may not be the same as the original data-structure, and 

hence the program may produce incorrect output after the repair (although it continues 

without crashing). In general, however, continuing to execute the program after an error 

has been detected can lead to harmful consequences. Further, the technique described in 

[74] considers only errors in the program data structure  being monitored. It is intriguing 
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to analyze how the technique can be extended to detect general faults in the application‟s 

data. To detect general faults, the fault must propagate to the data-structure‟s fields and 

violate one or more of the derived invariants for the data-structure. Our experience 

indicates that it is more likely that the application crashes due to a general error in its 

data, than for the error to propagate to specific locations in the program‟s data, unless the 

locations are chosen taking error propagation into consideration. This observation forms 

the basis for our detector placement technique in Chapter 2. 

DIDUCE [62] is a dynamic invariant detection approach that uses invariants learned 

during an early phase of the program‟s execution (training phase) to detect errors in 

subsequent phases of the execution. The main assumption made by DIDUCE is that 

invariants learned during the training phase well represent the entire application‟s 

execution. It is unclear if this assumption holds in practice, especially for applications 

that exhibit phased behavior
12

. Further, when DIDUCE detects an invariant violation it 

does not stop the program but saves the program state for reporting back to the user, so 

that spurious invariant violations
 
do not stop program execution

13
. This is useful from the 

point of view of debugging operational failures, but not from the point of view of 

providing online error-detection (and hence recovery) for applications. 

                                                 

12 Application behavior varies in phases during program execution 
13.The DIDUCE paper does not present the percentage of spurious invariants found by the tool. 
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4.2.3 Rule-based Detectors 

Rule-based detectors detect errors by checking whether the application satisfies 

predefined properties specified as rules. The checking can be done either statically at 

compile-time or dynamically at runtime.  

Dynamic Rule-based detectors: Hiller et al. [56] provide rule-based templates to the 

programmer for specifying runtime error detectors for embedded applications. Examples 

of rules include a variable being constant, a variable belonging to a range and a 

monotonically increasing variable increasing by a bounded amount. However, the 

programmer needs to choose the right templates as well as the template parameters based 

on their understanding of the application semantics. In a companion paper, Hiller et al. 

[40] describe an automated methodology to place detectors in order to maximize error 

detection coverage. The method places detectors on executable paths in the application 

that have the highest probability of error propagation. Fault-injections into the application 

data are used to measure the error propagation probabilities along application paths. 

While the above technique is useful if the programmer has extensive knowledge of the 

applications and fault-injections can be performed, it is desirable to derive  and place 

detectors without requiring such knowledge and without requiring fault-injections. 

Static Rule-based detectors: Engler et al. [61] also use rule-based templates to find bugs 

in programs. The main differences are (1) The rules learned are based on commonly 

occurring patterns in the application source code rather than being specified by the 

programmer and (2) The rules are checked at compile-time rather than at runtime. 

Violations of the learned rules are considered as program bugs. The main assumption 
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here is that programmers follow implicit rules in writing code that are not often 

documented, and a violation of such rules represents a program error. Static analysis of 

the application is used to extract the rules and statistical analysis is used to determine if a 

rule is significant from the point of view of error detection. The technique has been used 

to find errors and vulnerabilities in the Linux and BSD operating system kernels.  Li et al. 

[75] extend the ideas presented in Engler et al.[61] to extract programming rules using a 

data-mining technique called frequent item-set mining. Their system, PR-Miner, extracts 

implicit programming rules based on static analysis of the application without requiring 

rule-based templates. The rules are extracted from localized code sections (such as 

functions) and applied to the entire code base. Violations of the rules are reported as 

bugs. The technique has been applied to large code-bases including Apache and MySQL, 

in addition to the Linux kernel. 

Static rule-based techniques are useful for finding common programming errors such as 

copy-and-paste errors [75] or an error due to the programmer forgetting to perform an 

operation, such as releasing locks [61]. It is unclear if they can be used for detecting more 

subtle errors that occur in well-tested code, such as timing and synchronization errors, as 

these errors may not be easily localized to particular code sections[7]. Further, these 

techniques have large false-positive rates i.e. many errors do not correspond to real bugs. 

This leads to false detections and the programmer needs to filter out the real detections 

from the false ones.  



104 

 

4.2.4 Full Duplication Techniques 

Duplication has traditionally been used to provide high-coverage at runtime for both 

software errors and hardware-errors [9]. Duplication based approaches are useful for 

protecting a system from transient hardware faults. However, they offer limited 

protection from software errors and permanent hardware faults. This is because both the 

original program and the duplicated program can suffer from common mode failures. 

Further, full duplication techniques result in the detection of many errors that have no 

impact on the application (benign errors)[70]. This constitutes a wasteful detection (and 

consequent recovery) from the application‟s viewpoint.  

Duplication can be performed either in software or in hardware. 

Software-based duplication approaches replicate the program at the source-level [45], 

instruction level [68] or at the compiler intermediate code level [69]. In order to prevent 

error-propagation and preempt crashes, software-based approaches must compare the 

duplicated programs after every instruction. However, such a comparison results in high 

performance overhead (2x-3x) [45]. Therefore, software duplication approaches perform 

the comparison only at certain instructions such as stores and branches[68, 69] in the 

program. This results in less than 100% coverage as the program may crash before 

reaching the comparison point. Even with this optimization, software-based duplication 

incurs relatively high performance overhead (60-90%).  

Hardware-based duplication approaches such as those used in IBM G5 processors [10] 

execute redundant copies of each instructions transparent to the application and compare 
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the results of the execution using special-purpose hardware. These techniques reduce the 

performance overhead of duplication, but have significant hardware design complexity 

and area overheads (30-35%)[10]. Simultaneous redundant-threading [76] is a hardware-

based replication technique in which identical copies of the application are executed as 

independent threads in a Simultaneous Multithreaded (SMT) processor. Slipstream 

processors[77] explores a similar idea in the context of Chip Multiprocessor (CMP) 

systems. These techniques mask the performance overhead of replication by loose 

coupling among the redundant threads executing multiple copies of the same program, 

but lead to inefficient use of processor resources. 

4.2.5 Diverse Execution Techniques 

Diverse execution techniques can detect common mode failures that occur during 

duplication. Diversity can be implemented at multiple levels as considered by the 

following techniques: 

N-version programming (NVP) is a design diversity technique [78] in which two or 

more versions of the same program are implemented by independent development teams. 

The versions are executed simultaneously and the results of their execution compared. 

The assumption made by NVP is that the versions produced by the independent teams 

suffer from different kinds of errors and hence an error in any one version of the software 

will be masked. However, Knight and Leveson [79] show that in practice, even 
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independently produced versions of the software are likely to exhibit similar failures
14

. 

Further, NVP requires a tremendous cost in programmer time and resources in order to 

produce software versions that are truly independent. This limits the applicability of NVP 

to mission-critical systems rather than systems built with COTS (Commercial-Off-the-

Shelf) components.  

Data Diversity [80] is a variant of NVP in which a single version of the software is 

executed twice with minor changes in its inputs. The assumption is that software 

sometimes fails for certain values in its input space and by performing minor 

perturbations in the input values, it is possible to mask the failure while producing 

acceptable output. Data diversity can provide protection from both software errors as well 

as hardware errors (transient and permanent). The data diversity technique has been 

applied to certain classes of systems such as real-time control systems in which minor 

changes in the inputs produce acceptable outputs from the application semantics point of 

view. However in general-purpose applications, it may be unacceptable to perform minor 

perturbations in input values as these perturbations can result in totally different output 

values (or even in application failure). This may be unacceptable for the application. 

ED4I [81] is a software-based diversity technique which transforms the original program 

into one in which each data operand is multiplied by a constant value k. The value of k is 

determined empirically to maximize the error-detection coverage based on the usage 

profiles of processor functional units during program execution. The original program 

                                                 

14 Although the errors made by the teams may be different, the error manifestations are similar. 
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and the transformed program are both executed on the same processor and the results are 

compared. A mismatch indicates an error in the program. Since the transformed program 

operates on a different set of data operands than the original program, it is able to mask 

certain kinds of errors in processor functional units and memory (both transient and 

permanent). However, the technique cannot detect software errors that result in incorrect 

computation of data values in both the original program and the transformed program. 

This is because diversity is introduced in the data values but not in the instructions that 

compute the data values.  

TRUMP [82] is a diversity technique that uses AN-codes [83] for error detection. Similar 

to ED4I, TRUMP multiplies each value used in the program by a constant to produce a 

transformed program. However, instead of comparing the value produced by the original 

program and the transformed program, TRUMP checks if the data value in the 

transformed program is divisible by the constant. If this is not the case, then TRUMP 

concludes that either the original program value or the transformed program value 

suffered an error. TRUMP also suffers from the same disadvantage of ED4I, namely, that 

it cannot detect software errors that result in common mode failures between the original 

program and the transformed program.  

4.2.6 Runtime Error Detection Techniques 

Runtime techniques have been proposed to detect errors during program execution. These 

techniques detect specific kinds of errors such as memory safety violations [22, 24, 84], 
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race conditions [85], control-flow errors [86-88] and synchronization errors [89, 90]. 

None of these techniques however, can detect general errors in the program.  

The runtime error detection techniques considered in the literature are as follows: 

Memory Safety Checking techniques check every program store that is performed 

through a pointer (at runtime) to ensure that the write is within the allowed bounds of the 

pointer[22, 24, 84]. The techniques are effective for detecting common problems due to 

buffer overflows and dangling pointer errors. It is unclear whether they are effective in 

detecting random errors that arise due to incorrect computation unless such an error 

results in a pointer writing outside its allowed bounds. The techniques also requires 

checking every memory write, and this can result in prohibitive performance overheads 

(5x-6x)[22]. Smart compile time tricks can reduce the overhead [84], but rely on complex 

compiler transformations such as automatic pool-allocation [91] . 

Race Detection techniques such as Eraser [85] check for race conditions in a multi-

threaded program. A race condition occurs when a shared variable is accessed without 

explicit and appropriate synchronization. A race condition is only one instance of a fault-

class broadly referred to as timing errors. Timing errors can result in corruption of data 

values used in the program and cause the program to produce incorrect outputs. The 

Eraser technique checks for races in lock-based programs by dynamically monitoring 

lock acquisitions and releases. The technique associates lock sets with each shared 

variable and dynamically learns these associations during the program‟s execution. An 



109 

 

error is flagged when the lockset is violated. It is unclear how representative are lock set 

violations of generic timing errors in the program.  

Control-flow checking techniques ensure that a program‟s statically derived control-

flow is preserved during its execution [86-88]. This is achieved by adding checks on the 

targets of jump instructions and at entries and exits of basic blocks. However, fault-

injection experiments (at the hardware level) have shown that only 33% of the manifested 

errors result in violations of program control-flow [92] and can hence be detected by 

control-flow checking techniques. 

Runtime-verification techniques attempt to bridge the gap between formal techniques 

such as model checking and runtime checking techniques. These techniques verify 

whether the program violates a programmer-specified safety property [89, 90] by 

constructing a model of the program and checking the model based on the actual program 

execution. The properties checked usually represent synchronization and timing errors in 

the program. However if there is a general error in the program, there is no guarantee that 

the program will reach the check before crashing. Therefore, it is unclear if the 

techniques provide useful runtime coverage for random hardware or software errors. 

4.2.7 Executable Assertions 

The only general way to detect runtime-errors is for the programmer to put assertions in 

the code, as demonstrated in [54, 93]. Rela et al. [64] evaluate the coverage provided by 

programmer-specified assertions in combination with control-flow checking and 
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Algorithm-Based Fault-Tolerance (ABFT)[94]. They find that assertions can significantly 

complement the coverage provided by ABFT and control-flow checking. 

Leveson et al. [55] compare the error detection capabilities of self-checks (assertions) and 

diversity-based duplication techniques. They find that (1) Self-checks provide an order of 

magnitude higher error-detection coverage than diversity-based duplication, (2) For self-

checks to be effective in detecting errors, they must be placed at appropriate locations in 

the application‟s code and (3) Self-checks derived from analysis of the application code 

(by the developer) are much more effective at detecting errors than those derived based 

on program specifications alone.  

The detectors derived in this chapter can be considered as executable assertions that are 

derived automatically based on analysis of the application code (without programmer 

intervention) and placed at strategic locations to minimize error propagation. The 

detectors can be implemented both in hardware and in software.  

4.2.8 Summary 

The static techniques we have discussed are geared towards detecting errors at compile-

time, while the dynamic analysis techniques are geared towards providing feedback to the 

programmer for bug finding. Both these types are fault-avoidance techniques (fault is 

removed before the program is operational) [95]. Despite the existence of these 

techniques and rigorous program testing, subtle but important errors such as timing errors 

persist in a program [6, 7].  
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Runtime-error detection techniques are geared towards addressing subtle software errors 

and also hardware errors. As we have already seen, full reication can detect many of 

these errors; but not only does it incur significant performance overheads, it also results 

in a large number of benign error detections that have no impact on the application[70]. 

Thus, there is a need for a technique that takes advantage of application characteristics 

and detects arbitrary errors at runtime without incurring the overheads of replication. 

The question that we attempt to answer in this chapter is as follows: Is it possible to 

derive runtime error (attack) detectors based on application properties to minimize the 

detection latency and preempt application failures (compromise)? This is crucial for 

performing rapid recovery upon application failure as shown in [8]. 

4.3 APPROACH 

This section presents an overview of the error detector derivation approach.  

4.3.1 Terms and Definitions 

Backward Program Slice of a variable at a program location is defined as the set of all 

program statements/instructions that can affect the value of the variable at that program 

location[96].  

Critical variable: A program variable that exhibits high sensitivity to random data errors 

in the application is a critical variable. Placing checks on critical variables can achieve 

high detection coverage.  
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Checking expression: A checking expression is an optimized sequence of instructions 

that recompute the critical variable. It is computed from the backward slice of the critical 

variable for a specific acyclic control path in the program. 

Detector: The set of all checking expressions for a critical variable, one for each acyclic, 

intra-procedural control path in the program. 

4.3.2 Steps in Detector Derivation 

The main steps in error detector derivation are as follows: 

A. Identification of critical variables. The critical variables are identified based on an 

analysis of the dynamic execution of the program. The application is executed with 

representative inputs to obtain its dynamic execution profile, which is used to choose 

critical variables for detector placement. Critical variables are variables with the highest 

dynamic fanouts in the program, as errors in these variables are likely to propagate to 

many locations in the program and cause program failure. This approach was presented in 

[17], where it was shown to provide up to 85% coverage with 10 critical variables in the 

entire program.  However, in this chapter, critical variables are chosen on a per-function 

basis in the program i.e. each function in the program is considered separately to identify 

critical variables in the function. This is because we consider intra-procedural slices for 

extracting backward slices (as explained below). 

B. Computation of backward slice of critical variables. A backward traversal of the 

static dependence graph of the program is performed starting from the instruction that 

computes the value of the critical variable going back to the beginning of the function. 
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The slice is specialized for each acyclic control path that reaches the computation of the 

critical variable from the top of the function. The slicing algorithm used is a static slicing 

technique that considers all possible dependences between instructions in the program 

regardless of program inputs (based on source language semantics). Hence, the slice will 

be a superset of the actual dependencies during a valid execution of the program.  

C. Check derivation, insertion, instrumentation. 

 Check derivation: The specialized backward slice for each control path is optimized 

considering only the instructions on the corresponding path, to form the checking 

expression. 

 Check insertion: The checking expression is inserted in the program immediately 

after the computation of the critical variable. 

 Instrumentation: Program is instrumented to track control-paths followed at runtime 

in order to choose the checking expression for that specific control path. 

D. Runtime checking in hardware and software. The control path followed is tracked 

(by the inserted instrumentation) in hardware at runtime. The path-specific inserted 

checks are executed at appropriate points in the execution depending on the control path 

followed at runtime. The checks recompute the value of the critical variable for the 

runtime control path. The recomputed value is compared with the original value 

computed by the main program. In case of a mismatch, the original program is stopped 

and recovery is initiated.  

There are two main sources of runtime performance overhead for the detector:  
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(1) Path Tracking: The overhead of tracking paths is significant (4x) when done in 

software
15

. Therefore, a prototype implementation of path tracking is performed in 

hardware. This hardware is integrated with the Reliability and Security Engine 

(RSE)[1]. RSE is a hardware framework that provides a plug-and-play environment 

for including modules that can perform a variety of checking and monitoring tasks in 

the processor‟s data-path. The path-tracking engine is implemented as a module in the 

RSE. 

(2) Checking: In order to further reduce the performance overhead, the check execution 

itself can be moved to hardware. This would involve implementing the checking 

expressions directly in the RSE and compiling them to Field-Programmable Gate 

Arrays (FPGAs). This is an area of future investigation. 

4.3.3 Example of Derived Detectors  

The derived detectors are illustrated using a simplified example of an if-then-else 

statement in Figure 33. A more realistic example is presented in Section 4.4. In the 

figure, the original code is shown in the left and the checking code added is shown in the 

right. Assume that the detector placement analysis procedure has identified f as one of the 

critical variables that need to be checked before its use in the following basic block. For 

simplicity, only the instructions in the backward slice of variable f are shown in Figure 

33.  

                                                 

15 Based on a previous software-only evaluation of the technique 
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Figure 33: Example code fragment with detectors inserted 

There are two paths in the program slice of f, corresponding to each of the two branches. 

The instructions on each path can be optimized to yield a concise expression that checks 

the value of f along that path (shown in yellow in Figure 33). In the case of the first path 

(path=1), the expression reduces to (2 * c - e) and this is assigned to the temporary 

variable f2. Similarly the expression for the second path (path=2) corresponding to the 

else branch statement reduces to (a + e) and is also assigned to f2. Instrumentation is 

added to keep track of paths at runtime. 

At runtime, when control reaches the use of the variable f, the correct checking 

expression for f is chosen based on the value of the path variable and the value of f2 is 

compared with the value of f computed by the original program. In case there is a 

mismatch, an error is declared and the program is stopped.  

4.3.4 Software Errors Covered 

Since the technique proposed in this chapter enforces the compiler-extracted source-code 

semantics of programs at runtime, it can detect any software error that violates the source 
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program‟s semantics at runtime. This includes software errors caused by pointer 

corruptions in programs (memory corruption errors) as well as those caused by missing 

or incorrect synchronization in concurrent programs (timing errors). We consider how the 

proposed technique detects these errors: 

Memory Corruption Errors: Languages such as C and C++ allow pointers to write 

anywhere in memory (to the stack and heap)[97]. Memory corruption errors are caused 

by pointers in the code writing outside their intended object
16

 (according to source code 

semantics), therby corrupting other objects in memory. However, static analysis 

performed by compilers typically assumes that objects are infinitely far apart in memory 

and that a pointer can only write within its intended object[30]. As a result, the backward 

slice of critical variables extracted by the compiler includes only those dependences that 

arise due to explicit assignment of values to objects via pointers to the object. Therefore, 

the technique detects all memory errors that corrupt one or more variable in the backward 

slice of critical variables, as long as the shared state between the check and the main 

program is not affected (e.g. memory errors that affect function parameters will not be 

detected, as only intra-procedural slices are considered by the technique). 

Figure 34 illustrates an example of a memory corruption error in an application and how 

the proposed technique detects the error. In the figure, function foo computes the running 

sum (stored in sum) of an array of integers (buf) and also the maximum integer (max) in 

the array. If the maximum exceeds a predetermined threshold, the function returns the 

                                                 

16 We use the term object to refer to both program variables as well as heap- and stack- allocated objects. 
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accumulated sum corresponding to the index of the maximum element in the array 

(maxIndex).  

int foo(int buf[]) { 

1:        int sum[bufLen]; 
2:        int max = 0; int maxIndex = 0; 

3:        sum[0] = 0;  

4:        for (int i = 0; i < bufLen; ++i) { 
5:              sum[i + 1] = sum[i] + buf[i];  

6:              if (max < buf[i])  { 

7:                            max = buf[i]; 
8:                            maxIndex = i; 

9:             } 

10:       } 
11:      if (max > threshold)      return sum[maxIndex]; 

12:      return sum[bufLen]; 

} 

Figure 34: Example of a memory corruption error 

In Figure 34, the array sum is declared to be of size bufLen, which is the number of 

elements in the array buf. However, there is a write to buf[i+1] in line 5, where i can take 

values from 0 to bufeLen. As a result, a buffer overflow occurs in the last iteration of the 

loop, leading to the value of the variable max being overwritten by the write in line L5 

(assuming that max is stored immediately after the array buf). The value of max would be 

subsequently overwritten with the value of the sum of all the elements in the array, which 

is something the programmer almost certainly did not expect (this results in a logical 

error).  

In the above example, assume that the variable max has been identified as critical, and is 

being checked in line 9. Recall that the proposed technique will detect a memory 

corruption error if and only if the error causes corruption of the critical variable (which is 

the case in this example). In this case, the checking expression for max will depend on 

whether the branch corresponding to the if statement in line 6 is taken. If the branch is not 

taken, the value of max is the value of max from the previous iteration of the loop. If the 
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branch is taken, then the value of max is computed to be the value buf[i]. These are the 

only possible values for the max variable, and are represented as such in the detector. The 

memory corruption error in line 5 will overwrite the variable max with the value 

sum[bufLen], thereby causing a mismatch in the detector‟s value. Hence, the error will be 

detected by the technique. 

Note that the detector does not check the actual line of code or the variable where the 

memory error occurs. Therefore, it can detect any memory corruption error that affects 

the value of the critical variable, independent of where it occurs. As a result, it does not 

need to instrument all unsafe writes to memory as done by conventional memory-safety 

techniques (e.g.[24]). 

Race Conditions and Synchronization errors: Race conditions occur in concurrent 

programs due to lack of synchronized accesses to shared variables[98]. Static analysis 

techniques typically do not take into account asynchronous modifications of variables 

when extracting dependences in programs. This also holds for the backward dependence 

graph of critical variables in the program. As a result, the backward slice only includes 

modifications to the shared variables made under proper synchronization. Hence, race 

conditions that result in unsynchronized writes to shared variables will be detected 

provided the write(s) are to the variables in the backward slice of critical variables that 

are not shared between the main program and the checking expressions. However, race 

conditions that result in unsynchronized reads may not be detected unless the result read 

by the read propagates to the backward slice of the critical variable. Note that the 

technique would not detect benign races (i.e. race conditions in which the final value of 
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the variable is not affected by the order of the writes), as it checks the value of the 

variable being written to rather than whether the write is synchronized.  

Figure 35 shows a hypothetical example of a race condition in a program. Function foo 

adds a constant value to each element of an array a which is passed into it as a formal 

parameter. It is also passed an array a_lock, which maintains fine-grained locks for each 

element of A. Before operating on an element of the array, the thread acquires the 

appropriate lock from the array a_lock. This ensures that no other thread is able to modify 

the contents of array a[i], provided the other thread tries to acquire the lock before 

modifying a[i]. Therefore, the locks by themselves do not protect the contents of a[i] 

unless all threads adhere to the locking discipline. The property of adherence to the 

locking discipline is hard to verify using static analysis alone because, (1) The thread 

modifying the contents of array a could be in a different module than the one being 

analyzed, and the source code of the other module may not be available at compile time, 

and (2) Precise pointer analysis is required to find the specific element of a being written 

to in the array (it may not even be possible to find this statically if the index is input 

dependent). Such precise analysis is often unscalable, and static analysis techniques 

perform approximations that may result in missed detections (or false-positives). 

The proposed technique, on the other hand, would detect illegal modifications to the 

array a even by threads that do not follow the locking discipline.  Assume that the 

variable a[i] in line 7 has been determined to be a critical variable. The proposed 

technique would place a check on a[i] to recompute it in line 8. Now assume that the 

variable a[i] was modified by an errant thread that does not follow the locking discipline. 
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This may cause the value of a[i] computed in line 7 to be different from what it should 

have been in a correct execution (which is its previous value added to the constant c). 

Therefore, the error is detected by the recomputation check in line 8. 

1: void foo(int* a, mutex* alock, int n, int c) { 

 2:        int i = 0; 
 3:        int sum = 0; 

 4:        for (i=0; i<n; i++) { 

 5:               acquire_mutex( alock[i] ); 
 6:               old_a = a[i]; 

 7:                a[i] = a[i] + c; 

 8:                check( a[i] == old_a + c) 
 9:                release_mutex( alock[i] ); 

 10:       } 

} 

Figure 35: Example for race condition detection 

The following can be noted in the example: (1) The source code of the errant thread is not 

needed to derive the check, (2) The check will fail only if the actual computed value is 

different and is therefore immune to benign races that have no manifestation on the 

computation of the critical variable, and (3) in this example, it is enough for the technique 

to analyze the code of the function foo to derive the check for detecting the race 

condition.   

4.3.5 Hardware Errors Covered 

Hardware transient errors that result in corruption of architectural state are considered in 

the fault-model. Table 14 shows a detailed characterization of the hardware errors 

covered by the technique. Examples of hardware errors covered include, 

 Errors in Instruction Fetch and Decode: Either the wrong instruction is fetched, 

(OR) a correct instruction is decoded incorrectly resulting in data value corruption. 
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Table 14: Detailed characterization of hardware errors and their detection by the technique 
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Incorrect (but valid) instruction is 

fetched 

If instruction affects critical value 

Incorrect (invalid) instruction is 
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Instruction is skipped If instruction is in backward slice of critical variable 

Same instruction is repeatedly 
fetched 

 

No instruction is fetched  

In
st

ru
ct

io
n
 D

ec
o
d

e 
S
ta

g
e 

(I
D

) 

Decoded to invalid op-code  
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incorrect address 

If the missed instruction is in the backward slice of critical variable (OR) if new 
instruction affects critical operand 
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Computation errors in integer 
operations 

If instruction belongs to backward slice of critical variable and error is not logically 
masked in ALU 

Computation errors in FP 

operations 

If error occurs in exponent or MSB of mantissa and is not logically masked in ALU 

Computation errors in load/store 
addresses 

If address is valid and the instruction belongs to the backward slice of the critical 
variable 

Errors in resolving branch direction If critical variable‟s value differs on both directions of the branch in question 

Errors in branch target address 

computation 

If address is valid, and new target is not one of allowed targets and the check is reached 

M
em

o
ry

 S
ta

g
e 

(M
E

M
) 

Invalid address is referenced in 

Load/Store 

 

Data fetched from incorrect address 

for L/S 

Data is used in critical value computation 
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Data is used in critical operand computation (OR) critical operand is overwritten 

Data not written to memory for L/S Data is used in critical operand computation 

Incorrect value is written to the PC 

on branch 

If address is valid, and new target is not one of allowed targets and the check is reached 

Value is not written to the PC on 
branch 

if critical variable‟s value differs on both directions of the branch 
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ALU instruction written to wrong 

register 

if register used in critical value computation is overwritten (OR) instruction belongs to 

backward slice  

Load instruction stalled indefinitely  

Load instruction written to wrong 

register 

if register used in critical value computation is overwritten (OR) instruction belongs to 

backward slice  

Exception occurs incorrectly during 

commit 

 

Exception omitted during commit Assuming critical value computation throws exception 
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Errors in memory Memory operand used in critical value computation but is not used in the checking 

expression 

Errors in cache If the cached operand is used in original computation and not in checking expression  

Errors in registers If original computation and checking expression use different registers and no value 

forwarding takes place 

Errors in register bus If the same register is reread by the checking expression 

Errors in memory bus If operand is reloaded by the checking expression 
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 Errors in Execute and Memory Units: An ALU instruction is executed incorrectly 

inside a functional unit, (OR) the wrong memory address is computed for a load/store 

instruction, resulting in data value corruption. 

 Errors in Cache/Memory/Register File Errors: A value in the cache, memory, or 

register file experiences a soft error that causes it to be incorrectly interpreted in the 

program (if ECC is not used). 

4.4 STATIC ANALYSIS 

This section describes the static analysis technique to derive detectors and add 

instrumentation for path tracking to a program. The bubble-sort program shown in Figure 

36(a) is used as a working example throughout this section.  We use the LLVM compiler 

infrastructure [99] to derive error detectors for the program. A new compiler pass called 

the Value Recomputation Pass (VRP) was introduced into LLVM. The VRP performs the 

backward slicing starting from the instruction that computes the value of the critical 

variable to the beginning of the function. It also performs check derivation, insertion and 

instrumentation. The output of the VRP is provided as input to the optimization passes of 

LLVM in order to reduce the check to a minimal expression. 
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void Bubble(int srtElements, int* sortList) { 

           int i, j,  top; 
          bInitarr( sortList, srtElements ); 

          top=srtelements; 

         while ( top>1 ) {//Outer-while-loop 
                 i=1; 

                while ( i<top ) {// Inner while-loop 

                          if ( sortlist[i] > sortlist[i+1] ) 
                         { 

                                     j = sortlist[i]; 

                                    sortlist[i] = sortlist[i+1]; 
                                    sortlist[i+1] = j; 

                         } // end-if 

                         i=i+1; 
                } // end-inner-while 

               top=top-1; 

        } // end-outer-while 
} 

(a) 

loopentry:
É

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, endif ]   

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

É .

loopentry:
É

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [ 0, loopentry ], [tmp.i, endif ]   

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayElement sortlist, tmp.i            

tmp.10 = load [ tmp.9 ]      

tmp.12 = add i.1, 1                  

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]           

tmp.15 = setgt tmp.10, tmp.14      

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif: 
tmp.16 = setlt tmp.12, top         

br tmp.16, no_exit, loop_exit

loopexit:

É .  
 

(b) 

Figure 36: (a) Example code fragment (b) Corresponding LLVM intermediate code 

LLVM uses Static Single Assignment form (SSA) [100] as its intermediate code 

representation. In deriving the backward program slice, two well understood properties of 

SSA form are used as follows: 
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 In SSA form, each variable (value) is defined exactly once in the program, and the 

definition is assigned a unique name, which facilitates analyzing data dependences 

among instructions.  

 SSA form uses a special static construct called the phi instruction that is used to keep 

track of the data dependences when there is a merging of data values from different 

control edges. The phi instruction includes the variable name for each control edge 

that is merged and the corresponding basic block. This instruction allows the 

specialization of the backward slice based on control-paths by the proposed 

technique. 

A simplified version of the LLVM intermediate code corresponding to the inner-while 

loop in the bubble-sort program is shown in Figure 36b. 

4.4.1 Value Recomputation Pass 

The VRP takes LLVM intermediate code annotated with critical variables and extracts 

their path-specific backward slices. It computes the backward slice by traversing the 

static dependence graph of the program starting from the instruction that computes the 

value of the critical variable up until the beginning of the function. The VRP outputs 

instrumented LLVM intermediate code that tracks paths and invokes detectors. By 

extracting the path-specific backward slice and exposing it to other optimization passes in 

the compiler, the Value Recomputation Pass (VRP) enables aggressive compiler 

optimizations to be performed on the slice that would not be possible otherwise. 
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4.4.1.1 Overall Approach 

The algorithm for performing path-specific slicing is shown in Table 15. To the best of 

our knowledge, this is the first path-specific static slicing algorithm developed to enable 

derivation of error detectors. The algorithm is explained as follows: 

Table 15: Pseudocode of backward traversal algorithm 

Function visit( seedInstruction, pathID, parent ): 

        ActiveSet ={ seedInstruction } 
         if parent==0: 

                  SliceList[ pathID ] = { } 

          else: 
                  SliceList[ pathID ] = SliceList[ parent ] 

         nextPathID = pathID  

         while not empty( ActiveSet ): 
                     I = Remove instruction for ActiveSet 

                     Visited[ BasicBlock(I) ] = true 

                      // Do not consider interprocedural slices 
                     if I is a function argument or constant: 

                               terminal = true          
                     else if I is a non-phi instruction: 

                                 SliceList[ pathID] =  SliceList[PathID]             

                                                                    U { I } 
                                 ActiveSet = ActiveSet U operands( I ) 

                      else if I is a phi instruction: 

                               for  each operand of the phi: 
                                    // Check if a loop is encountered  

                                   // or if  going back multiple iterations 

                                    if not ( Visited [ BasicBlock(operand) ]  
                                       and not CrossingInsn(I, operand) ) 

                                           nextPathID = pathID + 1   

                                           result = Visit(operand,  
                                                                  nextPathID, pathID ) 

                                           terminal = terminal OR ~(result) 

                                    else: 
                                          SeedList = SeedList U { operand }                                                                   

            // Add the path to the pathList if terminal path 

            if (terminal)  
                      PathList = PathList U { pathID } 

          return terminal  

 
Function computeSlices (criticalInstruction): 

         SeedList = {  criticalInstruction } 

         PathList = { } 
          while not empty( SeedList ):  

               seedInstruction=Remove instruction from SeedList 

               call visit( seedInstruction, 0, 0 )                     
          return PathList, SliceList 

 

The instruction that computes the critical variable in the program is called the critical 

instruction.  In order to derive the backward program slice of a critical instruction, the 
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algorithm performs backward traversal of the static data dependence graph.  The traversal 

starts from the critical instruction and terminates when one or more of the following 

conditions are met: 

 The beginning of the current function is reached. It is sufficient to consider intra-

procedural slices in the backward traversal because each function is considered 

separately for the detector placement analysis. For example, in Figure 36a the array 

sortList is passed as an argument to the function Bubble. The slice does not include 

the computation of sortList in the calling function. If sortList is a critical variable in 

the calling function, say foo, then a detector will be derived for it when foo is 

analyzed. 

 A basic block is revisited in a loop. During the backward traversal, if data 

dependence within a loop is encountered, the detector is broken into two detectors, 

one placed on the critical variable and one on the variable that affects the critical 

variable within the loop. This second detector ensures that the variable within the 

loop is computed correctly and hence the variable can be used without recomputing it 

in the first detector. Hence, only acyclic paths are considered by the algorithm. 

 A dependence across loop iterations is encountered. Recomputing critical variables 

across multiple loop iterations can involve loop unrolling or buffering intermediate 

values that are rewritten in the loop. This in turn can complicate the design of the 

detector. Instead, the VRP splits the detector into two detectors, one for the 

dependence-generating variable and one for the critical variable. 
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 A memory operand is encountered.  Memory dependences are not considered 

because LLVM promotes most memory objects to registers prior to running the VRP. 

Since there is an unbounded number of virtual registers for storing variables in SSA 

form, the analysis does not have to be constrained by the number of physical registers 

available on the target machine. However it may not always be possible to promote a 

memory objects to a register e.g. pointer references to dynamically allocated data. In 

such cases, the VRP duplicates the load of the memory object, provided the load 

address is not modified along the control path from the load instruction to the critical 

instruction.  

4.4.1.2 VRP Algorithm Details 

During the backward traversal, when a phi-instruction is encountered indicating a merge 

in control-flow paths, the slice is forked for each control path that is merged at the phi. 

The algorithm maintains the list of instructions in each path-specific slice in the array 

SliceList. The function computeSlices takes as input the critical instruction and outputs 

the SliceList array, which contains the instructions in the backwards slice for each acyclic 

path in the function.  

The actual traversal of the dependence graph occurs in the function visit, which takes as 

input the starting instruction, an ID (number) corresponding to the control-flow path it 

traverses (index of the path in the SliceList array), and the index of the parent path. The 

computeSlices function calls the visit function for each critical instruction. The visit 

function visits each operand of an instruction in turn, adding it to the SliceList of the 
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current path. When a phi instruction is encountered, a new path is spawned for each 

operand of the phi instruction (by calling the visit function recursively on the operand 

with a new path ID and the current path as the parent). The traversal is then continued 

along this new path. Only terminal paths are added to the final list of paths (PathList) 

returned by the ComputeSlice procedure. A terminal path is defined as one that terminates 

without spawning any new paths (as a result of forking).  

Certain instructions cannot be recomputed in the checking expression, because 

performing recomputation of such instructions can alter the semantics of the program. 

Examples are mallocs, frees, function calls and function returns. Omitting mallocs and 

frees does not seem to impact coverage except for allocation intensive programs, as 

shown by our results in section 4.6.2. Omitting function calls and returns does not impact 

coverage for program functions because the detector placement analysis considers each 

function separately (section 4.3.2).  

Assuming that the critical variable chosen for the example in Figure 36a is sortlist[i], the 

intermediate code representation for this variable is the instruction tmp.10 in Figure 36b. 

The VRP computes the backward slice of tmp.10, which consists of the two paths shown 

in Figure 37.   

Path 0: no_exit  loopentry 
indvar.i = 0 

tmp.i = add  indvar.i, 1 

tmp.9 =getArrayElement  sortlist,tmp.i 
tmp.10 = load[  tmp.9 ] 

Path 1: endif  loopentry 
indvar.i = tmp.i 

tmp.i = add indvar.i, 1 

tmp.9 = getArrayElement  sortlist,tmp.i 
tmp.10 = load [ tmp.9 ] 

Figure 37: Path-specific slices for example 
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4.4.1.3 VRP and Other Optimization Passes 

After extracting the path-specific slices, the VRP performs the following operations on 

the slices: 

 Places the instructions in the backward slice of the critical variable corresponding to 

each control path in its own basic block.  

 Replaces the phi instructions in the slice with the incoming value corresponding to 

the control edges for the path. This allows subsequent compiler optimization passes to 

substitute the phi values directly in their uses through either constant propagation or 

copy propagation [101]. 

 Creates copies of variables used in the path-specific slices that are not live at the 

detector insertion point. For example, the value of tmp.i is overwritten in the loop 

before the detector can be reached and a copy old.tmp.i is created before the value is 

overwritten.  

 Renames the operands in the slices to avoid conflicts with the main program and 

thereby ensure that SSA form is preserved by the slice. 

 Instruments program branches with path identifiers considered by the backward 

slicing algorithm. This includes introduction of special instructions at branches 

pertaining to the paths in the slice, and also at function entry and exit points.  

The standard LLVM optimization passes are invoked on the path-specific backward 

slices extracted by the VRP. The optimization passes yield reduced instruction sequences 

that compute the critical variables for the corresponding paths. Further, since there are no 
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control-transfers within the sequence of instructions for each path, the compiler is able to 

optimize the instruction sequence for the path much more aggressively than it would have 

otherwise. This is because the compiler does not usually consider specific control paths 

when performing optimizations for reasons of space and time efficiency. However, by 

selectively extracting the backward slices for critical variables and by specializing them 

for specific control paths, the VRP is able to keep the space and time overheads 

manageable (see Section 4.4.1.5) 

4.4.1.4 VRP Output 

The LLVM intermediate code from Figure 36 with the checks inserted by the VRP is 

shown in Figure 38.  

The VRP creates two different instruction sequences to compute the value of the critical 

variable corresponding to the control paths in the code. The first control path corresponds 

to the control transfer from the basic block loopentry to the basic block no_exit in Figure 

38. The optimized set of instructions corresponding to the first control path is encoded as 

a checking expression in the block path0 in Figure 38. The second control path 

corresponds to the control transfer from the basic block endif to the basic block no_exit in 

Figure 36. The optimized set of instructions corresponding to the second control path is 

encoded as a checking expression in the block path1 in Figure 38. 

The instructions in the basic blocks path0 and path1 recompute the value of the critical 

variable tmp.10. These instruction sequences constitute the checking expressions for the 

critical variable tmp.10 and comprise of 2 instructions and 3 instructions respectively.  
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no_exit: .
indvar = phi  [0, loopentry], [tmp.i, then ], [tmp.i, en dif ]   

old.tmp..i = tmp..i 

tmp.i = add indvar.i, 1         

i.1 = cast tmp.i to int                

tmp.9 = getArrayIndex sortlist, tmp.i             

tmp.10 = load [ tmp.9 ]      

pathVal = getState( ) 

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [ new.0.tmp.9 ]          

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1         

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i        

new.1.tmp.10 = load [ new.1.tmp.9 ]     

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1                  

tmp.13 = getArrayIndex sortlist, tmp.12             

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14       

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()

 

Figure 38: LLVM code with checks inserted by VRP 

The basic block Check in Figure 38 compares the value computed by the checking 

expressions to the value computed in the original program. A mismatch signals an error 

and the appropriate error handler is invoked in the basic block error. Otherwise, control 

is transferred to the basic block restBlock, which contains the instructions following the 

computation of tmp.10 in the original program. 

4.4.1.5 Scalability 

This section discusses factors that could potentially limit the scalability of the VRP 

algorithm and how these are addressed by the proposed technique.  

 Number of control paths: This is addressed by considering only intra-procedural, 

acyclic paths in the program corresponding to the backward slices of critical variables 

in the program. At worst, this can be exponential in the number of branch instructions 
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in the program. In practice however, the number of control paths is polynomial in the 

number of branch instructions (unless the program is performing decision tree like 

computations). 

 Size of checking expression: The size of the checking expression depends on the 

number of levels in the dependence tree of the critical variable considered by the 

algorithm. Terminating the dependency tree at loop and function boundaries naturally 

limits the checking expression‟s size.  

 Number of detectors: The number of critical variables per function is a tradeoff 

between the desired coverage and an acceptable performance overhead.  Placing more 

detectors achieves higher coverage but may result in higher overheads. The algorithm 

may introduce additional detectors, for example, when splitting a detector into two 

detectors across loop iterations, but this reduces the size of each checking expression. 

Therefore, for a given number of critical variables, the number of detectors varies 

inversely as the size of each checking expression. 

4.4.1.6 Coverage 

The VRP operates on program variables at the compiler‟s intermediate representation 

(IR) level. In the LLVM infrastructure, the IR is close to the program‟s source code 

[99]and abstracts many of the low-level details of the underlying architecture. For 

example, the IR has an infinite number of virtual registers, uses Static Single  Assignment  

(SSA), and has native support for memory allocation (malloc and alloca) and pointer 
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arithmetic (getElementPtr
17

 instruction). Moreover, the runtime mechanisms for stack 

manipulations and function calls are transparent to the IR. As a result, the VRP may not 

protect data that is not visible at the IR level. Therefore, the VRP is best suited for 

detecting errors that impact program state visible at the source level. Note that the generic 

approach presented in Section 4.3, however, is not tied to a specific level of compilation 

and can be implemented at any level. 

The VRP operates on LLVM‟s intermediate code, which does not include common 

runtime mechanisms such as manipulation of the stack and base pointers. Moreover, the 

intermediate code assumes that the target machine has an infinite register file and does 

not take into account the physical limitations of the machine.   

Data errors in a program can occur in three possible places (locations): (1) Source-level 

variables or memory objects, (2) Precompiled Libraries linked with the application, and 

(3) Code added by the compiler‟s target-specific code generator for common runtime 

operations such as stack manipulation and handling register-file spills. The technique 

presented in the chapter aims at detecting errors in the first category, and can be extended 

to detect errors in the second category provided the source code of the library is available 

or the library is compiled with the proposed technique. However, errors in the third 

category, namely those that occur in the code added by the compiler‟s code generator 

cannot be detected using the proposed technique unless the error affects one or more 

                                                 

17 This is the general case of the getArrayElement instruction introduced previously 
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source-level variables or memory objects. This is because the code added by the compiler 

is transparent to the VRP and hence cannot be protected by the derived detectors.  

The steps in compiling a program with LLVM are as follows: First, the application‟s 

source code along with the source (or intermediate) code of runtime libraries are 

converted to LLVM‟s generic intermediate code form. This intermediate form is in-turn 

compiled onto the target architecture‟s object code, which is then linked with pre- 

compiled libraries to form the final executable.  The process is similar to conventional 

compilation, except that the application and the source libraries are first compiled to the 

intermediate code format (by a modified gcc front-end) before being converted to object 

code. Each level of compilation progressively adds more state (code and data) to the 

program. Table 16 shows the data elements of the program‟s state visible at each level of 

compilation. 

It can be observed from the table that the intermediate code level does not include many 

data elements in the final executable as these are added by the compiler and linker. Since 

the VRP operates at the intermediate code level, it does not see the elements in the lower 

levels and the derived detectors may not detect errors in these levels. This can be 

addressed by implementing the technique at lower compilation levels. 

Table 16: Information about the program that is available at different levels of compilation 

Code Level Elements of program state that are visible 

Source Level  (1) local variables, (2) global variables and (3) dynamic data allocated on heap 

Intermediate Code (1)  Branch addresses of if statements, loops , and case statements,  (2) 
Temporary variables used in evaluation of  complex expressions 

Object Code (1) Temporary variables to handle register file  spills, (2) Stack manipulation 

mechanisms and (3) Temporary variables to convert out of SSA form 
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4.4.2 State Machine Generation 

The VRP extracts a set of checking expressions for each detector in the program. Each 

checking expression in the set corresponds to an acyclic, intra-procedural control path 

leading up to the critical variable from the top of the function. The VRP also inserts 

instrumentation to notify the runtime system when the program takes a branch belonging 

to one of the paths in the set. This is done by inserting a special operation called 

EmitEdge that identifies the source and destination basic blocks of the branch with 

unique identifiers. The VRP then exports the basic block identifiers of the branches along 

each path in a separate text file for each detector in the program.  

A post-processing analysis then parses these text files and builds a state-machine 

representation of the paths for each check. The state machines are constructed such that 

every instrumented branch in the program causes state transitions in one or more state 

machines. A complete sequence of branches corresponding to a control path for which a 

checking expression has been derived, will drive the state machine for the check to an 

accepting state corresponding to the checking expression. 

 The algorithm used by the post-processing analysis to convert the control edge 

sequences to finite state machines is shown in Table 17. The algorithm processes the 

path files for each check, and adds states to the state machine corresponding to the 

check. The aim is to distinguish one path from another in the check, while at the same 

time introducing the least number of states to the state machine. This is because each 

state occupies a fixed number of bits in hardware, and our goal is to minimize the total 
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number of bits that must be stored by the hardware module for path-tracking and 

consequently the area occupied by it. 

 The algorithm in Table 17 works as follows: It starts in the starting state of the state 

machine and processes each edge in the list of edges for the path.  It adds a new state 

for an edge if and only if there no transition exists for the edge from the current state in 

the state machine. If such a transition exists, it transitions to the state leading from the 

current state corresponding to the edge, and processes the next edge in the path. It 

continues until it has processed all the edges of the path, and marks the last state added 

as the accepting state for the path in the state machine. When the algorithm terminates, 

it outputs the transition table for the state machines, as well as the list of accepting 

states corresponding to each path of the check.  The states are programmed into the 

hardware module for path-tracking (Section 4.8) at application load time. 

Table 17: Algorithm to convert paths to state machines 

for each critical variable V in the program: 

           open the path-file corresponding to the variable 
            for each path in the path-file: 

                    PathNumber  Read path ID in path file 

                      Read an edge e = (src, sink) from the path file 
                     S  Start_State 

                    Create an accepting state “A” for the path 

                    if this is the only edge for the path: 
                           if Transition[S, A] does not contain e     

                                Transition[S, A] <- Transition[S,A] U e 

                     else: 
                          current = S 

                           for each edge e in the path 

                                 if there exists a state K such that  
                                    (Transition[current,K] contains e): 

                                       current  K                      
                                 else: 

                                      Create a new state L 

                                      Transition[current, L]  e    
                                      current  L 

                            endfor 

                            Set current as the accepting state for path 
              endfor 

              close the path file for the critical variable 

endfor   

 



137 

 

Figure 39 shows an example control-flow graph (CFG) of a program for which paths 

must be tracked. Each basic block in the CFG has been assigned a unique index by the 

VRP. Assume that the critical variable is computed in basic block with identifier 6.  

The VRP has identified 4 acyclic paths in the backward slice of this critical variable 

labeled A to D. The paths consist of edge sequences that distinguish one path from 

another in the set of paths for a detector.  Note that the edges in each path correspond to 

the control edges that result in the VRP forking a new path during the backward traversal 

shown in Table 15. 

The state machine derived by the algorithm for the control-flow graph in Figure 39 is 

shown in Figure 40.The algorithm has introduced two new states E and F  in addition to 

four accepting states A, B, C and D that constitute the accepting states for the four paths. 

Note that the transitions between states correspond to the edges identified by the VRP to 

distinguish one path from another. These correspond to the edges that merge paths in the 

SSA graph corresponding to the backward slice of critical variables. 

The time-complexity of the algorithm in Table 17 is O(|V| *  |P| * |E|), where |V| is the 

number of critical variables in the program, |P| is the maximum number of control-paths 

in the backward slice of the variable and |E| is the maximum number of control-edges the 

control paths corresponding to each critical variable. The space complexity of the 

technique is O(|V| *|Ů E|* H ), where |H| is the maximum number of shared edges among 

control-paths corresponding to the critical variables, and Ů E represents the union of all 

the edges in the program‟s control paths.  
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Figure 39: Example Control-flow graph and paths 

 

Figure 40: State machine corresponding to the Control Flow Graph 

 

4.5 EXPERIMENTAL SETUP 

This section describes the mechanisms for measurement of performance and coverage 

provided by the proposed technique. It also describes the benchmarks used for evaluating 

the technique. 
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4.5.1 Performance Measurement 

All experiments are carried out on a single core Pentium 4 machine with 1GB RAM and 

2.0 Ghz clock speed running the Linux operating system. The performance overheads of 

each component introduced by the proposed technique can be measured as follows: 

Modification overhead: Performance overhead due to the extra code introduced by the 

VRP for instrumentation and checking. This code may cause cache misses and branch 

mispredictions and lead to performance overhead. 

Checking overhead: Performance overhead of executing the instructions in each check to 

recompute the critical variable and compare the recomputed value with the original value. 

The overhead of path-tracking is not considered in measuring performance overheads 

because the path tracking is done in parallel with the execution of the main program 

using a specialized hardware module. The path-tracking module and can execute 

asynchronously and needs to be synchronized with the main processor only when the 

check is performed (see Section 4.8 for a detailed description).  

We implemented the path-tracking module using software emulation and measured the 

performance overheads of the application with both path-tracking and checking enabled. 

We then measure the application overhead with only path-tracking enabled and subtract it 

from the earlier result in order to obtain the checking overheads. In order to obtain the 

code modification overheads, we executed the application with both path-tracking and 

checking disabled and measured the increase in execution time over the unmodified 

application. 
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4.5.2 Coverage Measurements 

Fault Injections: In order to measure the coverage of the derived detectors, we inject 

faults into the data of the application protected with the derived detectors. A new LLVM 

pass inserts calls to a special faultInject function (invoked after the optimization phases) 

after the computation of each program variable in the original program. The variable to 

be injected is passed as an argument to the faultInject function. The uses of the program 

variable in the original program are substituted with the return value of the faultInject 

function.  

At runtime, the call to the faultInject function corrupts the value of a single program 

variable by flipping a single bit in its value. The value into which the fault is injected is 

chosen at random from the entire set of dynamic values used in an error-free execution of 

the program (that are visible at the compiler‟s intermediate code level). In order to ensure 

controllability, only a single fault is injected in each execution of the application. 

Error Detection: After a fault is injected, the following program outcomes are possible: 

(1) the program may terminate by taking an exception (crash), (2) the program may 

continue and produce correct output (success), (3) the program may continue and produce 

incorrect output (fail-silent violation) or (4) the program may timeout (hang). The 

injected fault may also cause one of the inserted detectors to detect the error and flag a 

violation.  

When a violation is flagged, the program is allowed to continue (although in reality it 

would be stopped) in order that the final outcome of the program under the error can be 
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observed.  The coverage of the detector is classified based on the observed program 

outcome. For example, a detector is said to detect a crash if the detector upon 

encountering the error, flags a violation, after which the program crashes. Hence, when a 

detector detects a crash, it is in reality, preempting the crash of the program. 

Error Propagation: Our goal is to measure the effectiveness of the detectors in detecting 

errors that propagate before causing the program to crash. For errors that do not 

propagate before the crash, the crash itself may be considered the detection mechanism 

(as the state can be recovered from a clean checkpoint). Hence, coverage provided by the 

derived detectors for non-propagated errors is not reported. In the experiments, error 

propagation is tracked by observing whether an instruction that uses the erroneous 

variable‟s value is executed after the fault has been injected. If the original value into 

which the error was injected is overwritten, the error propagation is no longer tracked. 

The program is instrumented to track error-propagation and the instrumentation is 

automatically inserted by a new LLVM pass that we introduced. 

4.5.3 Benchmarks  

Table 18 describes the programs used to evaluate the technique and their characteristics.  

The first 9 programs in the table are from the Stanford benchmark suite[102] and the next 

5 programs are from the Olden benchmark suite[103]. The former benchmark set consists 

of small programs performing a multitude of common tasks. The latter benchmark set 

consists of pointer-intensive programs commonly used to evaluate memory systems. 
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Table 18: Benchmark programs and characteristics 

Benchmark Lines of C  Description of program 

IntMM 159 Matrix multiplication of integers 

RealMM 161 Matrix multiplication of floating-points 

FFT 270 Computes Fast-Fourier Transform 

Quicksort 174 Sorts a list of numbers using quicksort 

Bubblesort 171 Sorts a list of numbers using bubblesort  

Treesort 187 Sorts a list of numbers using treesort 

Perm  169 Computes all permutations of a string 

Queens 188 Solves the N-Queens problem 

Towers 218 Solves the Towers of Hanoi problem 

Health 409 Discrete-event simulation using double linked lists 

Em3d 639 Electro-magnetic wave propagation in 3D (using single linked lists) 

Mst 389 Computes minimum spanning tree (graphs) 

Barnes-Hut 1427 Solves N-body force computation problem using octrees 

Tsp 572 Solves traveling salesman problem using binary trees 

4.6 RESULTS 

This section presents the performance (Section 4.6.1), and coverage results (Section 

4.6.2) obtained from the experimental evaluation of the proposed technique. The results 

are reported for the case when 5 critical variables were chosen in each function by the 

placement analysis. We do not report results for other cases due to space constraints 

(these numbers are available on request).   

4.6.1 Performance Overheads 

The performance overhead of the derived detectors relative to the normal 

(uninstrumented) program‟s execution is shown in Figure 41.  The results are 

summarized below:  

 The average checking overhead introduced by the detectors is 25%, while the 

average code modification overhead is 8%. Therefore, the total performance overhead 

introduced by the detectors is 33%. 
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 The worst-case overheads are incurred in the case of the tsp application, which has a 

total overhead of nearly 80%. This is because tsp is a compute-intensive program 

involving tight loops. Placing checks within a loop introduces extra branch instructions 

and increases its execution time.  

Figure 41: Performance overhead when 5 critical variables are chosen per function 

4.6.2 Detection Coverage 

For each application, 1000 faults are injected, one in each execution of the application. 

The error-detection coverage (when 5 critical variables are chosen in each function) for 

different classes of failure are reported in Table 19.  

A blank entry in the table indicates that no faults of the type were manifested for the 

application. For example, no hangs were manifested for the IntMM application in the 

fault injection experiments. The second column of the table shows the number of errors 

that propagate and lead to the application crashing. The numbers within the braces in this 

column indicate the percentage of propagated, crash-causing errors that are detected 

before propagation. 
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Table 19: Coverage with 5 critical variables per function 

Apps 
Prop. 

Crashes (%) 

FSV 

(%) 

Hang 

(%) 

Success 

(%) 

IntMM 100 (97) 100  9 

RealMM 100 (98)   0 

FFT 57 (34) 7 60 0.5 

Quicksort 90 (57) 44 100 4 

Bubblesort 100 (73) 100 0 5 

Treesort 75 (68) 50  3 

Perm 100 (55) 16  0.9 

Queens 79 (61) 20  3 

Towers 79 (78) 39 100 2 

Health 39 (39) 0 0 0 

Em3d 79 (79)   1 

Mst 83 (53) 79 0 5 

Barnes-Hut 49 (39)  23  

Tsp 64 (64)  0 0 

Average 77 (64) 41 35 2.5 

 

The results in Table 19 are summarized as follows: 

 The derived detectors detect 77% of errors that propagate and crash the program. 

64% of crash-causing errors that propagate are detected before first propagation. These 

correspond to 83% of the propagated crash-causing errors that are detected by the derived 

detectors. 

 The derived detectors detect 41% of errors that result in fail-silent violations 

(incorrect outputs) and 35% of errors that result in hangs on average across applications. 

 The number of benign errors detected is 2.5% on average across applications. Recall 

that these errors have no effect on the execution of the application. 

 The worst-case coverage for errors causing crashes (that exhibit error propagation) is 

obtained in the case of the Olden program health (39%). The health program is 

allocation-intensive, and spends a substantial fraction (over 50%) of its time in malloc 
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calls. Our technique does not protect the return value of mallocs as duplicating malloc 

calls changes the semantics of the program. Further, the technique does not place 

detectors within the body of the malloc function, as it does not have access to the source-

code of library functions. This can be remedied by releasing versions of libraries 

compiled using the technique described in this chapter. 

4.6.3 Discussion 

The results indicate that our technique achieves 77% coverage for errors that propagate 

and cause the program to crash. Full-duplication approaches can provide 100% coverage 

if they perform comparisons after every instruction. In practice, this is very expensive 

and full-duplication approaches compare instructions only before store and branch 

instructions [68, 69]. With this optimization, the coverage provided by full-duplication is 

less than 100%. The papers that describe these techniques do not quantify the coverage in 

terms of error propagation, so a direct comparison with our technique is not possible.  

The performance overhead of the technique is only 33 % (when 5 detectors are placed in 

each function), compared to full-duplication, which incurs an overhead of 60-100% when 

performed in software. Further, the proposed technique detects just 2.5 % of benign 

errors in an application compared to full-duplication, in which over 50% of the detected 

errors are benign [12].  
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4.7 COMPARISON WITH DDVF AND ARGUS 

4.7.1 DDVF 

DDVF [104] is an approach to detect errors in the processor by checking if the program‟s 

static dataflow graph (DFG) is followed at runtime – i.e. the runtime DFG corresponds to 

the static DFG. The static data-flow graph is constructed by analyzing the program binary 

and the runtime dataflow graph is tracked using processor modifications. Since 

computing the whole program data-flow graph is infeasible in practice, DDVF computes 

the DFG on a per-basic block basis and enforce the DFG for each basic block separately. 

In other words, it breaks down the problem of computing the static DFG for the program 

into the easier problem of computing the DFG for each basic block in the program. Thus, 

it can detect (hardware) errors that affect the intra-block DFG, but not those that affect 

the inter-block DFG. Further, it does not track memory dependences in the DFG - instead 

it approximates memory to be a single node in the DFG and consider memory loads and 

stores as in- and out- edges for the node. In effect, the DDVF scheme tracks intra-block, 

register dependences among program  instructions. Table 20 compares the coverage of 

the DDVF technique with the Critical Variable Recomputation (CVR) technique. From 

Table 20, it can be observed that DDVF provides coverage for a much narrower range of 

errors and attacks compared to the CVR technique. On the other hand, the coverage 

provided by the DDVF technique is not limited to the backward slices of critical variables 

in the code. Further, DDVF requires no modifications to the compiler as the signatures 

are derived by direct analysis of the binary. This limits its coverage considerably as it 

does not consider memory dependences or inter-block control-flow.  
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Table 20: Comparison between the CVR and DDVF techniques in terms of coverage 

Error Class Explanation DDVF detected ? CVR detected ? 

Code Errors  Corruption of program 
instructions 

Yes, provided the number of bits in 
the signatures is large enough 

Yes, If instruction belongs to the 
backward slice of critical variable (CV) 

Control-flow 

Errors 

Corruption of program‟s 

control-flow graph 

Errors in Intra-block control-flow, 

but not in inter-block control-flow  

Yes, If it bypasses an instruction used in 

CV computation or results in extra writes 

to the CV 

Data Value 

Corruptions 

Corruption of data values 

used in program 

Errors in cache and registers, but 

not computation 

Yes, If data value is in backward slice of 

critical variable 

Software 

Errors 

Memory corruption 

errors, race conditions in 
multi-threaded programs 

No, because the program binary is 

used to derive the signatures 

Yes, if the error violated the source-level 

properties of the critical variable (i.e. error 
leads to undefined source-level behavior) 

4.7.2 Argus 

In Argus [105],  Meixner and Sorin deploy the DDVF scheme in a full-fledged 

implementation of a simple in-order processor on a FPGA. They present an enhanced 

version of the DDVF scheme called DCS (Dataflow and Control Signature). The main 

difference is that instead of embedding the signature of each basic block within itself, the 

signature of the (legal) successor blocks of a basic block are embedded within it. At 

runtime, the checker determines which of the legal successor‟s should be executed (based 

on the program‟s state) and compares the signature computed for the basic block with the 

signature stored in the chosen successor. In case of a mismatch, the program will be 

halted. A mismatch indicates that either the wrong successor to the basic block was 

chosen (control-flow error) or the signature computed for the basic block at runtime was 

incorrect (code error).  

Argus is also equipped with standard fault-tolerance techniques such as watchdog timers, 

self-checking arithmetic and logical units (using modulo arithmetic) and parity bits on the 

address/data bus. The paper claims that taken together these techniques offer protection 

from 98.8 % of errors (both transient and permanent) for 12 % area overhead and 3.5 % 

performance overhead. These results are based on a model of a simple in-order core 
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written in VHDL and synthesized using an FPGA and are likely to be higher in more 

complex processors.  

Argus provides detection of errors in the code, control and data, but does not protect from 

errors where a legal but invalid (for that input) path is executed. Detecting legal but 

incorrect paths will require whole program analysis, rather than just basic-block level 

analysis as done by Argus. Further, our technique is able to provide protection from a 

much wider range of errors as we enforce “source-level invariants” as opposed to Argus, 

which only enforces “binary-level” invariants. Consequently, we can detect errors and 

attacks that break source-level invariants but not binary-level invariants e.g. memory 

corruption errors, race conditions and insider attacks.  

4.8 HARDWARE IMPLEMENTATION 

This section discusses the hardware module for tracking control paths in the program 

based on the finite state machines derived in section 4.4.2. The state machines are 

programmed into a reconfigurable hardware module at application load time. They keep 

track of the control path executed by the application for the derived detectors.  

Related Work: Software-based path-profiling approaches [106] incur high overheads in 

space and time (up to 35 %) compared to hardware-based approaches[107, 108].  

Vaswani et al. [107] propose a generic co-processor for profiling paths in hardware. The 

goal of this approach is to create statistical aggregates of application behavior, rather than 

track specific paths. Further, this approach requires a much higher degree of coupling 

with the pipeline, compared to our approach. 
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Zhang et al. [108] propose a hardware module that interfaces with the processor pipeline 

to track paths for detecting security attacks. However, their approach requires every 

branch in the program to be instrumented, which can lead to prohibitive overheads. Our 

approach is aimed at tracking specific control-paths in the program (for which checks are 

derived), and requires only selected control edges (branches) to be instrumented. 

Implementation 

As explained in Section 4.3.2, the path-tracking hardware is implemented as a module in 

the Reliability and Security Engine (RSE) and monitors the main processor‟s data path. It 

keeps track of the control path executed by the program, encoded as finite state machines.  

Interface with the main processor: The main processor uses special instructions (called 

CHECK) to invoke the RSE modules. The path tracking module supports three primitive 

operations encoded as CHECK instructions. The operations are as follows: 

emitEdge(from, to): Triggers transitions in the state machines corresponding to one or 

more detectors. Each basic block in the program is assigned a unique identifier assigned 

by the VRP. This operation indicates that control is transferred from the basic block with 

identifier from to the basic block with identifier to.  

getState(checkID): Returns the current state of the state machine corresponding to the 

check, and is invoked just before the execution of the check in the program. 

resetState(checkID): Resets the state-machine for the check given by checkID. This 

operation is invoked after the execution of the check in the program. 

Module Components: The structure of the path-tracking module is shown in Figure 42. 
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Figure 42: Hardware path-tracking module 

The components of the path-tracking module are as follows: 

1) Edge Table: Stores the mapping from control-flow edges to edge-identifiers for 

instrumented edges in the program. Each instrumented control-flow edge is assigned 

a unique index and is mapped to the identifiers assigned to the source and sink basic 

blocks for that edge (by the VRP).  

2) State Vector: Holds the current state of the state machine corresponding to the 

detectors, with one entry for each detector inserted in the program. 

3) State Transition Table: Contains the transitions corresponding to the state machines. 

The rows of the state transition table correspond to the edge indices, while the 

columns correspond to the checks. The cells of the table contain the transitions that 

are fired for each check when an instrumented branch is executed. 


