
AUTOMATED DERIVATION OF APPLICATION-AWARE ERROR AND
ATTACK DETECTORS

BY

KARTHIK PATTABIRAMAN

B.Tech., University of Madras, 2001
M.S., University of Illinois at Urbana-Champaign, 2004

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Professor Ravishankar K. Iyer, Chair
Associate Professor Vikram S. Adve
Professor Wen-Mei W. Hwu
Associate Professor Grigore Rosu

ii

Abstract

As computer systems become more and more complex, it becomes harder to ensure that

they are dependable i.e. reliable and secure. Existing dependability techniques do not take

into account the characteristics of the application and hence detect errors that may not

manifest in the application. This results in wasteful detections and high overheads. In

contrast to these techniques, this dissertation proposes a novel paradigm called

“Application-Aware Dependability”, which leverages application properties to provide

low-overhead, targeted detection of errors and attacks that impact the application. The

dissertation focuses on derivation, validation and implementation of application-aware

error and attack detectors.

The key insight in this dissertation is that certain data in the program is more important

than other data from a reliability or security point of view (we call this the critical data).

Protecting only the critical data provides significant performance improvements while

achieving high detection coverage. The technique derives error and attack detectors to

detect corruptions of critical data at runtime using a combination of static and dynamic

approaches. The derived detectors are validated using both experimental approaches and

formal verification. The experimental approaches validate the detectors using random

fault-injection and known security attacks. The formal approach considers the effect of

all possible errors and attacks according to a given fault or threat model and finds the

corner cases that escape detection. The detectors have also been implemented in

reconfigurable hardware in the context of the Reliability and Security Engine (RSE) [1].

iii

To my parents and teachers

iv

Acknowledgements

First and foremost, I would like to thank my advisor Professor Ravishankar Iyer, for his

support and encouragement throughout this dissertation. Ravi constantly encouraged me

to explore new ideas and push established boundaries. I would also like to thank Dr.

Zbigniew Kalbarczyk, who has been a mentor, colleague and friend through my PhD.

Zbigniew provided active feedback and advice, and but for his patience and support this

dissertation would not have been possible. I would like to thank the members of my

dissertation committee, namely Prof. Vikram Adve, Prof. Wen-mei Hwu and Prof.

Grigore Rosu, for their advice and support during various stages of this dissertation.

I have also been fortunate to have a wonderful set of colleagues in the DEPEND group,

many of whom were collaborators in various joint projects. In particular, Nithin Nakka,

Giacinto Paulo Saggesse, Daniel Chen, William Healey, Peter Klemperer, Paul

Dabrowski, Shelley Chen, Galen Lyle and Flore Yuan have all collaborated with me at

various times in developing the ideas in this dissertation. Special thanks to my office

mate Long Wang for patiently listening to my trials and triumphs during the course of my

PhD. I would like to especially thank Shuo Chen, who was a great source of inspiration

and helped me publish my first research paper at Illinois. I would also like to thank Heidi

Leerkamp who helped with many day-to-day administrative tasks and support.

I also owe a lot to Dr. Benjamin Zorn, who has been an active mentor during various

internships and visits at Microsoft Research during the course of my PhD. My

interactions with him have helped shape many of the ideas in this dissertation.

v

I would like to thank my wife Padmapriya Kandhadai, who has been a never-ending

source of emotional support during the tumultuous course of a PhD. But for her, I would

probably have not stuck it out till the finish line. Thanks also to my parents for patiently

waiting without asking the inevitable question of when (if ever) I would finish.

Finally, a big thank you to all my friends at UIUC and elsewhere for helping me not take

myself too seriously. A special thanks to the “potluckers gang” (you know who you are)

for all the endless hours we spent talking about life. But for you guys, this dissertation

would have been done a lot sooner, but I would be all the poorer for the experience.

vi

TABLE OF CONTENTS

LIST OF FIGURES……………………………………………………………………viii

LIST OF TABLES……………………………………………………………...………..x

CHAPTER 1 INTRODUCTION... 1
1.1 MOTIVATION .. 1
1.2 PROPOSED RELIABILITY TECHNIQUES ... 4
1.3 PROPOSED SECURITY TECHNIQUES ... 9
1.4 FAULT AND ATTACK MODELS .. 12
1.5 OVERALL FRAMEWORK .. 14
1.6 CONTRIBUTIONS ... 24
1.7 SUMMARY ... 25

CHAPTER 2 APPLICATION-BASED METRICS FOR STRATEGIC

PLACEMENT OF DETECTORS ... 27
2.1 INTRODUCTION ... 27
2.2 RELATED WORK .. 29
2.3 MODELS AND METRICS ... 30
2.4 EXPERIMENTAL SETUP .. 40
2.5 RESULTS .. 44
2.6 CONCLUSIONS ... 53

CHAPTER 3 DYNAMIC DERIVATION OF ERROR DETECTORS 54
3.1 INTRODUCTION ... 54
3.2 APPROACH AND FAULT-MODELS ... 56
3.3 DETECTOR DERIVATION ANALYSIS .. 58
3.4 DYNAMIC DERIVATION OF DETECTORS ... 61
3.5 HARDWARE IMPLEMENTATION .. 66
3.6 EXPERIMENTAL SETUP .. 72
3.7 RESULTS .. 75
3.8 HARDWARE IMPLEMENTATION RESULTS .. 85
3.9 RELATED WORK .. 87
3.10 CONCLUSIONS ... 93

CHAPTER 4 STATIC DERIVATION OF ERROR DETECTORS 94
4.1 INTRODUCTION ... 94
4.2 RELATED WORK .. 96
4.3 APPROACH .. 111
4.4 STATIC ANALYSIS ... 122
4.5 EXPERIMENTAL SETUP .. 138
4.6 RESULTS .. 142
4.7 COMPARISON WITH DDVF AND ARGUS .. 146
4.8 HARDWARE IMPLEMENTATION .. 148
4.9 CONCLUSION .. 154

CHAPTER 5 FORMAL VERIFICATION OF ERROR DETECTORS 155
5.1 INTRODUCTION ... 155
5.2 RELATED WORK .. 158

vii

5.3 APPROACH .. 162
5.4 EXAMPLES .. 169
5.5 IMPLEMENTATION .. 173
5.6 CASE STUDY ... 184
5.7 CONCLUSION .. 192

CHAPTER 6 FORMAL VERIFICATION OF ATTACK DETECTORS 193
6.1 INTRODUCTION ... 193
6.2 INSIDER ATTACK MODEL ... 197
6.3 EXAMPLE CODE AND ATTACKS .. 201
6.4 TECHNIQUE AND TOOL ... 205
6.5 DETAILED ANALYSIS ... 213
6.6 CASE STUDY ... 217
6.7 RELATED WORK .. 229
6.8 CONCLUSION .. 233

CHAPTER 7 INSIDER ATTACK DETECTION BY INFORMATION-FLOW

SIGNATURE (IFS) ENFORCEMENT .. 234
7.1 INTRODUCTION ... 234
7.2 RELATED WORK .. 241
7.3 ATTACK MODEL .. 245
7.4 APPROACH AND ALGORITHM .. 246
7.5 EXAMPLE CODE AND ATTACKS .. 251
7.6 IFS IMPLEMENTATION EXAMPLE ... 253
7.7 DISCUSSION .. 261
7.8 EXPERIMENTAL SETUP .. 265
7.9 EXPERIMENTAL RESULTS... 269
7.10 PROOF OF EFFICACY OF THE IFS TECHNIQUE .. 278
7.11 CONCLUSION ... 290

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 291
8.1 CONCLUSIONS ... 291
8.2 FUTURE WORK ... 292

REFERENCES ………………………………………………………………………..296

APPENDIX A: LIST OF PUBLICATIONS FROM DISSERTATION 306

AUTHOR’S BIOGRAPHY .. 307

viii

LIST OF FIGURES

Figure 1: Conceptual unified framework for reliability and security 15
Figure 2: Unified formal framework for validation of detectors 19

Figure 3: Hardware implementation of the detectors in the RSE Framework 22
Figure 4: Example code fragment and its dynamic dependence graph (DDG) 32
Figure 5: Crashes detected by metrics across benchmarks ... 46
Figure 6: Benign errors detected by metrics across benchmarks 46
Figure 7: Fail-silent Violations detected by metrics across benchmarks 46

Figure 8: Hangs detected by metrics across benchmarks ... 46
Figure 9: Effect of bin size on crash detection coverage for gcc 50
Figure 10: Effect of bin size on crash detection coverage for perl 50
Figure 11: Effect of bin size on benign error detection rate for gcc 50

Figure 12: Effect of bin size on benign error detection rate for perl 50
Figure 13: Effect of bin size on fail-silent violation coverage for gcc 50
Figure 14: : Effect of bin size on fail-silent violation coverage for perl 50

Figure 15: Steps in detector derivation and implementation process 56
Figure 16 - Format of each detector and bit width of each field 68

Figure 17: Design flow to instrument application and generate the EDM 69
Figure 18: Architectural diagram of synthesized processor ... 69
Figure 19: Crash coverage of derived detectors ... 76

Figure 20: FSV coverage of derived detectors ... 76
Figure 21: Hang coverage of derived detectors .. 76

Figure 22: Total error coverage for derived detectors .. 76
Figure 23: Percentage of false positives for 1000 inputs of each application 79

Figure 24: Crash coverage for different training set sizes .. 80
Figure 25: FSV coverage for different training set sizes .. 80

Figure 26: Hang coverage for different training set sizes ... 80
Figure 27: Benign errors for different training set sizes ... 80
Figure 28: Comparison between best-value detectors and derived detectors for crashes . 83

Figure 29: Comparison between best-value detectors and derived detectors for FSV 83
Figure 30: Comparison between best-value detectors and derived detectors for hangs ... 83
Figure 31: Comparison between best value detectors and derived detectors for manifested

errors ... 83
Figure 32: Example code fragment to illustrate feasible path problem faced by static

analysis tools ... 97
Figure 33: Example code fragment with detectors inserted.. 115

Figure 34: Example of a memory corruption error ... 117
Figure 35: Example for race condition detection .. 120
Figure 36: (a) Example code fragment (b) Corresponding LLVM intermediate code ... 123

Figure 37: Path-specific slices for example .. 128
Figure 38: LLVM code with checks inserted by VRP .. 131
Figure 39: Example Control-flow graph and paths... 138
Figure 40: State machine corresponding to the Control Flow Graph 138

ix

Figure 41: Performance overhead when 5 critical variables are chosen per function 143

Figure 42: Hardware path-tracking module .. 150
Figure 43: Conceptual design flow of SymPLFIED ... 163
Figure 44: Program to compute factorial in MIPS-like assembly language 170

Figure 45: Factorial program with error detectors inserted .. 172
Figure 46: Portion of tcas code corresponding to error .. 188
Figure 47: Attack scenario of an insider attack .. 199
Figure 48: Code of authenticate function.. 201
Figure 49: Code of authenticate function with assertions ... 205

Figure 50: Conceptual view of SymPLAID's usage model .. 208
Figure 51: Assembly code corresponding to Figure 2 .. 214
Figure 52: SSH code fragment corresponding to the attack ... 219
Figure 53: Stack layout when strcmp is called ... 220

Figure 54: Schematic diagram of chunk allocator .. 225
Figure 55: (a) Example code fragment from SSH program and (b) Functions called from

within the code fragment and their roles... 252
Figure 56: OpenSSH example with instrumentation added by IFS technique 255

Figure 57: State machines derived by IFS .. 255
Figure 58: (a) Stack layout after the call to printf during the attack and (b) Attacker-

supplied format string ... 276

Figure 59 : Assembly code of the instrumented sys_auth_passwd function 277
Figure 60: Source code of the malicious log_user_action function 277

x

LIST OF TABLES

Table 1: Coverage of techniques for different error/attack categories 13
Table 2: Differences in the derivation process for error and attack detectors 18

Table 3: Types of errors detected by simulator and their real-world consequences 42
Table 4: Benchmarks and their descriptions ... 43
Table 5: Example code fragment .. 59
Table 6: Generic rule classes and their descriptions ... 60
Table 7: Probability values for computing tightness .. 62

Table 8: Probability values for detector “Bounded-Range (5, 100) except: (ai==0)” 65
Table 9: Benchmarks and their descriptions ... 72
Table 10: Average detection coverage for 100 detectors .. 76
Table 11: Area and timing results for the DLX processor and the RSE Framework 86

Table 12: Descriptions of related techniques and tools .. 88
Table 13: Comparison of our technique with SWAT ... 93
Table 14: Detailed characterization of hardware errors and their detection by the

technique ... 121
Table 15: Pseudocode of backward traversal algorithm ... 125

Table 16: Information about the program that is available at different levels of

compilation ... 134
Table 17: Algorithm to convert paths to state machines ... 136

Table 18: Benchmark programs and characteristics ... 142
Table 19: Coverage with 5 critical variables per function .. 144

Table 20: Comparison between the CVR and DDVF techniques in terms of coverage . 147
Table 21: Formulas for estimating hardware overheads ... 153

Table 22: Sizes of hardware structures (in bits).. 153
Table 23: Computation error categories and how they are modeled by SymPLFIED ... 168

Table 24: SimpleScalar fault-injection results .. 190
Table 25: Important functions in replace.. 191
Table 26: Insider attacks on the authenticate function.. 203

Table 27: Example code illustrate SymPLFIED and SymPLAID 210
Table 28: Functions in the OpenSSH authentication module ... 217
Table 29: Summary of attacks found by SymPLAID for the module 224

Table 30: Time taken by SymPLAID for each function ... 227
Table 31: Insider attacks at different layers of the system stack 241
Table 32: Critical variables in the applications and the rationale for choosing the

variables as critical .. 268

Table 33: Static characteristics of the instrumentation in each application 268
Table 34: Execution times of SSH authentication stub .. 269
Table 35: Execution times of FTP login stub ... 270

Table 36: Execution times of NullHTTP program ... 271

1

CHAPTER 1 INTRODUCTION

1.1 MOTIVATION

The increasing complexity of computer systems and their deployment in mission- and

life-critical applications are driving the need to build reliable and secure computer

systems. Compounding the situation, the Internet‟s ubiquity has made systems much

more vulnerable to malicious attacks that can have far-reaching implications on our daily

lives. Traditionally, reliability has meant expensive mainframe computers running in

lock-step and security has meant access control and cryptography support. However, the

Internet‟s phenomenal growth has led to the large-scale adoption of networked computer

systems for a diverse cross section of applications with highly varying requirements. In

this all-pervasive computing environment, the need for reliability and security has

expanded from a few expensive, proprietary systems to something that is a basic

computing necessity. This new paradigm has important consequences:

 Networked systems stretch the boundary of fault models from a single application or

node failure to failures that could propagate and affect other components, subsystems,

and systems, and

 Attackers can exploit vulnerabilities in operating systems and applications with

relative ease. Due to the complex interlinking of systems, attacks on even a single

component of the system can lead to a compromise of the entire system.

2

Users ultimately want their applications to continue to operate without interruption,

despite attacks and failures, but as systems become more complex, this task becomes

more difficult. The traditional one-size-fits-all approach to security and reliability is no

longer sufficient or acceptable from the end-user‟s perspective. Spectacular system

failures due to malicious tampering or mishandled accidental errors call for novel,

application-specific approaches. This dissertation proposes the concept of application-

aware dependability as an alternative to traditional heavyweight dependability

approaches such as duplication and cryptography.

Application-aware dependability extracts application‟s characteristics and presents it to

the underlying system, so that the system can tune itself to provide the optimal level of

reliability and security to the application. This fits in with the idea of utility computing [2,

3]; or cloud computing [4, 5], in which large computing farms configure themselves to

execute complex applications for long periods of time with guaranteed performance and

dependability. In this environment, the reliability or security of the physical hardware on

which the application executes is less important than the dependability of the application.

Further, as more and more computing shifts to the cloud, the value of a cloud-computing

platform is governed more by the services provided to the application (be they for

enhancing the application‟s performance, reliability or security) than the platform itself.

Hardware-based techniques have the advantage of low performance overheads because

the hardware modules can perform security and reliability checking in parallel with the

application. Because these techniques can detect errors close to their points of

3

occurrence, low levels of detection latency are possible. This in turn ensures speedy

recovery before errors and attacks can propagate in the system [2].

Application-aware techniques also expose knowledge of the underlying hardware

platform to the application, so that the application can invoke the services exposed by the

hardware at critical points in its execution to request reliability and security support. This

allows the protection obtained and the performance overheads incurred to be configured

based on the application‟s needs and characteristics. Clearly, it is very hard for the

application-developer or system administrator to coordinate this complex interaction with

the hardware. Therefore, it is important to develop automated techniques that can (1)

Extract application properties and expose them to the underlying hardware, (2) Configure

the hardware-based checks based on the extracted properties and (3) Instrument the

application‟s code to invoke the hardware-based checks at strategic points in its

execution. Further, it is necessary to validate the derived checks and evaluate their

efficacy against both accidental and malicious errors.

The research question we address in this dissertation is as follows: How do we

automatically extract and validate application properties to provide low-latency, high-

coverage error and attack detection using a combination of programmable hardware and

software? We first provide an overview of the reliability techniques and security

techniques developed in this dissertation. We then provide an overview of the fault- and

attack- models considered in this dissertation and outline its main contributions. Finally,

we detail the overall frameworks developed in this dissertation for derivation,

implementation and validation of application-aware error and attack detectors.

4

1.2 PROPOSED RELIABILITY TECHNIQUES

1.2.1 Introduction

Reliability techniques may be broadly classified into fault-avoidance and fault-tolerance

techniques. Fault-avoidance techniques attempt to eliminate errors at software

development time, prior to its deployment. Examples include program testing and static

analysis techniques. Typically, fault-avoidance techniques target specific classes of errors

(e.g. memory errors, uninitialized variables). Although these methods have been applied

extensively, studies have shown that subtle software defects such as timing and

synchronization errors persist in applications, and lead to application failures in

operational settings [6-8].

In contrast to fault-avoidance techniques, fault-tolerance techniques provide detection of

(and recovery from) general hardware and software errors. By far the most widely

deployed fault-tolerance technique is duplication, which involves running two or more

copies of a program and comparing their outputs. While duplication has been

successfully deployed on selected commercial systems such as IBM mainframes and

Tandem Non-stop computers [9], it has not found wide acceptance in Commodity Off-

the-Shelf systems (COTS). This is because duplication incurs high performance

overheads (up to 100 %), and may require the provision of special-purpose hardware to

alleviate the performance overheads. However, the special hardware requires chip area

(up to 33 % in the IBM Mainframe G5 processor [10]) and increases the complexity of

the overall design. Further, the errors detected by duplication-based approaches that may

5

not ultimately matter to the application, due to significant fault masking at the device

level (80-90 %) [11] and at the architectural level (50-60 %) [12].

Failure-oblivious computing [13] takes the view that most errors do not affect the

application‟s execution, and hence does not recover from or correct errors as long as the

system operates within its acceptability envelope. The acceptability envelope is defined

as the set of acceptable (but not necessarily correct) behaviors of the system. For

example, a web-server is considered to be operating within its acceptability envelope if it

processes a request without writing to an undefined memory location. An aircraft

controller is operating within its acceptability envelope as long as it does not lead to the

aircraft accelerating beyond a certain threshold. While failure-oblivious computing is a

promising approach if the acceptability envelope is well-defined, in practice it is hard to

isolate the range of acceptable behaviors for a system. Further, failure-oblivious

computing allows errors to stay undetected and propagate, which in turn can lead to

massive failures. Hence, the failure-oblivious approach may not be well-suited for

applications that exhibit high degrees of error propagation before crashing (if they crash).

This dissertation proposes a novel, low-overhead approach for providing high reliability

to applications. It proposes insertion of error detectors (runtime checks) in the

application‟s code based on the application‟s properties. This is achieved by extracting

application properties using compiler-driven static and dynamic analysis, and converting

the extracted properties into runtime checks. The properties are obeyed in any error-free

execution of the program, but not in an erroneous execution. As a result, the checks can

6

detect general hardware and software errors that impact program correctness and are not

confined to particular types of faults.

While the detectors are application-specific and are derived on a per-application basis,

the method for deriving and implementing detectors can be applied to any application.

The method is completely automated and requires no intervention from the programmer.

1.2.2 Detector Placement

Studies have shown that undetected error propagation leads to extended system

downtimes [14-16]. It is therefore essential, that errors are detected before they propagate

and cause application failure. An effective error detection mechanism must necessarily

limit the extent of error propagation and preempt application failure in order to enable

speedy and sound recovery (after the error is detected).

The error detectors derived in this dissertation are placed at strategic locations in the

application in order to prevent error propagation and preempt application failures

(crashes). The locations encompass both the program variable that must be checked as

well as the program point at which the check must be performed. The locations are

chosen based on the application‟s dynamic dependence graph, which is constructed using

the application‟s execution profile under representative inputs. For example, for a large

application such as gcc, the detector placement methodology identifies a small number of

strategic locations (10-100), at which placing (ideal) detectors can provide high coverage

(80-90%) for errors leading to application failure [17].

7

1.2.3 Detector Derivation

Once the detector placement points and variables have been identified, error detectors are

derived for the program variables (critical variables) at the identified points. The error

detectors for critical variables are arithmetic and logical expressions that check whether

the value of the critical variable was computed correctly i.e. according to the

applications‟ code and/or semantics. Two approaches to derive error detectors are

proposed as follows:

1. Based on dynamic execution traces of the application, gathered by instrumenting the

values of critical variables and executing the application under representative inputs.

An automatic approach learns the characteristics of the variable(s) based on pre-

defined template patterns, and embeds the learned patterns as runtime checks in the

application. The runtime checks are implemented in a programmable hardware

framework, and are invoked through special instructions embedded in the application

code at the detector placement points.

2. Based on the statically-generated backward program slice [18] of the critical variables

at the detector placement points. The backward slice is specialized for each control-

flow path in the application by the detector derivation technique. This specialization

allows the compiler to optimize the backward slice aggressively and derive a

minimized symbolic expression for the slice (called the checking expression).

Programmable hardware is used to track control-paths at runtime and choose the

checking expression corresponding to the executed path. The checking expression

8

recomputes the value of the critical variable and flags any deviation from the original

as an error.

1.2.4 Detector Validation

Fault-injection is a commonly used approach to evaluate the efficacy of fault-tolerance

mechanisms [19]. Fault-injection involves perturbing the code or data of the system (for

example, by flipping a single bit) and studying the behavior of the system under the

perturbation. We have evaluated the derived detectors through fault-injections in

application data, and have shown that the detectors provide nearly duplication-levels of

error-detection coverage for errors that matter to the application (at a fraction of the

corresponding overheads). Because fault-injection is statistical in nature, it is not

guaranteed to expose all errors under which the detector may fail. In order to ensure that

the errors missed by the derived detectors do not lead to catastrophic consequences in

safety- or mission- critical systems, it is important to evaluate the derived detectors

exhaustively under all possible errors. However, exhaustive fault-injection often incurs

considerable time and resource overheads.

Formal verification is a complementary approach to fault-injection that can exhaustively

enumerate the effects of errors on fault-tolerance mechanisms (such as. detectors) and

expose corner case scenarios that may be missed by traditional fault injection. We build a

formal verification framework, SymPLFIED, to comprehensively enumerate all errors

that evade detection and cause the program to fail. SymPLFIED operates directly on the

assembly language representation of the program, and uses symbolic execution and

9

model-checking to systematically consider the effect of all possible transient errors on the

program according to a given fault-model. For each error, SymPLFIED finds whether the

error was detected and if not, whether the error led to a failure in the application.

1.3 PROPOSED SECURITY TECHNIQUES

1.3.1 Introduction

Many existing approaches for security are piece-meal approaches, in the sense that they

either protect from very specific types of attacks (e.g. Stackguard, which protects from

certain types of stack-buffer overflow attacks [20]) or they suffer from high false-positive

rates (e.g. system-call based intrusion detection [21]).

Techniques such as memory-safety checking [22-24] and taintedness [25-27], while

providing comprehensive protection from security attacks, incur high performance

overheads when done in software, which in turn limits their deployment in operational

settings. When done in hardware, they high-false positive rates thereby necessitating

traps to software, and in turn incur high performance overheads. Further, they require the

entire application‟s code to be available for analysis, which is often not the case. Thus,

they leave open the possibility that an untrusted third-party module may be used to attack

the application (i.e. insider attacks).

Randomization is a low-overhead technique that has been used to protect programs from

targeted attacks. By randomizing the layout of the stack, heap or static data items in a

program [28-30], it is possible to obscure potential targets of an attacker, and hence foil

the attack. The randomization can be carried out transparently to the application, with

10

minimal modifications to the hardware or operating system. However, randomization

based techniques can be broken by repeated undetected attacks on the application [31], or

by carrying out targeted attacks through information-leaks in the program. Further,

randomization techniques may not be effective against attacks launched by trusted

insiders, as an insider may be able to determine the seed value used for randomization

and hence identify the locations of the target objects.

Thus, we see that existing security techniques either incur high-performance overheads or

are ineffective against trusted insiders in the same address space as the application. In

contrast to these techniques, we propose a technique called Information-Flow Signatures

(IFS) to protect critical data in applications from both external and insider attacks. The

technique extracts the properties of the critical data based on the application‟s source

language semantics, and enforces the extracted properties through runtime monitoring in

software. Because the monitored properties are based on the inherent properties of the

application, the technique incurs no false-positives. Further, by focusing on a subset of

application data (critical data), the technique is able to ensure the integrity of the data

with modest performance overheads.

1.3.2 Information-flow Signatures

Information-flow Signatures (IFS) encapsulate the dependencies among the instructions

that are allowed to influence the value of the critical variables as per its source-level

semantics. The reason for memory-corruption and insider attacks is the gap between a

program‟s source-level semantics and its runtime execution semantics [32]. Hence, the

11

proposed technique derives the Information-flow signature of the program‟s critical

variables (identified by programmer using annotations) from its source-level semantics

and checks the program at runtime for conformance to the signature. It is assumed that

attackers will attempt to influence the critical variable by introducing new code in the

system (e.g. code-injection attacks and insider attacks) or by overwriting the critical

variable through instructions that are not allowed to write to the critical variable

legitimately (e.g. memory corruption attacks). Both categories of attacks will cause the

runtime behavior of the program to deviate from its statically derived Information-Flow

Signature, and will hence be detected.

The proposed technique extracts the information-flow signatures of the program based on

the backward slice of the critical variables in the program. This is similar to the static

detector derivation technique in section 1.2.3 (Table 2 presents the main differences).

1.3.3 Formal Validation

The formal methodology for verification of error detectors has also been extended to

verify security attack detectors. Similar to the SymPLFIED tool for evaluating error

detectors, we developed an automated tool SymPLAID, to systematically enumerate all

security attacks that evade detection and allow the attacker to achieve his/her goals. The

attacks considered by SymPLAID include both memory corruption attacks as well as

insider attacks. Given the application‟s code (in assembly language) and a set of attacker

goals (in first-order logic), SymPLAID automatically identifies all possible attacks (value

corruptions) that will allow the attacker to achieve his/her goals. However, unlike

12

SymPLFIED, SymPLAID precisely tracks the propagation of corrupted values in the

program, thus identifying the value that must be corrupted by the attacker and the precise

value that must be used to replace the original value in order to carry out the attack.

1.4 FAULT AND ATTACK MODELS

This section summarizes the fault- and attack- models used in this dissertation. The goal

is to provide a broad overview of all faults and attacks that can be addressed using the

techniques developed in this dissertation, rather than to provide a detailed

characterization of the coverage of individual techniques (these are discussed in the

relevant chapters).

The error and attacks can be classified into four broad categories as follows:

1. Transient hardware errors: These include soft-errors caused by radiation,

single-event upsets due to timing and electrical defects or (in rare cases), faults

due to design bugs in the processor that manifest only in exceptional or stressful

circumstances.

2. Transient software errors: These include (1) memory-corruption errors caused

by pointers writing outside their memory intended region (and corrupting other

data), (2) race conditions and synchronization errors which may leave a data item

in an inconsistent or corrupted state, and (3) errors due to missing or incorrect

initialization of data. These are caused by software defects and may not be

repeatable unless the environment and inputs to the program are replicated

13

exactly, which is hard to achieve in practice. Hence, their behavior is similar to

the behavior of hardware transient errors.

3. Control and data attacks: These include memory corruption attacks such as

buffer overflows and format-string attacks, which overwrite the program‟s

control-flow and data to achieve a malicious purpose (e.g. executing a root shell).

4. Insider attacks: Insider attacks are those in which parts of the application and/or

the operating system may be malicious and overwrite the application‟s data or

alter its control-flow for malicious purposes. These also include code-injection

attacks and hardware-based attacks (e.g. smart-cards).

Table 1 shows the coverage of the different techniques considered in this dissertation for

each category of error or attack. As can be seen from the table, there is no one technique

that can cover all errors/attack categories, yet together, the techniques cover all categories

of errors and attacks considered. Thus, the techniques in this dissertation address a wide

range of both random errors as well as malicious attacks that impact the application and

cause system failure or compromise.

Table 1: Coverage of techniques for different error/attack categories

Fault/Attack Category Dynamically-derived

detectors

Statically derived

Detectors

Information-flow

Signatures

Transient hardware

errors (e.g. soft errors,

timing errors, logic
bugs)

Yes Yes No

Transient software

errors (memory errors,
race conditions,

uninitialized variables)

Yes Yes, except for

uninitialized variables

Yes for memory

corruption errors

Control and data attacks
(e.g. buffer overflow,

format-string)

No No Yes

Insider attacks (e.g.

malicious third-party
libraries)

No No Yes

14

1.5 OVERALL FRAMEWORK

This dissertation proposes an approach to building dependable (reliable and secure)

systems using the notion of application-aware dependability, which uses the

application‟s properties to detect errors and security attacks that matter to the application.

Application properties are automatically extracted using compiler-based static and

dynamic analysis techniques, and are converted to error and attack detectors. The

detectors are formally validated using model-checking and symbolic execution. The

detectors are implemented efficiently using programmable hardware as a part of the

Reliability and Security Engine (RSE), which is a hardware framework for executing

application-aware checks [1].

The main contribution of this dissertation is a unified approach to reliability and security.

By treating reliability and security as two sides of the same coin and proposing joint

solutions for them, it is possible to achieve significant gains in the economy and

efficiency of the solutions. The dissertation proposes unified frameworks for the

following.

1. Deriving application-aware error and attack detectors through compiler analysis,

2. Validating the efficacy of the derived detectors using formal verification methods,

3. Implementing the derived detectors in a common, programmable hardware

framework

15

The first two frameworks are unique contributions of this dissertation, while the third

framework is based on the RSE framework proposed in prior work [33]. The rest of this

section provides an overview of each of the above frameworks.

1.5.1 Unified Framework for Detector Derivation

This section describes the unified framework for derivation of error and attack detectors,

which presents a way of unifying the techniques in Sections 1.2 and 1.3.

Figure 1: Conceptual unified framework for reliability and security

Figure 1shows the components of the framework. The left side of the figure shows the

process for derivation of error detectors, while the right side shows the process for

derivation of security attack detectors. The middle of the figure shows the common steps

in both processes.

16

The major steps in the framework are as follows:

1) Identification of critical variables: From a reliability perspective, these are variables

that are highly sensitive to errors in the application. From a security perspective, these

are variables that are desirable targets for an attacker for taking over the application.

For reliability, it is possible to automate the selection of sensitive or critical variables

through Error Propagation Analysis. This can be done based on analysis of the

dynamic dependences in the application and is described in [17]. For security, we

require the programmer to identify security-critical variables in the application

through annotations based on knowledge of the application semantics. An example

of a security critical variable is a Boolean variable that indicates whether the user has

been authenticated, as overwriting the variable can lead to authentication of a user

with an incorrect password.

2) Extraction of backward program slice: Once the critical variables and the program

points at which checks must be placed have been identified, the next step is to derive

the properties of these variables from the application code. These properties can be

computed based on the backward program slice of the critical variable from the

check placement point. The backward program slice of a variable at a program point

is defined as the set of all program statements that can potentially affect the value of

the variable at that program point[18]. The slice is computed through static analysis

for all legitimate program inputs. For error-detection, we are interested in re-

executing the statements in the slice of the critical variable to ensure that the value of

the critical variable computed at the check placement point is correct, and hence the

17

slice of the critical variable computed for error-detection needs to preserve the

execution order of program statements. For attack detection, we are only interested in

checking that only the statements/instructions in the static program slice of the critical

variable, in fact, write to the critical variable (directly or indirectly) at runtime.

3) Encoding of slice: The third step is to encode the slice computed for the critical

variable in the form of a runtime check. For error-detection, the check takes the form

of an executable expression that recomputes the critical variable, whereas for attack-

detection, the check takes the form of a signature that contains the addresses of the

instructions that can write to the critical variable (directly or indirectly). The compiler

inserts calls to the checks (expressions or signatures) into the executable file and

configures the hardware monitors with the checks at application load time.

4) Runtime Checking: The final step is performed at runtime where the application is

monitored (using hardware or software) and the checks inserted by the compiler are

executed at the appropriate points in the execution. In the case of error-detection, the

checks compare the value of the critical variable computed by the original program

with the value of the expression derived using static analysis. A value mismatch

indicates an error. In the case of attack-detection, the checks compare the signature

derived using static analysis with the signature computed at runtime based on the

instructions that write to the critical variable (directly or indirectly). A signature

mismatch indicates an attack. In both cases, the execution of the program is stopped

and suitable recovery action for the error or attack.

18

Table 2 summarizes the differences between the derivation of error and attack detectors

for each of the steps shown in Figure 1.

Table 2: Differences in the derivation process for error and attack detectors

Step Error Detectors Attack Detectors

Choosing critical variables
Automatically done based on error
propagation analysis

Manually selected based on knowledge of
security semantics

Extraction of backward slice
Needs to preserve execution order of the

slice to generate a checking expression

Only needs to preserve instruction-level

dependences to generate signatures

Encoding of slice
Encoded as an expression that captures
the computation of the critical variable –

Checking expression

Encoded as a signature that captures the

dependences – Information-flow Signature

Runtime checking

Recomputation of critical variable by the

checking expression to check the
computation in the original program

Tracking of instruction dependencies to check

whether they conform to the statically-
extracted information-flow signature

The error and attack detectors have both been derived through the introduction of new

passes in the LLVM compilation framework [30]. Currently, the two design flows are

independent of each other, but it is possible to combine them into a single, unified flow.

1.5.2 Unified Framework for Detector Validation

This section describes the unified framework to formally validate the application-aware

error and attack detectors using formal verification techniques. To the best of our

knowledge, the framework is the first of its kind to use formal verification to validate the

properties of arbitrary detectors in general-purpose programs, and can be used to

identify corner cases of errors and attacks that evade detection. Figure 2 shows a

conceptual view of the formal framework.

The input to the framework is an assembly language representation of the program with

embedded error and/or attack detectors. The advantage of using assembly language is that

it is possible to represent a wide variety of errors and attacks at the assembly language

level. This is because the assembly language representation of the program includes (1)

19

the source-level characteristics of the program, (2) runtime libraries that are linked with

the program, and (3) runtime support code that is added by the compiler (e.g. function

prologs and epilogs). Thus, the assembly language representation of the program is

closest to the form that is executed in hardware, and consequently can express both

software and hardware errors. The program is augmented with special instructions to

express error and attack detectors in line with its code.

Figure 2: Unified formal framework for validation of detectors

The framework identifies for each error (attack) in the fault (threat) model, whether the

error (attack) leads to application failure (compromise) before it is detected. If so, the

error (attack) is printed along with a detailed trace of how the error (attack) propagated in

the application. This can help the application developer improve the coverage of the

detectors if desired. The main advantage of using formal verification is that it can

enumerate all errors (attacks) that evade detection and cause failure (compromise). This

can help expose rare corner cases that may be missed by the detectors, which are hard to

find through manual inspection alone.

20

The formal framework consists of the following key structural components: (1) Machine

model, which specifies the execution of instructions in the processor, (2) Detection

model, which specifies the semantics of detectors, and the (3) Fault/threat model, which

specifies the impact of errors and attacks on the program‟s execution. All three models

are expressed in rewriting logic and implemented using the Maude system [34]. The

framework has been implemented in the form of two tools – SymPLFIED for verifying

error detectors, and SymPLAID for verifying attack detectors. These are described briefly

as follows:

SymPLFIED considers the effect of all possible transient hardware errors on

computation, memory and registers when a program is being executed under a specific

input. It uses symbolic execution and model-checking to exhaustively reason about the

effect of the error on the program. The key innovation in SymPLFIED is that it groups an

entire set of errors into a single abstract class and symbolically reasons about the effects

of the error class as a whole. This grouping effectively collapses into a single state the

entire set of errors that would be considered by an exhaustive injection approach. This in

turn greatly enhances the scalability of SymPLFIED compared to exhaustive fault-

injection. However, the scalability is obtained at the cost of accuracy, as the abstraction

can lead to false-positives i.e. erroneous outcomes that occur in the model but not in the

real system. Nevertheless, the loss in accuracy is acceptable in practice as the detectors

can be conservatively over-designed to protect against a few false-positives.

SymPLAID considers the effects of insider attacks on the execution of a program. An

insider is assumed to corrupt one or more elements of a program‟s data at runtime in

21

order to achieve his/her malicious goals. Similar to SymPLFIED, SymPLAID tracks

corruptions of data values in applications using symbolic execution, and exhaustively

considers the effects of data corruptions using model-checking. However, the difference

is that SymPLAID tracks each data corruption individually rather than abstracting

multiple corruptions into a single class. This is because security attacks are mounted by

an intelligent adversary (in contrast to randomly occurring errors) and it is important to

identify the exact steps leading to the attack for effective prevention. Further, unlike

random errors, an attacker is limited both in the places where the attack may be launched

as well as in the values used for the attack. This in turn limits the number of (unique)

attacks that may be launched by an attacker. As a result, SymPLAID emphasizes

accuracy in tracking individual value corruptions over scalability in terms of the number

of corruptions that can be tracked. It does this by precisely tracking the dependencies

among corrupted values using error expressions and solving them at decision points (e.g.

branches and loads and stores).

Thus, both SymPLFIED and SymPLAID represent different points in the accuracy versus

scalability spectrum of formal modeling techniques. Both tools are implemented using a

common framework and differ only in the details of the implementation. They can be

combined to jointly reason about errors and attacks on programs.

1.5.3 Unified Framework for Detector Implementation

The detectors derived by the technique in Section 1.5.1 are implemented as a part of the

Reliability and Security Engine (RSE), which is a processor level framework for

22

application monitoring and error detection [1]. The RSE was proposed as part of Nithin

Nakka‟s dissertation [33] at the University of Illinois at Urbana-Champaign.

The RSE interface taps into the processor‟s pipeline and exposes signals to the various

reliability and security modules. This allows the modules to be oblivious of the

processor‟s internals and for the processor designer to be unencumbered by the

implementation details of the RSE modules. A module implements a specific reliability

or security mechanism using the signals exposed to it by the RSE interface. The RSE has

been implemented on the LEON-3 processor [35] supporting the SUN SPARC

instruction set .

The error and attack detectors derived in this dissertation are implemented as RSE

modules. Figure 3 shows how the detectors fit into the RSE framework. The left side of

Figure 3 shows the security modules and the right side shows the reliability modules. The

figure shows a five-stage in-order pipeline with the signals tapped by the RSE interface.

Figure 3: Hardware implementation of the detectors in the RSE Framework

23

We summarize the RSE modules that implement the derived detectors here.

1. Information-flow Signatures Module: This module implements the hardware-side

of the information-flow signature tracking scheme outlined in Chapter 7. It consists of

a signature accumulator to track the signatures at runtime, as well as a critical

variable signature map to store the statically derived signature for comparison with

the accumulated signature.

2. Critical Variable Recomputation: This module implements the hardware

components of the statically derived error detectors described in Chapter 4. It consists

of the path-tracking sub-module and the checking sub-module. The path-tracking sub-

module keeps tracks of the program‟s control-flow path and the checking sub-module

executes the checking expressions corresponding to the path determined by the path-

tracking sub-module.

3. Template-based Checking: This module implements the template-based checks

based on the dynamic execution of the program. The template based checks are pre-

configured into the RSE framework. The method for deriving these checks is

described in Chapter 3.

The other two modules shown in Figure 3, namely Pointer Taintedness checking [26] and

Selective Replication [12] were not developed in this dissertation but are closely related

to the ideas developed in this dissertation. We hence omit detailed description of these

modules.

24

1.6 CONTRIBUTIONS

In addition to the three frameworks described in Section 1.5, this dissertation makes the

following contributions:

1. Introduces a methodology to place error detectors in application code to preemptively

detect errors that result in application failures. The proposed placement method can

provide 80-90% error detection coverage with relatively few ideal detectors placed at

the identified locations (Chapter 2).

2. Derives error detectors based on dynamic characteristics of the application using pre-

defined rule-based templates. The templates are customized to application

requirements based on dynamic learning over representative inputs to the application

and embedded as runtime checks in the code (Chapter 3).

3. Derives error-detectors based on static characteristics of the application. Compiler -

based static analysis is used to extract the backward program slice of critical variables

in the program. The slices are specialized based on the executed control path to derive

optimized checking expressions that recompute the value of the critical variable at the

detector placement points - Critical Variable Recomputation (Chapter 4).

4. Introduces a formal-verification framework to validate the coverage of the derived

error detectors and find corner-cases in which the derived detectors may be unable to

detect the error. The framework uses symbolic execution and model-checking to

enumerate all failure-causing errors (according to a given fault-model) that evade

detection (Chapter 5).

25

5. Extends the formal verification framework to automatically discover security attacks

that evade detection in applications. This includes both memory corruption attacks

and insider attacks. Memory corruption attacks are usually launched by an external

attacker, while Insider attacks are launched by a malicious part of the application

itself (Chapter 6).

6. Extends the methodology for derivation of error detectors to derive detectors for

security attacks in applications (also based on static analysis). The proposed

methodology uses Information Flow Signatures to detect both memory-corruption

attacks and insider attacks. (Chapter 7).

1.7 SUMMARY

Existing techniques for reliability and security are “one-size-fits-all” techniques and incur

considerable overheads. In contrast to these techniques, this dissertation proposes

“application-aware dependability”, in which reliability and security checkers exploit

application-specific properties to detect errors and attacks. The dissertation proposes a

methodology to extract, validate and implement application-aware error and attack

detectors.

The dissertation proposes unified frameworks for reliability and security in order to

1. Derive detectors using compiler-based static and dynamic analysis for critical

variables in the application. The detectors are expressed as runtime checks at strategic

places in the application.

26

2. Validate detectors using symbolic execution and model-checking on the assembly

code of the application with the detectors embedded in the application. This can be

used to improve the coverage of the detectors.

3. Implement the derived detectors as modules in the Reliability and Security Engine

(RSE) which is a hardware framework for application-aware detection. The detectors

are executed in parallel with the application to provide concurrent error and attack

detection with low runtime overheads.

The dissertation shows that by extracting application properties using automated

techniques and configuring the properties into reconfigurable hardware, it is possible to

detect a wide variety of errors and security attacks in the application at a fraction of the

cost of traditional techniques such as duplication.

The rest of this dissertation is organized as follows: Chapter 2 presents a technique to

strategically place error detectors in application code, while Chapter 3 and Chapter 4

present respectively the dynamic and static techniques to derive error detectors. Chapter 5

presents the formal technique to validate error detectors, while Chapter 6 presents the

formal technique to validate attack detectors for insider attacks. Chapter 7 present

techniques to derive attack detectors for insider attacks, and Chapter 8 concludes.

27

CHAPTER 2 APPLICATION-BASED METRICS FOR

STRATEGIC PLACEMENT OF DETECTORS

2.1 INTRODUCTION

This chapter presents a technique to insert detectors or checks into programs to

prevent/limit fault propagation due to value errors. Value errors are errors that can cause

a divergence from the program values seen during the error-free execution of the

application. These errors can lead to application crash, hang or fail-silent violations

(when the program produces an incorrect result). It is a common assumption that crashes

are benign and that there is a mechanism in a system that ensures that when the program

encounters an error (that ultimately leads to a crash), the application will crash

instantaneously (crash-failure semantics). Data from real systems has shown that while

many crashes are benign, severe system failures often result from latent errors that cause

undetected error propagation [36]. These latent errors can cause corruption of files [14],

propagate to other processes in a distributed system [37] or result in checkpoint

corruption [38] prior to the system crash (if indeed the error leads to a crash).

To guarantee crash-failure semantics for a program, we need some form of checking

mechanisms in the system. Such support can take many forms including protection at

multiple levels and duplication both in hardware and software. Recent commercial

examples of such approaches include: (i) IBM G5, which, at the processor level, employs

two fully duplicated lock-step pipelines to enable low-latency detection and rapid

recovery [10] and (ii) HP NonStop Himalaya, which, at the system level, employs two

28

processors running the same program in locked step. Faults are detected by comparing

the output of the two processors at the external pins on every clock cycle [39]. Although

these are very robust solutions, due to their high cost and significant hardware overhead,

their deployment is restricted to high-end mainframes and servers intended for mission-

critical applications.

The detector‟s coverage depends on two factors: (i) the effectiveness (coverage) of the

placement of the detectors, i.e., how many errors manifest at the location where the

detector is embedded and (ii) the effectiveness (coverage) of the detector itself, i.e., what

fraction of errors manifested at the detector‟s location are captured.

This chapter introduces metrics to guide strategic placement of detectors and evaluates

(using fault injection) the coverage provided by ideal detectors
1
 at program locations

selected using the computed metrics. Results show that a small number of detectors,

strategically placed, can achieve a high degree of detection coverage. The issues of

development of actual detectors and performance implications of embedding the

detectors into the application code are not addressed in this study. Examples of potential

detectors are consistency checks on the values in the program, such as range-checks and

instruction sequence-checks[40]. In this chapter,

1. The program‟s code and dynamic execution is analyzed and an abstract model of

the data-dependences in the program called the Dynamic Dependence Graph

(DDG) is built.

1 An ideal detector is one that detects 100 % of the errors that are manifested at its location in the program.

29

2. Several metrics such as fanout and lifetime are derived from the DDG and used to

strategically place/embed (i.e., to maximize the coverage) detectors in the

program code.

3. The coverage of ideal detectors placed according to the above metrics is evaluated

using fault-injection experiments.

The key findings from this work are:

 A single detector placed using the fanouts metric can achieve 50 to 60 % crash-

detection coverage for large benchmarks (gcc and perl).

 A small number of detectors placed using the lifetimes metric can achieve high

coverage for large benchmarks. For example, it is possible to achieve about 80 %

coverage with 10 detectors and 90 % coverage with 25 detectors embedded in the

gcc benchmark.

 Although the placement of detectors is geared towards providing low-latency

detection and preventing propagation by preemptively detecting potential crashes,

the placed detectors are also effective at detecting fail-silence violations (i.e., the

application terminates normally but produces incorrect results) (30% to70%) and

hangs (50% to 60%).

2.2 RELATED WORK

In the recent years, several studies addressed the issue of strategic placement of detectors

in application code. Hiller et al [40] uses Error Propagation Analysis (EPA) to determine

30

where detectors or checks should be inserted in an embedded control system. It is

assumed that the checks have ideal coverage (100%) and are inserted at points (signals) at

which error detection probability is the highest. Voas [41] proposes the “avalanche

paradigm”, which is a technique to place assertions in programs before faults in the

program propagate to critical states. Goradia [42] evaluates the sensitivity of data values

to errors, from a software testing perspective.

Daikon [43] is a dynamic analysis system for generating likely program invariants to

detect software bugs. Narayanan et. al. [44] use the invariants produced by DAIKON to

detect soft errors in the data cache. DAIKON places assertions at the beginning and ends

of loops and procedure calls. However, this may not be sufficient to provide low-latency

error detection as the application/system may misbehave long before the assertion point is

reached. Benso et. al. [45] presents a compiler technique to detect critical values in a

program. The criticality of a variable is calculated based upon the lifetime of the variable

and how many other variables it affects. This technique can protect against faults that

originate in the critical variable and propagate to other variables, but does not protect

against faults that are propagated to the critical variable from other locations in the

program.

2.3 MODELS AND METRICS

This section presents the computation model, crash model and fault-model used in the

technique. It also considers metrics derived from the models for detector placement.

31

2.3.1 Computation Model – Dynamic Dependence Graph (DDG)

The computation is represented in the form of a Dynamic Dependence Graph (DDG), a

directed-acyclic graph (DAG) which captures the dynamic dependences among the

values produced in the course of the program execution. In this context, a value is a

dynamic definition (assignment) of a variable or memory location used by the program at

runtime. A value may be read many times but it is written only once. If the variable or

location is rewritten, it is treated as a new value. Thus a single variable or memory

location may be mapped onto multiple values.

A node in the DDG represents a value produced in the program, and is associated with

the dynamic instruction that produced the value. In the DDG, edges are drawn between

nodes representing the operands of an instruction and nodes representing the value

produced by the instruction. The edge represents the instruction; the source node of the

outgoing edge corresponds to an instruction operand and the destination node to the value

produced by the instruction. Figure 4 shows a sample code fragment and its

corresponding DDG. The code computes the sum of elements of an array A of 5 integers

(denoted by size) and stores the sum in the variable sum. The table in the figure shows the

mapping between the DDG nodes and the instructions, as well as the effect of executing

the instructions. Not all nodes in the DDG correspond to the instructions, e.g., nodes 1, 3,

8, 13, 23, and 28 represent memory locations used by the code fragment.

32

Code Fragement Explanation Nodes in DDG

 ADDI R1, R0, 0

 LW R2, [size]

 ADDI R4, R0, 0

LOOP: LW R3, R1[A]

 ADD R4, R4, R3

 ADDI R1, R1, 1

 BNE R1, R2, LOOP

 SW [Sum], R4

R1 R0

R2 [size]

R4 R0

R3 A[R1]

R4 R4 + R3

R1 R1 + 1

If (R1!=R2) then goto Loop

[Sum] R4

6

2

0

5, 10, 15, 20, 25

4, 9, 14, 19, 24

6, 11, 16, 21, 26

7, 12, 17, 22, 27

28

0

4

9

14

19

24

28

5

10

15

20

25

3

8

13

18

23

6

11

16

21

26

7

12

17

22

27

2

1R4

R4

R4

R4

R4

R4

sum

R3

R3

R3

R3

R3

A[0]

A[1]

A[2]

A[3]

A[4]

size

R1

R1

R1

R1

R1

R2

P

P

P

P

P

P

P

P

P

P

P

A

A

A

A

A

P

P

M

M

M

M

M

P

P

P

P

P

P

P

P

P

P

P

P

M

Figure 4: Example code fragment and its dynamic dependence graph (DDG)

The following observation can be made based on the DDG:

 Every value-producing instruction has a corresponding node in the DDG (shown by

an arrow from the instruction to its node label in the DDG)

 Memory locations are represented as DDG nodes when they are first read or written

e.g., in Figure 4, Nodes 1 and 28 represent memory locations size and sum

respectively and nodes 3, 8, 13, 18 and 23 represent the array locations A[0] to A[4].

33

Constants are not represented in the DDG (e.g., 0 and 1 are not represented in the DDG,

though they appear as instruction operands). Similarly, register names and memory

addresses are not stored in the DDG (though they are shown in the figure for

convenience).

 The same register/memory location can be mapped onto multiple nodes in the DDG

just as a given register or memory location can have multiple value instances during

the execution, e.g., in Figure 4, value produced in register R1 is mapped onto nodes 6,

11, 16, 21, 26, one for each loop iteration.

 Each edge of the DDG is marked with the letter, which represents the role of the

operand in the instruction: M – a memory operand, A – an address operand, P – a

regular operand, B – an operand used as a branch target, F – a function address

operand and S – a system call operand.

 The data dependences resulting from control transfer instructions are directly stored

in the DDG. In Figure 4, the program executes a jump statement and control is

transferred to the location LOOP at the end of a loop iteration. The data dependences

across loop iterations are represented directly in the DDG, without storing the fact

that they are dependent upon the control transfer instruction.

Function calls and returns are also represented in the DDG (not present in the example in

Figure 4). Most of the semantics of function calls such as setting up and tearing down of

the stack frame and parameters passing already present in the assembly code are

automatically included as part of the DDG. However, calling conventions cannot be

34

extracted from the machine code and are explicitly specified in the DDG. For example, in

the SPARC architecture, the register R2 is used to store the return value of a function and

this must be incorporated in the DDG to analyze dependences across function calls and

returns. The DDG also incorporates dependences caused by system calls (not present in

the example in Figure 4).

In this study, the method used to construct the DDG is similar to the one proposed in

[46]. The reader interested in techniques for DDG generation can refer to [47].

2.3.2 Fault Model

This study considers the impact of faults in data values produced during the course of a

program‟s execution. Our fault model assumes that any dynamic value in a program can

be corrupted at the time of the value‟s definition. This corresponds to an incorrect

computation of the value mainly due to transient (or soft) errors and includes all values

written to memory, registers and the processor cache. Note that the assumed fault model

also covers errors that arise due to some categories of software faults, e.g.,

assignment/initialization (an un-initialized or incorrectly initialized value is used) and

checking (a check performed on the variable fails, which is the equivalent of an incorrect

value of a variable being used) [48].

2.3.3 Crash Model

 Since the ultimate goal is to ensure crash-failure semantics for an application, we first

introduce a crash model. It is assumed that crashes can occur as a result of: (i) illegal

memory references (SIGBUS and SIGSEGV), (ii) divide-by-zero and overflow exceptions

35

(DIVBYZERO, OVERFLOW), (iii) invocation of system calls with invalid arguments, and

(iv) branch to an incorrect or illegal code (SIGILL). These four categories can be

represented in the Dynamic Dependence Graph (DDG) described in the previous section

as follows:

1. A value used as an address operand in a load or store instruction is corrupted and

causes the reference to be misaligned or outside a valid memory region.

2. A value used in an arithmetic or logic operation is corrupted and causes a divide-by-

zero exception or arithmetic overflow.

3. A value used as a system call operand is incorrect or the program does not have the

permissions to perform a particular system call.

4. An operand used as the target of a branch or as the target address of an indirect

function call is corrupted, causing the program to jump to an invalid region or to a

valid (part of the application) but incorrect (from the point of view of the application

semantic) region of code.

Usually, corruption of pointer data is much more likely to cause a crash than non-pointer

data, as shown by earlier studies, e.g.Kao [49],. Therefore, this study considers only

crashes due to: (i) corruption of values used as address operands of load/store instructions

(the first category) and (ii) corruption of values used as targets of branches and function

calls (the last category discussed above). While the model does not consider corruption of

system call operands and operands of arithmetic and logic instructions, we found that in

practice (i.e., in real programs), the percentage of crashes missed by the model is small.

36

Analysis of error propagation. The dynamic execution traces provided by DDG are used

to reason about error propagation from one value to another. It is assumed that a fault

originating in a node (value) of the DDG can potentially propagate to all nodes that are

successors of this node in the DDG.

2.3.4 Metrics Derived from the Models

In order to strategically place detectors, we develop a set of metrics for selecting

locations in the program which can provide high crash detection coverage. The metrics

are derived based on the DDG of the program. In order to enable placement of detectors

in the code, a notion of static location of a value is introduced. The static location of a

value is defined as the address of the instruction that produces the value. Metrics

employed are as follows:

1. Fanout: The fanout of a node is the set of all immediate successors of the node in the

DDG. In terms of values, it is the set of uses of the value represented by the node.

The fanout of a node indicates how many nodes are directly impacted by an error in

that node.

2. Lifetime: The lifetime of a node is the maximum distance (in terms of dynamic

instructions) between the node and its immediate successors. In terms of values, it is

the maximum dynamic distance between the def and use of a value. The lifetime

evaluates the reach of the error in the program‟s execution, as typically values with a

long lifetime are global variables or global constants, and an error in these values can

affect values that are distant from the current execution context of the program.

37

3. Execution: The execution of a node is the number of times the static location

(program counter) associated with the value is executed. Execution reflects the

intuition that locations that are executed more frequently are a good place to embed a

detector.

4. Propagation: The propagation of a node is the number of nodes to which an error in

this node propagates before causing a crash. The propagation is somewhat similar to

the fanout, but while the fanout considers only the first level of error propagation, the

propagation metric characterizes error propagation across multiple levels.

5. Cover: The cover of a node is the number of nodes from which an error propagates to

a given node before causing a crash. Nodes with a high cover usually have many

error-propagation paths passing through them and consequently, these nodes are a

good location for placing detectors to enable preemptive crash detection.

Since detectors are placed in the static code of the program, each node selected (based on

the computed metrics) to place a detector must be mapped onto the static locations in the

program. Note that multiple nodes in the DDG can be mapped onto a single static

location. Consequently, aggregation functions must be defined to compute overall

metrics corresponding to a given static program location based on the metrics of the

nodes that map onto this location. In the case of fanout, propagation and cover metrics,

set union operation is used to compute the aggregate set and the cardinality of the

aggregate set is calculated as the aggregate fanout, propagation and cover of that

38

location. For lifetimes and execution, the aggregate value of the metric at a location is

computed as the average of the metric values of the nodes that map onto this location.

For the example in Figure 4, nodes 6, 11, 16, 21, 26 map onto the value produced by the

static instruction ADDI R1, R1, 1. The instruction has the following metric values:

 The aggregate fanout of the instruction is the cardinality of the union of the set of

immediate successors of 6, 11, 16, 21 and 26, namely the cardinality of the set which is

equal to 15.

 The aggregate lifetime of the instruction is the average of the lifetimes of the nodes 6,

11, 16, 21, and 26. The lifetime of each of these nodes is 4 dynamic instructions (the

length of a loop iteration), except for 26 for which it is only one dynamic instruction (the

last loop iteration). Therefore, the aggregate lifetime of the instruction is 4.25.

 The aggregate execution value for the instruction is 5, as the loop is executed 5 times.

For computing the propagation and cover metrics, we need to locate the points at which

the program can crash. The crash-set of a node in the DDG is the set of all nodes at

which a crash can potentially occur due to an error in that node. The crash-point of a

node is the earliest point in the error‟s propagation (not to be confused with the

Propagation metric) at which a crash can occur because of a pointer corruption or

corruption of a branch/function call target address
2
. For each node N in the DDG, we

2 This follows from the crash model defined in Section 4, in which only corruptions of pointers and function/branch targets are
assumed to cause crashes.

39

denote by Crash(N) the crash-point of N
3
. In case there is no crash due to a fault at N,

we assume that Crash(N) is nil. For the example in Figure 4, the crash-points of nodes 6,

11, 16, 21 and 26 are nodes 5, 10, 15, 20, 25 respectively as these are used as address

operands in the instruction LW R3, A(R1).

The crash-distance of a node is the distance between the node and its crash-point in the

DDG and can be defined in terms of the successor nodes.

 otherwise (M,N)); wight(edge

 At F, B, orM,N) is no EdgeType(M); ifCrashDist(e(M,N))weight(edg
N)CrashDist(

Succ(N)m
min

Once the crash-distance is computed, the propagation of a node/location N can be

computed.

Succ(N)s

n(s)PropagatioS(N)where

NN)CrashDist(dist(x,N)S(N)x|xn(N)Propagatio

The aggregate propagation of a location can be computed as the cardinality of the union

of the propagation sets of the nodes in the DDG, which map onto this location. For the

example in Figure 4, the aggregate propagation of the node corresponding to the

instruction ADDI R1, R1, 1 is 10, as the union of the propagation sets of its DDG nodes

6, 11, 16, 21, 26 is the set of nodes {6, 11, 16, 21, 26, 5, 10, 15, 20, 25}. Note that

although the nodes 7, 12, 1, 22, 27 are successors of the nodes 6, 11, 16, 21 and 26, they

3
 In the rare case a node has multiple crash points, we arbitrarily pick one of them to be Crash(N)

40

do not appear in the propagation sets as their distance from these nodes (4) is greater than

the crash-distance of the nodes (2).

Once the propagation metric is computed, the cover metric can be computed as follows:

A node M is in the cover of N if and only if N belongs to the propagation of M. This is

because any fault in N must propagate to M before causing a crash if M belongs to the

Cover of N (by definition). In the example in Figure 4, the aggregate cover of the node

corresponding to the instruction LW R3, R1(A) is the cardinality of the union of the cover

sets of its nodes in the DDG, namely 5, 10, 15, 20 and 25. This is the set {6, 11, 16, 21,

26}, as the nodes 5, 10, 15, 20 and 25 collectively appear in the propagation sets of nodes

6, 16, 11, 21 and 26. Hence, the aggregate cover is 5, which is the cardinality of the set.

2.4 EXPERIMENTAL SETUP

This section describes the experimental infrastructure and application workload used to

evaluate the model and the metrics. The experiment is divided into three parts:

 Tracing: The application program is executed and a detailed execution trace is

obtained containing all the dynamic dependences, branches and load/store instructions.

 Analysis: The trace is analyzed, the dynamic dependence graph (DDG) constructed

and the metrics for placing detectors are computed; this part is done offline.

 Fault-injection: Fault-injections are performed to evaluate the choice of the detector

points. A fault is injected at random into a value used in the program. The values at the

detector points are recorded and compared with the corresponding values in the golden

41

(error-free) run of the application. Any deviation between the values in the golden run

and the faulty run indicates successful detection of the error.

2.4.1 Infrastructure

The tracing of the application and the fault-injections are performed using a functional

simulator in SimpleScalar family of processor simulators [50]. The simulator allows fine-

grained tracing of the application without perturbing its state or modifying the application

code and provides a virtual sandbox to execute the application and study its behavior

under faults.

We modified the simulator to track dependences among data values in both registers and

memory by shadowing each register/location with four extra bytes
4
 (invisible to the

application) which store a unique tag for that location. For each instruction executed by

the application, the simulator prints (to the trace file) the tag of the instruction‟s operands

and the tag of the resulting value to the trace. The trace is analyzed offline by specialized

scripts to construct the DDG and compute the metrics for placing detectors in the code.

The top hundred points according to each metric are chosen as locations for inserting

detectors.

The effectiveness of the detectors is assessed using fault injection. Fault locations are

specified randomly from the dynamic set of tags produced in the program. In this mode,

the tags are tracked by the simulator, but the executed instructions are not written to the

4 This allows upto 2^32 unique tags or IDs to be tracked simultaneously, which was sufficient for the programs in our experiments.

42

trace. When the tag value of the current instruction equals the value of a specified fault

location, a fault is injected by flipping a single-bit in the value produced by the current

instruction. Once a fault is injected, the execution sequence is monitored to see if a

detector location is reached. If so, the value at the detector location is written to a file for

offline comparison with the golden run of the application. Table 3 shows the errors

detected by the simulator and their mapping into consequence in a real system. It also

explains the detection mechanism in the simulator.

Table 3: Types of errors detected by simulator and their real-world consequences
Type of error detected Consequence in a real system Simulator detection mechanism

Invalid Memory Access Crash (SIGSEGV) Consistency checks on address range

Memory alignment Error Crash (SIGBUS) Check on memory address alignment

Divide-by-Zero Crash (SIGFPE) Check before DIV operation

Integer Overflow Crash (SIGFPE) Check after every integer operation

Illegal Instruction Crash (SIGILL) Check instruction validity before decoding

System Call Error Crash (SIGSYS) None, as simulator executes system calls on

behalf of application

Infinite loops Program Hang (live-lock)

Program continuously issues

instructions and never terminates

Program executes of a double number of

instructions as compared with the golden run

Indefinite wait due to

blocking system calls or

interminable I/O

Program Hang (deadlock)

Program stops issuing instructions

and never terminates

Program execution takes substantially longer

time (five times in our experiments) than the

golden run

Incorrect Output Fail-Silent Violation

(silent data corruption)

Compare outputs at the end of the run

2.4.2 Application Programs

The system is evaluated with four programs from the Siemens suite [51] and two

programs from the SPEC95 benchmark suite . These benchmark applications range from

a few hundred lines of code (Siemens)
5
 to hundreds of thousands of lines of code

(SPEC95). A brief description of benchmarks is given in Table 4.

5 tcas from the Siemens suite is omitted as it is very small program (less than 200 lines of C code) and there was insufficient
separation among the different metrics used in the study.

43

Table 4: Benchmarks and their descriptions
Benchmark Name Suite Description

Replace Siemens Searches a text file for a regular expression and replaces all occurrences of the

expression with a specified string

Schedule2 Siemens A priority scheduler for multiple job tasks

Print_tokens Siemens Breaks the input stream into a series of lexical tokens according to pre-specified rules

Tot_info Siemens Offers a series of data analysis functions

Gcc95 SPEC95 The gcc compiler, compiled with gcc (optimization level 0)

Perl SPEC95 The perl interpreter, compiled with gcc (optimization level 0)

Each of these applications is executed for three inputs. For the Siemens programs, the

inputs are chosen from the provided set of inputs. For gcc95 and perl, we created inputs

of reduced size (as compared to the original SPEC workloads) since our analysis scripts

were unable to handle the extremely large dynamic traces of the SPEC workloads. Also,

for the SPEC benchmarks, infrequently executed dynamic control paths that contributed

to less than 20 % of the cumulative execution time are removed from the DDG (this

constitutes 80 % of program paths).

For each program, the dynamic trace from one of the inputs is chosen to build the DDG

and to perform the analysis to choose detector points (the top 100 locations according to

each metric). Fault-injections are then performed at randomly-chosen values in the

application‟s execution for all three inputs. For each application, input, and metric used to

choose the detector points, faults are injected at 500 random locations, randomly flipping

a single bit of a value. This is done 10 times for each location leading to a total of 5000

fault injections for each combination of application, input and metric. One fault is

injected per run to eliminate the possibility of latent errors due to earlier injected faults.

44

2.5 RESULTS

The results obtained from the experiments are analyzed with the objective to answer the

following questions:

 What is the detection coverage provided by individual detectors placed according to

a given metric?

 What is the rate of benign errors of individual detectors placed according to a given

metric?

 What is the detection coverage provided jointly by multiple detectors placed

according to a given metric?

 What is the rate of benign errors of multiple detectors placed according to a given

metric?

2.5.1 Detection Capability of Metrics for Single Detectors

This section evaluates the detection coverage provided by individual detectors placed

according to different metrics. All results represent the average calculated for each

application across three inputs. The detector points that registered a value deviation for an

injection are associated with the outcome of the injection. The results for each outcome

category (crash, hang, fail-silent violation, success) are normalized across the total

number of errors observed under that category (for each benchmark-metric combination)

and are shown in Figures 5, 6, 7 and 8 for crash, successes, fail-silent violations, and

hangs, respectively. The following results can be concluded from the graphs:

45

Detectors placed according to the fanout and propagation metrics are the best at detecting

crashes. They are followed by detectors placed according to the cover metric. Random

detector placement is the worst in detecting crashes across all benchmarks (see Figure 5).

The maximum coverage provided by fanouts and propagation detectors is more than 90

% for the Siemens benchmarks (with the exception of tot_info). For the SPEC

benchmarks (and for tot_info), the coverage is between 50% and 60 %.

The percentage of benign errors is relatively small – less than 2 % for all benchmarks

except replace (see Figure 6). The higher false positive rates for gcc95 and perl are

registered by detectors placed using fanout (1.5%) and propagation (2 %) metrics.

Although the detector points were chosen to support crash-detection, they also detect a

significant percentage of fail-silent violations (30% to 70 % for detectors placed using

fanout and propagation metrics as shown in Figure 7).

Hangs are best detected by detectors placed using the fanout and the propagation metric

for all benchmarks except tot_info (Figure 8). The coverage is 80% to 90 % for the

Siemens benchmarks and 50% to 60 % for the SPEC95 benchmarks.

46

Crashes detected by Heuristics across benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

replace schedule2 print_tokens tot_info gcc95 perl

Benchmarks

F
ra

ct
io

n
 D

et
ec

te
d

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 5: Crashes detected by metrics across benchmarks

 False-Positives detected by heuristics across benchmarks

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

replace schedule2 print_tokens tot_info gcc95 perl

Benchmark

F
ra

ct
io

n
 D

et
ec

te
d

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 6: Benign errors detected by metrics across benchmarks

 Fail-Silent Violations detected by heuristics across benchmarks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

replace schedule2 print_tokens tot_info gcc95 perl

Benchmark

F
ra

ct
io

n
 d

et
ec

te
d

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 7: Fail-silent Violations detected by metrics across benchmarks

 Hangs detected by heuristics across benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

replace schedule2 print_tokens tot_info gcc95 perl

Benchmark

F
ra

ct
io

n
 o

f
h

an
g

s
d

et
ec

te
d

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 8: Hangs detected by metrics across benchmarks

47

2.5.2 Discussion

Locations having high fanouts and propagation are responsible for propagating errors to

a large number of places in the DDG, and it is likely that at least one of the propagated

errors causes a crash. Detectors placed using fanouts are marginally better than those

inserted using propagation. The key reasons for the differences are (i) propagation relies

on the accuracy of the crash model in deciding on the further propagation of the error

while fanouts does not take the crash model into account and is more conservative and

(2) locations with a high fanout are often stack or frame pointers. These locations are

frequently accessed by the program and hence, an error is likely to crash the program.

The execution metric is a good indicator for placing detectors in the Siemens benchmarks

where infrequently executed paths are not pruned. The same metric, however, does not

perform well in the SPEC benchmarks where paths that contribute to less than 80 % of

the execution time are already removed.

The SPEC benchmarks are more complex that the Siemens benchmarks and execute more

than 1 million dynamic instructions, while the Siemens benchmarks typically execute less

than 100,000 dynamic instructions (only tot_info in the Siemens suite executes between

100000 and a million instructions). As a result, the probability of the error reaching the

detector is higher in the case of the Siemens benchmarks than for the SPEC95

benchmarks. Hence, the detection coverage for replace, schedule2 and print_tokens

ranges between 80% and 90 % as compared with 50% to 70 % for gcc, perl and tot_info.

48

Detectors placed using the lifetime metric do not have high crash-detection coverage as

the error is likely to remain latent for a long time in a high lifetime node and a crash is

unlikely to occur due to this error.

The lower effectiveness of detectors placed using the cover metric as compared to

propagation and fanout stems from the fact that cover aims at placing detectors along

paths leading to potential crash-points while propagation and fanouts place detectors

along paths that can potentially spawn errors in many nodes. Typically, the number of

locations with high fanouts or propagation is small (these metrics follow a Pareto-Zipf

law like distribution) while the number of potential crash-points of the application is

much larger. This result shows that it is more beneficial to place detectors to protect

these few highly-sensitive values, rather than place detectors along the paths that lead to

potential crash points.

The false-positive rate for all metrics is less than 2 % for all benchmarks except replace.

A false positive means that the error was detected by a detector point, but the program

completed successfully (and produced correct output). The number of instructions

executed by replace is around 10000, and hence the probability of an error reaching the

detector is high even if the error does not trigger a failure. For gcc and perl, the benign

error detection rates are higher than schedule2, print_tokens and tot_info as hot-paths are

considered for these two programs.

49

2.5.3 Detection Capabilities of Metrics for Multiple Detectors

The previous section considered the detection provided by placing a single detector in

each of the benchmark programs. For the Siemens benchmarks (except tot_info), this was

sufficient to provide a coverage of 90 %. However, for applications such as gcc and perl,

a single detector could achieve up to 60 % coverage. In this section, we evaluate the

coverage provided jointly by multiple detectors placed in the gcc95 and perl applications.

The top hundred detector locations selected by each metric are grouped into bins of a

predefined size and the cumulative coverage of detectors placed at locations indicated by

a bin is evaluated. For example, to evaluate the coverage of the fanout metric with a bin

size of 10, the top 100 locations with the highest fanouts are arranged in decreasing order

by their fanout value. The top 10 locations are then grouped into a bin 1, the next ten

locations into a bin 2 and so on up to a bin 10. The crash-detection coverage of each bin

as a whole is evaluated and the average coverage of the 10 bins is the crash-detection

coverage for the fanout metric with the bin size of 10. The results for crash detection,

benign error detections, fail-silent violations and hangs are shown in Figures 9 to 14 as a

function of the bin size. The results for gcc95 are summarized below, and similar trends

are observed for perl.

50

Crash-Detection Coverage versus Bin Size (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 9: Effect of bin size on crash detection

coverage for gcc

Crash Detection versus Bin Size (perl)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetime

Random

Execution

Cover

Figure 10: Effect of bin size on crash

detection coverage for perl

False-Positives versus Bin size (gcc95)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 p
ro

b
a
b

il
it

y Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 11: Effect of bin size on benign error detection

rate for gcc

False-Positives versus Bin Size (perl)

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y Fanouts

Lifetime

Random

Execution

Propagation

Cover

Figure 12: Effect of bin size on benign

error detection rate for perl

Fail-Silent Violations versus Bin Size (gcc95)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Figure 13: Effect of bin size on fail-silent violation

coverage for gcc

Fail-Silent Violations versus Bin Size (perl)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
il

it
y Fanouts

Lifetime

Random

Execution

Propagation

Cover

Figure 14: : Effect of bin size on fail-

silent violation coverage for perl

51

For detectors placed using fanouts and propagation, the crash-detection coverage is less

than 60 % when the bin size is 1 (as discussed in Section 8.1). Increasing the bin size to

10 improves coverage to 80% (see Figure 9).

For a bin size of 1, the coverage provided by detectors placed according to lifetime is less

than 40 %. However, for a bin size of 10, the coverage is almost equal to the one

provided by detectors placed according to fanout and propagation metrics. For a bin size

of 25 and 100, it even surpasses the coverage of detectors placed using fanouts, providing

coverage values of 90 % and 99 %, respectively (see Figure 9).

The percentage of benign error detections also increases with increasing bin-size, but not

as much as the crash-detection coverage. For example for detectors placed using the

fanout metric, the coverage is around 80% when the bin size is 10, but the number of

benign error detections remains around 5% (see Figure 11).

The increase in the benign error detection rate for lifetimes is much lesser than fanouts.

The benign error detection percentage for lifetimes is only 5 % for a bin size of 100

compared to 10 % for fanouts for the same bin size. When 10 or more detectors are

considered, placement based on the lifetime metric provides the best coverage and the

lowest rate of benign error detections (see Figure 11).

Random detector placement provides coverage of 95 % (see Figure 9) when the bin size

is 100. Further, it has the smallest percentage of benign error detections (2.5 %; see

Figure 11), making random placement of multiple detectors a good choice when

minimizing benign error detections is critical.

52

The fail-silent violation coverage is the highest for detectors placed using the fanout

metric (70 % for a bin size of 10, see Figure 13). For a bin size of 100, detectors placed

using the execution metric surpass the detectors placed using fanout.

2.5.4 Discussion

For all metrics, the coverage increases with increase in the bin size as the number of

detector points increases. The increase in the coverage however flattens out as the bin

size increases, as there is considerable overlap among the multiple detector points in

detecting crashes. For example, for detectors placed using the fanout metric, grouping

detectors into bins of size 5 increases the coverage to 75 % (from the 60% coverage

provided by individual detectors). However, the increase in coverage is lesser when the

bin size increases to 10 (coverage 80%).

Detectors at locations with a high lifetime provide limited coverage individually, but

several of them jointly achieve very high coverage. This is because each detection point

covers a different set of errors. Closer analysis of the results indicates that there is usually

one hot-detector in each bin, which detects the majority of errors covered by that bin, and

the other detectors complement the coverage by detecting errors that escape the hot-

detector. These errors are also not easily detectable by the detectors placed using other

metrics

2.5.5 Summary of Results

This section summarizes the results from the previous two sections as follows:

53

Detectors placed using the fanouts metric have the best coverage in the program, when

single detectors are considered. The coverage provided is 90 % for the Siemens

benchmarks and 50-60 % for the SPEC benchmarks. The percentage of benign error

detections detected by the detectors is less than 5 % for all the programs considered.

When multiple detectors are placed using the fanouts metric, the coverage increases to 97

% by inserting detectors at less than 1 % of the hot-paths (and to 80 % at less than 0.1 %

of the hot-paths). There is considerable overlap in the detection capabilities of assertions

which leads to the diminishing increase in coverage as the number of assertions is

increased. The knee of the curve seems to be about 25 detectors.

In the multiple detector case, the coverage provided by the detectors placed using the

lifetimes metric is higher than the coverage provided by detectors placed using the

fanouts metric (when 10 or more detectors are inserted). Further, the percentage of false

positives for detectors placed using lifetimes is smaller than the percentage of false

positives for detectors placed using fanouts.

2.6 CONCLUSIONS

This chapter explores the problem of detector placement in programs to preemptively

detect crashes arising due to errors in data values used within the program. A model for

error propagation and crashes is developed and metrics for placing detectors are derived

from the model. The metrics are evaluated on six applications, including two SPEC95

benchmarks. It is found that strategic placement of detectors can increase crash coverage

by an order-of-magnitude compared to random placement.

54

CHAPTER 3 DYNAMIC DERIVATION OF ERROR

DETECTORS

3.1 INTRODUCTION

This chapter presents a technique to derive and implement error detectors that protect

programs from data errors. These are errors that cause a divergence in data values from

those in an error-free execution of the program. Data errors can cause the program to

crash, hang, or produce incorrect output (fail-silent violations). Such errors can result

from incorrect computation, and they would not be caught by generic techniques such as

ECC (in memory).

Many static and dynamic analysis techniques (Prefix [52], LCLint [53], Daikon [43])

have been proposed to find bugs in programs. However, these techniques are not geared

toward detecting runtime errors as they do not consider error propagation. To detect

runtime errors, we need mechanisms that can provide high-coverage, low-latency (rapid)

error detection to: (i) preempt uncontrolled system crash/hang and (ii) prevent

propagation of erroneous data and limit the extent of the (potential) damage. Eliminating

error propagation is essential because programs, upon encountering an error that could

eventually lead to a crash, may execute for billions of cycles before crashing [14]. During

this time, the program can exhibit unpredictable behavior, such as writing corrupted state

to a checkpoint [38] or sending a corrupted message to another process [37], which in

turn could result in extended downtimes [8].

55

It is common practice for developers to write assertions in programs for detecting runtime

errors. For example, Andrews [54] discusses the use of executable assertions (checks for

data reasonableness) to support testing and fault-tolerance. Assertions are usually specific

to the application require considerable programmer effort and expertise to develop

correctly. Further, placing assertions in the wrong places could hinder their detection

capabilities [55].

Hiller et al. propose a technique to derive assertions in an embedded application based on

the high-level behavior of its signals [56]. They facilitate the insertion of assertions by

means of well-defined classes of signal patterns. In a companion paper, they also describe

how to place assertions by performing extensive fault-injection experiments[40].

However, this technique requires that the programmer has extensive knowledge of the

application. Further, performing fault-injection may be time-consuming and cumbersome

for the developer. Therefore, it is desirable to develop an automated technique to derive

and place detectors in application code.

Our goal is to devise detectors that preemptively capture errors impacting the

application and to do so in an automated way without requiring programmer intervention

or fault-injection into the system. In this chapter, the term “detectors” refers to

executable assertions used to detect runtime errors. This chapter contributes with the

following techniques:

1. Derivation of error detectors based on the dynamic execution traces of the

application instrumented at strategic points

56

2. Synthesis of custom hardware (VHDL code) to implement the derived detectors,

in order that they can be executed in parallel with the execution of the application

3. Evaluation of the coverage of the derived detectors using fault-injection

experiments,

4. Evaluation of the overhead of the detector hardware through synthesis of VHDL

code

3.2 APPROACH AND FAULT-MODELS

The derivation and implementation of the error detectors in hardware and software

encompasses four main phases as depicted in Figure 15. The analysis and design phases

are related to the derivation of the detectors, while the synthesis and checking phase are

related to the implementation and deployment of the derived detectors at run-time

respectively.

Figure 15: Steps in detector derivation and implementation process

57

During the analysis phase, the program locations and variables for placing detectors to

maximize coverage are identified, based on the Dynamic Dependence Graph (DDG) of

the program. Fault-injections are not required to choose the detector variables and

locations. We choose the locations for detector placement based on the Fanouts

heuristic[17].

The program code is then instrumented to record the values of the chosen variables at the

locations selected for detector placement. The recorded values are used during the design

phase to choose the best detector that matches the observed values for the variable, based

on a set of pre-determined generic detector classes (Section 3.3).

After this stage, the detectors can either be integrated into application code as software

assertions or implemented in hardware. In this chapter we consider a hardware

implementation of the derived detectors. The synthesis phase converts the generated

assertions to a HDL (Hardware Description Language) representation that is synthesized

in hardware. It also inserts special instructions in the application code to invoke and

configure the hardware detectors. This is explained in Section 3.5. Finally, during the

checking phase, the custom hardware detectors are deployed in the system to provide

low-overhead, concurrent run-time error detection for the application. When a detector

detects a deviation from the application‟s behavior learned during the design phase, it

flags an error.

Fault Model - The fault model covers errors in the data values used in the program‟s

execution. This includes faults in: (1) the instruction stream that result in the wrong op-

58

code being executed or in the wrong registers being read or written by the instruction, (2)

the functional units of the processor which result in incorrect computations, (3) the

instruction fetch and decode units, which result in an incorrect instruction being fetched

or decoded (4) the memory and data bus, which cause wrong values to be fetched or

written in memory and/or processor register file. Note that these errors would not be

detected by techniques such as ECC in memory, as they originate in computation.

The fault-model also represents certain types of software errors that result in data-value

corruptions such as: (1) synchronization errors or race conditions that result in

corruptions of data values due to incorrect sequencing of operations, (2) memory

corruption errors, e.g., buffer-overflows and dangling pointer references that can cause

arbitrary data values to be overwritten in memory, and (3) use of un-initialized or

incorrectly initialized values, as these could result in the use of unpredictable values

depending on the platform and environment.

3.3 DETECTOR DERIVATION ANALYSIS

In this chapter, an error detector is an assertion based on the value of a single variable
6
 of

the program at a specific location in its code. A detector for a variable is placed

immediately after the instruction that writes to the variable. Since a detector is placed in

the code, it is invoked each time the program location at which the detector is placed is

executed.

6 In this chapter, the term variable refers to any register, cache or memory location that is visible at the assembly-code level.

59

Consider the sample code fragment in Table 5. Assume that the detector placement

methodology has identified variable k as the critical variable to be checked within the

loop. Although this example illustrates a simple loop, our technique is general and does

not depend on the structure of the source program. In the code sample, variable k is

initialized at the beginning of the loop and incremented by 1 within the loop. Within the

loop, the value of k is dependent on its value in the previous iteration. Hence, the rule for

k can be written as “either the current value of k is zero, or it is greater than the previous

value of k by 1.” We refer to the current value of the detector variable k as ki and the

previous value as ki-1. Thus, the detector can be expressed in the form: (ki – ki-1 == 1) or

(ki == 0).

Table 5: Example code fragment

void foo() {
 int k = 0;

 for (; k<N; k++) {

 ….
 }

}

As seen from the above example, a detector can be constructed for a target variable by

observing the dynamic evolution of the variable over time. The detector consists of a rule

describing the allowed values of the variable at the selected location in the program, and

an exception condition to cover correct values that do not fall into the rule. If the detector

rule fails, then the exception condition is checked, and if this also fails, the detector flags

an error. Detector rules can belong to one of six generic classes and are parameterized for

the variable checked. The rule classes are shown in Table 6.

60

Table 6: Generic rule classes and their descriptions

Class Name Generic Rule (ai , ai-1) Description

Constant (ai == c)
The value of the variable in the current invocation of the detector is a constant
given by parameter c.

Alternate
((ai == x /\ ai-1== y)) \/ (ai

== y /\ ai-1== x)

The value of the variable in the current and previous invocations of the detector

alternates between parameters x and y respectively.

Constant-
Difference

 (ai - ai-1 == c)
The value of the variable in the current invocation of the detector differs from its
value in the previous invocation by a constant c.

Bounded-

Difference
(min <= ai - ai-1 <= max)

The difference between the values of the variable in the previous and current

invocations of the detector lies between min and max.

Multi-Value ai є { x, y, … }
The value of the variable in the current invocation of the detector is one of the
set of values x, y,

Bounded-

Range
(min <= ai <= max)

The value of the variable in the current invocation of the detector lies between

the parameters min and max.

These rule classes are broadly based on common observations about the behavior of

variables in the program. Note that, in all cases, the detector involves only the values of

the variable in the current invocation (ai) and/or the previous invocation (ai-1) in the same

execution.

The exception condition involves equality constraints on the current and previous values

of the variable, as well as logical combinations (and, or) of two of these constraints. The

equality constraints take the following forms: (1) ai == d, where d is a constant

parameter; (2) ai-1== d, where d is a constant parameter; and (3) ai==ai-1. However, not

all combinations of the above three clauses are logically consistent. For example, the

exception condition (ai==1 and ai==2) is logically inconsistent, as ai cannot take two

different values at the same time. Of the twenty seven possible combinations of the

clauses, only eight are logically consistent.

For the example involving the loop index variable k, discussed at the top of this section,

the rule class is Constant-Difference of 1, and the exception condition is (ki == 0). This

was derived automatically using the procedure detailed in this section.

61

3.4 DYNAMIC DERIVATION OF DETECTORS

This section describes our overall methodology for automatically deriving the detectors

based on the dynamic trace of values produced during the application‟s execution. By

automatic derivation, we mean the determination of the rule and the exception condition

for each of the variables targeted for error detection. The basic steps are as follows:

The program points at which detectors are placed (both variables and locations) are

chosen based on the Dynamic Dependence Graph (DDG) of the program as shown in

[17].

The program is instrumented to record the run-time evolution of the values of detector

variables at their respective locations, and executed over multiple inputs to obtain

dynamic-traces of the checked values. We refer to the sequence of values at a detector

location as a value stream for that location.

The dynamic traces of the checked values obtained are analyzed to choose a set of

detectors (both rule class and exception condition) that matches the observed values.

A probabilistic model is applied to the set of chosen detectors to find the best detector for

a given location. The best detector is characterized in terms of its tightness and execution

cost of the detector. These terms are explained in the next subsection.

3.4.1 Detector Tightness and Execution Cost

A qualitative notion of tightness of a detector was first introduced in [57]. However, we

define tightness in a precise, mathematical sense as the probability that a detector detects

an erroneous value of the variable it checks. In mathematical terms, the tightness is the

62

probability that the detector detects an error, given that there is an error in the value of the

variable that it checks. The coverage of the detector, on the other hand, is the probability

that the detector detects an error given that there is an error in any value used in the

program. Hence, in addition to the tightness, coverage also depends on the probability

that an error propagates to the detector variable and location in the first place. The

estimation of this probability is outside the scope of our technique.

In order to characterize the tightness of a detector, we need to consider both the rule and

the exception condition (introduced in section 3.3) as the error will not be detected if

either passes. The tightness also depends on the parameters of the detector and the

distribution of the observed stream of data values in a fault-free execution of the

program. For an incorrect value to go undetected by a detector, either the rule or the

exception condition or both must evaluate to true. This can happen in one of four

mutually exclusive ways, as Table 7 shows.

Table 7: Probability values for computing tightness

Symbol Explanation

P(R | R) Probability that an error in a value that originally satisfied the rule (in a correct execution) also causes
the incorrect value to satisfy the rule.

P(R | X) Probability that an error in a value that originally satisfied the exception condition (in a correct

execution) causes the incorrect value to satisfy the rule.

P(X | R) Probability that an error in a value that originally satisfied the rule (in a correct execution) causes the
incorrect value to satisfy the exception condition.

P(X | X) Probability that an error in a value that originally satisfied the exception condition (in a correct

execution) causes the incorrect value to satisfy the exception condition.

The tightness of a detector is defined as (1 – P(I)), where P(I) is the probability of an

incorrect value passing undetected through the detector. This probability can be

expressed using the terms in Table 7 as follows:

P(I) = P(R) [P(R | R) + P(X | R)] + P(X) [P(R | X) + P(X | X)] (1)

63

where, P(R) is the probability of the value belonging to the rule, and the P(X) is the

probability of the value belonging to the exception condition.

The computation of tightness can be automated, since there are only a limited number of

rule-exception pairs
7
. These probabilities can be pre-computed as a function of the

detector‟s parameters as well as on the frequency of elements in the observed data stream

for each rule-exception pairs. We will not list all the probabilities, but instead illustrate

with an example.

Example. Consider a detector in which the rule belongs to the class Bounded-Range with

parameters min = 5 and max = 100 and the exception condition is of the form (ai==0).

We make the following assumptions about errors in the program.

(1) The distribution of errors in the detector variable is uniform across the range of all

possible values the variable can take (say, N),

(2) An error in the current value of the variable is not affected by an error in the previous

value of the variable, and

(3) Errors in one detector location are independent of errors in another detector location.

These are optimistic assumptions, and hence the estimation of tightness is an upper bound

on the actual value of detector tightness (and hence coverage). Relaxing these

assumptions may require apriori knowledge of the application and error behavior in the

application.

7 There are six types of rule classes and eight types of exception conditions, leading to a total of 48 rule-exception pairs.

64

Table 8 shows the pre-computed probability values for this detector in terms of N and the

detector‟s parameters. Substituting these probability values in equation (1), we find:

P(I) = P(R) [95/N + 1/N] + P(X) [96/N + 0]

 = (96/N)[P(R) + P(X)] = 96/N

The above derivation uses the fact that P(R) + P(X) = 1,since the value must satisfy

either the rule or the exception in an error-free execution of the program.

Now, assume that the rule belongs to the Constant class (with parameter 5). Let us

assume that the exception condition is the same as before. For this new detector,

P(R|R) = 0, P(R|X) = 1/N,

P(X|X) = 0 and P(X|R) = 1/N

Substituting in equation (1), yields the following expression for P(I).

P(I) = P(R) [0 + 1/N] + P(X) [1/N + 0]= (1/N)[P(R) + P(X)]= 1/N

Note that the probability of a missed error in the first detector is 96 times the probability

of a missed error in the second detector. Hence, the tightness of the first detector is

correspondingly much less than the tightness of the second detector (which is intuitive

based on the detectors).

The above model is used only to compare the relative tightness of the detectors, and not

to compute the actual probabilities (which may be very small). The range of values for

the detector variable represented by the symbol N gets eliminated in the comparison

among detectors for the same variable and does not influence the choice of the detector.

65

Execution Cost. The execution cost of a detector is the amortized additional computation

involved in invoking the detector over multiple values observed at the detector point. The

execution cost of a detector is calculated as the number of basic arithmetic and

comparison operations that is executed in a single invocation of the detector. An

operation usually corresponds to a single arithmetic or logical operator. Note that the

computation of the execution cost assumes an error-free execution of the program.

Table 8: Probability values for detector “Bounded-Range (5, 100) except: (ai==0)”

Symbol Probability Value Explanation

P (R | R) (95 / N) Each rule value can turn into any of the other 95 rule values with equal probability.

P (R | X) (96 / N) An exception value can turn into one of 96 rule values with equal probability

 P (X | R) (1 / N) A rule value can incorrectly satisfy the exception condition if it turns into 0.

P (X | X) 0 An exception value cannot change into another exception value, as there is only one value

permitted by the exception condition (in this example).

3.4.2 Detector Derivation Algorithm

For each location identified by the detector placement analysis, the following steps are

executed by the algorithm for detector derivation.

1. To derive the detector, the rule class corresponding to the detector is chosen and

the associated exception condition is formed. The algorithm to derive a detector

for a particular variable and location is given below. We refer to the evolution of a

program variable over time as the stream of values for that variable.

2. To derive the rule, the rule classes in Table 6 are each tried in sequence against

the observed value stream to find which of the rule classes satisfy the observed

value stream. The parameters of the rule are learned based on appropriate samples

(for each rule class) from the observed stream. For the same location, it is possible

66

to generate multiple rules that are considered as candidates for exception

derivation in the next step.

3. For each rule derived, the associated exception condition is derived based on the

values in the stream that do not satisfy the rule. Each of the values that do not

satisfy the rule is used as a seed for generating exception conditions for that rule.

If it is not possible to derive an exception condition for the observed value as per

the conditions in section 3.2, the current rule is discarded and the next rule is tried

from the set of rules in step 2.

4. For each rule-exception pair generated, the tightness and execution cost of the

detector is calculated. The detector with the maximum tightness to execution cost

ratio is chosen as the final detector for that location and is embedded as an

assertion in the program‟s code

3.5 HARDWARE IMPLEMENTATION

In this chapter, we discuss the hardware implementation of the derived error detectors

in context of the Reliability and Security Engine (RSE) framework [1]. The RSE is a

reconfigurable processor-level framework that can provide a variety of reliability features

according to the requirements and constraints imposed by the user or the application. The

RSE Framework hosts (1) RSE modules, providing reliability and security services and

(2) the RSE Interface that provides a standard, well-defined and extendible interface

between the modules and the main processor pipeline. The interface collects the

intermediate pipeline signals and converts it to the format required by the hardware

67

modules. The application interfaces with the RSE modules using special instructions

called CHECK instructions.

The detectors are implemented as a separate module of the RSE called the Error

Detector Module (EDM). The detectors are invoked through the CHECK instructions.

3.5.1 Synthesis of Error Detector Module

The output of the algorithm to derive detectors in Section 3.4.2 is a list of detectors,

one for each location. This list is used to synthesize hardware modules that interface with

the RSE. The hardware implementation of error detectors chosen in the design stage

encompasses two steps: (i) instrumentation of the target software application

with special

instructions to invoke the hardware checkers, and (ii) generation of the Error Detector

Module (EDM), a piece of customized hardware to check at run-time the execution of the

program, and flag a signal when one of the detectors fires. These two phases are carried

out at compile time.

Each detector in the list of detectors derived in the design phases is characterized by the

following attributes: (1) location of the detector in terms of the Program Counter (PC)

value at which it is to be invoked, (2) processors‟ registers to check and (3) detector class

and exception parameters. Special instructions are used to load the detectors into the

EDM, one for each word of the detector. Figure 16 shows the format of each detector. As

can be observed, each detector spans 6 words, and hence requires 6 instructions to be

loaded into the EDM.

68

PC

Rule Class Exception Condition

Class
Logical
Register

Param1 Param2
Combination
Rule

Class1 Class2
Exception
Param1

Excepti
on

Param2

32 bit 3 bit 5 bit 32 bit 32 bit 2 bit 2 bit 2 bit 32 bit 32 bit

Figure 16 - Format of each detector and bit width of each field

In our current deployment, the application code is in the form of assembly code. The

header of the code is instrumented with CHECK instruction loading all the detectors

needed for the execution of the entire code. This solution minimizes the performance

overhead but requires larger storing units in hardware, as explained in Section 7.1. After

the instrumentation, the modified code is assembled and converted (Assembling/Linking

phase) into an executable.

Figure 17 shows the automated design flow starting from the application code to the

hardware. Given the application code (in the form of assembly code or program binary),

the design flow delivers the instrumented application code and the hardware description

of the Error Detector Module tailored for the target application. The target processor

description (a DLX-like processor in the current implementation [58]) and the

configuration information are used to extract (from the main pipeline of the processor)

the signals that are needed by the EDM.

The output of the Error Detector Module generation phase in Figure 17 is a VHDL

representation of the EDM. The synthesis procedure then instantiates hardware

components from the VHDL representation. These are considered in detail in Section

3.5B.

69

Figure 17: Design flow to instrument application and generate the EDM

3.5.2 Structure of Error Detector Module

Figure 18 shows the overall architecture of the Error Detector Module (EDM). As

mentioned before, the EDM is implemented as a module in the Reliability and Security

Engine (RSE).

Figure 18: Architectural diagram of synthesized processor

70

The main components of the EDM are as follows:

Shadow Register File (SRF) – keeps track of current and last values of the

microprocessor‟s registers checked by the detectors (i.e., ai and ai-1, where a can be any

architectural register). This component delivers the required values ai and ai-1 when a

detector is executed as required by the expressions in Table 1. When a new value

regValue is written at time i by the processor in the register R of the processor file (based

on the value regSel), a copy of the new value Ri is stored in the SRF. The old value Ri-1 is

also retained. Since not all the registers of the processor architecture have to be checked

by the detectors, a mapping between the physical addresses of the microprocessor

registers and the logical addresses of the corresponding registers in the SRF is kept in the

block Phys2Log.

Detector Table – stores the information needed for a detector. The size of the Detector

Table grows linearly with the number of detectors needed by an application. It is

implemented by the following component: (1) comparators checking the current PC

against the PCs of the detectors and triggering them if necessary; (2) a RAM hosting the

parameters of rules and exceptions. When a detector is triggered by the current PC, the

Detector Table selects (1) the register R that has to be checked from the SRF forcing the

values Ri-1 and Ri-1 to be placed on the dual data-path busses, and (2) activates the Rule

and Exception Checkers to compute the detector conditions. The Error Signal

Computation flags the Violation Detection signal to indicate a detected error.

71

Rule and Exception Checkers – are the actual data-paths used to carry out the

computation of the detector rules and exception conditions. A number of checker

components are instantiated to perform the required computations according to the rule

classes and exceptions needed by an application. Note that the set of checkers instantiated

is equal to the number of detector classes and exceptions (at most forty eight) rather than

to the number of detectors inserted in an application (which are essentially unbounded).

Architectural Extensions for High-performance Processors – We are currently

working on extending our work for processors where a larger amount of speculation and

parallelism is present. This requires enhancing the current architecture of the Error

Detector Module. Example extensions are discussed below: (1) Targeting a CISC

architecture requires the Error Detector to access the memory bus of the main processor,

since some instructions can use memory operands. In the current implementation we

assume a load/store RISC architecture, which means that only register operands can be

used, and it is sufficient that the Error Detector checks only the content of the processor

register file; (2) The use of multiple execution units requires the execution of several

checks concurrently and hence the need for (i) multi-ported Detector Table and Shadow

Register file, and (ii) independent execution data-path units in the Error Detector; and (3)

The use of branch and value speculation requires the ability to execute detectors

speculatively and a tighter coupling of the Error Detector Module with the reservation

station to keep track of the issued, ready and committed instructions.

72

3.6 EXPERIMENTAL SETUP

This section describes the experimental infrastructure and application workload used to

evaluate the coverage and overheads of the derived detectors. We use fault-injection to

evaluate the coverage and implementation on FPGA hardware to evaluate the overheads.

3.6.1 Application Programs

The system is evaluated with six of seven programs from the Siemens suite
8
 of programs

[51]. These programs are comprised of a few hundred lines of C code, and are

extensively used in software testing and verification. A brief description of benchmarks is

given in Table 9.

Table 9: Benchmarks and their descriptions

Benchmark Description

Replace Searches a text file for a regular expression and replaces the expression with a string

Schedule,

Schedule2

A priority scheduler for multiple job tasks

Print_tokens,

Print_tokens2

Breaks the input stream into a series of lexical tokens according to pre-specified rules

Tot_info Offers a series of data analysis functions

3.6.2 Infrastructure

The tracing of the application‟s execution and the fault-injections are performed using a

functional simulator in SimpleScalar family of processor simulators [50]. The simulator

allows fine-grained tracing of the application without modifying the application code and

provides a virtual sandbox to execute the application and study its behavior under faults.

8
 tcas from the Siemens suite is omitted as it is very small and had insufficient separation among the different metrics in the study

73

We modified the simulator to track dependences among data values in both registers and

memory by shadowing each register/location with four extra bytes (invisible to the

application) which store a unique tag for that location. For each instruction executed by

the application, the simulator prints (to the trace file) the tag of the instruction‟s operands

and the tag of the resulting value to the trace. The trace is analyzed offline by specialized

scripts to construct the DDG and compute the metrics for placing detectors in the code

according to the procedure in Chapter 2.

The effectiveness of the detectors is assessed using fault injection. Fault locations are

specified randomly from the dynamic set of tags produced in the program. In this mode,

the tags are tracked by the simulator, but the executed instructions are not written to the

trace. When the tag value of the current instruction equals the value of a specified fault

location, a fault is injected by flipping a single-bit in the value produced by the current

instruction. Once a fault is injected, the execution sequence is monitored to see if a

detector location is reached. If so, the value at the detector location is written to a file for

offline comparison with the derived detectors for the application. The above process is

continued till the application ends. Note that only a single fault is injected in each

execution of the application.

3.6.3 Experimental Procedure

The experiment is divided into four parts as follows:

1. Placement of detectors and instrumentation of code. The dynamic instruction trace

of the program is obtained from the simulator and the Dynamic Dependence Graph

74

(DDG) is constructed from the trace. The detector placement points (both variables

and locations) are chosen based on the technique described in [17]. For each

application, up to 100 detector points are chosen by the analysis, which corresponds

to less than 5% of static instructions in the assembly code of the benchmark programs

(excluding library functions).

2. Deriving the detectors based on training set. The simulator records the values of

the selected variables at the detector locations for representative inputs. The dynamic

values obtained are used to derive the detectors based on the algorithm in Section 3.4.

The training set consists of 200 inputs
9
, which are randomly sampled from a test suite

consisting of 1000 inputs for each program. These test suites are provided as part of

the Siemens benchmark suite [51].

3. Fault-injections and coverage estimation. Fault-injection experiments are

performed by flipping single bits in data-values chosen at random from the set of all

data values produced during the course of the program‟s execution. After injecting

the fault, the data values at the detector locations are recorded and the outcome of the

simulated program is classified as a crash, hang, fail-silent violation or success

(benign). The values recorded at the detector locations are then checked offline by the

derived detectors to assess their coverage. The coverage of a detector is expressed in

terms of the type of program outcome it detects i.e. a detector is said to detect a

9
 The rationale for the choice of 200 inputs is explained in Section 3.7.3

75

program crash if the program would have crashed had the detector not detected the

error. In case the detector does not detect the error at all, its coverage is counted as

zero for all four outcome categories.

For the fault-injection experiments, each application is executed over 10 inputs

chosen at random from those used in the training phase. For each input, 1000

locations are chosen at random from the data values produced by the application. A

fault-injection run consists of a single bit-flip in the one of the 1000 locations. For

each application-input combination, five runs are performed, which corresponds to a

total 50,000 fault-injection runs per application.

4. Computation of false positives. The application code instrumented with the derived

detectors is executed for all 1000 inputs, including the 200 inputs that were used for

training. No faults are injected in these runs. If any one of the derived detectors

detects an error, then that input is considered to be a false positive (as there was no

injected error).

3.7 RESULTS

3.7.1 Detection Coverage of Derived Detectors

The coverage of the detectors derived using the algorithm in Section 3.4 is evaluated

using fault-injections as described in Section 3.6.3. Figure 19, Figure 20 and Figure 21

show the coverage for crashes, fail- silence violations (fsv) and hangs obtained for the

target applications (in percentages) as a function of the number of detectors placed in

each application (ranging from 1 to 100). Figure 22 shows the percentage of total

76

manifested errors that are detected by the derived detectors. .The coverage for each type

of failure increases as the number of detectors increases, but less than linearly, as there is

an overlap among the errors detected by the detectors. The individual error coverage of

the derived detectors depends on the type of failure (crash, FSV, hang).

Figure 19: Crash coverage of derived detectors

Figure 20: FSV coverage of derived detectors

Figure 21: Hang coverage of derived detectors

Figure 22: Total error coverage for derived

detectors

Table 10: Average detection coverage for 100 detectors

Type of Failure Minimum Coverage Maximum Coverage

Program Crash 45% (print_tokens) 65% (tot_info)

Fail-Silent Violation (FSV) 25% (schedule2) 75% (tot_info)

Program Hang 0% (print_tokens2) 55% (replace)

Program Failures

50 %

(replace, schedule2, print_tokens,
tot_info)

75 %

(schedule, print_tokens2)

77

The coverage obtained for each type of failure is summarized in Table 10 when 100

detectors are placed in each the application. The derived detectors can detect 50% to 75%

of the errors that manifest in the application. This is because the majority of errors that

manifest in an application are crashes (70-75%) and the rest are fail-silent violations (20-

30%) and hangs (0-5%).

The results for coverage correspond to any error that occurs in the data values used by the

program, and not just for errors that occur in the detector locations. For example, if even

a single bit-flip occurs in a single instance of any data value used in the program, and

this error results in a program crash, hang or fail-silence violation, then one of the 100

detectors placed will detect the error 50-75 % of the time. As mentioned in Section 3.6.1,

100 detectors correspond to less than 5% of program locations in the static assembly code

of the benchmark programs.

To put these results in perspective, Hiller et al.[56] obtain a coverage of 80% with 7

assertions for (random) errors that cause failure in an embedded system application.

However, in their study about 2000 errors are injected into the system during a short

period of 40 seconds, and if one of their executable assertions detects one of the errors in

this period, it is considered a successful detection. In contrast, we inject only a single

error in each run. Furthermore, 7 out of 24 signals are targeted for detection in the

embedded system considered in their paper, whereas we place detectors in just 5% of the

instructions in the applications considered.

78

3.7.2 False Positives

False positives can occur when a detector flags an error even if there is no error in the

application. A false positive for an input can occur when the values at the detector points

for the input do not obey the detector‟s rule and exception condition learned from the

training inputs (because the training was not comprehensive enough).

The training set for learning the detectors consists of 200 inputs and the false positives

are computed across all 1000 inputs for each application. No faults were injected in these

runs. If even a single detector detects an error for a particular input, then the entire input

is treated as a false positive even if no other detector detects an error for the input.

Figure 23 presents the percentage of false positives for each of the target applications

across 1000 inputs. Across all applications the false positives are no more than 2.5%

(with 100 detectors). For the replace, schedule2, print_tokens and print_tokens2

applications, the false positives observed are less than 1%. For the schedule and tot_info

application, the false positive rate is around 2%. While the number of false positives

increases as the number of detectors increases, it reaches a plateau as the number of

detectors is increased beyond 50. This is because a false positive input is likely to trigger

multiple detectors once the number of detectors passes a certain critical threshold (in our

case, this critical threshold is 50). However, no such plateau was reached for the coverage

results in Figure 22. This suggests that inserting more detectors in the application can

increase coverage without increasing the percentage of false positives.

79

Figure 23: Percentage of false positives for 1000 inputs of each application

When a detector raises an alarm, we need to determine whether an error was really

present or whether it is a false-positive. If the error was caused by a transient fault (as we

assume in this chapter), then it is likely to be wiped out when the program is re-executed

[22]. If on the other hand, the detection was a false positive and hence, a characteristic of

the input given to the program, the detector will raise an alarm again during re-execution.

In this case, the alarm can be ignored, and the program is allowed to continue. Thus, the

impact of a false positive is essentially a loss in performance due to re-execution

overhead. Since the percentage of false positives is less than 2.5%, the overhead of re-

execution is small. It is possible to reduce the overhead further using checkpointing and

restarting scheme as done in Wang and Patel [59].

3.7.3 Effect of Training Set Size

The results reported so far for coverage and false positives of the derived detectors used a

training set of 200 inputs from a total of 1000 inputs for each benchmark application. In

this section, we consider the effects of varying the size of the training set from 100

inputs, 200 inputs and 300 inputs. In these experiments, the number of detectors is fixed

80

at 100 and the error-detection coverage and false positives are evaluated for each

application. The results are shown in Figure 24, Figure 25, Figure 26 and Figure 27.

Figure 24: Crash coverage for different training

set sizes

Figure 25: FSV coverage for different training set

sizes

Figure 26: Hang coverage for different training set

sizes

Figure 27: Benign errors for different training set

sizes

The following trends may be observed from the graphs:

 The false positives decrease from 5% to 2% as the training set size is increased

from 100 inputs to 200 inputs, and to less than 1% for 300 inputs, except tot_info

(1.5%.).

 The coverage for crashes and hangs remain constant as the training set size

increases (Figure 8, Figure 10), except in the case of tot_info where the coverage

81

first decreases from 100 to 200 inputs and then remains constant from 200 to 300

inputs (for crashes and hangs).

 The coverage for fail-silent violations decreases marginally as the size of the

training set increases from 100 inputs to 300 inputs (Figure 9). This decrease in

fail-silent violations is less than 2% for all benchmarks except tot_info (5%).

For the applications studied, increasing the training set size from 100 to 200 decreases the

false positives significantly, while increasing it from 200 to 300 does not have as large an

impact on false positives. The impact on coverage from increasing the training set size is

minimal. This suggests that the detectors, once learned, are relatively stable across

different inputs, and that their detection capabilities are not affected by the input (beyond

a certain number of training inputs). Hence, in this chapter we choose a training set size

of 200, which corresponds to 20% of the inputs used for each program.

3.7.4 Comparison with Best-value Detectors

As seen in Section 3.7.1, the derived detectors detect about 45-65% of crashes and 25-

80% of fail-silent violations in a program. This section investigates why the remaining

errors are not detected and how the detectors can be improved. To form the basis of the

discussion, we consider a hypothetical detector that keeps track of the entire history of

data values observed at a detector location and uses this knowledge to flag an error. We

call these best-value detectors, as they represent the maximum coverage that can be

obtained by a value-based detector.

82

The best-value detector may not be achievable in practice, as in addition to requiring

enormous space and time overheads (to store the entire history of values), it assumes

apriori knowledge of all possible inputs to the program. Nevertheless, the coverage of the

best-value detector provides an upper bound on the coverage that can be obtained with

data-value based detectors such as the detectors considered in this chapter
10

. We build the

best-value detector by executing the program under a specific set of inputs and storing the

entire sequence of values observed at each location where a detector is placed. This fault-

free execution is referred to as the golden run of the program. In this study, we fix the

number of best-value detectors in the program to be 100. For each application both the

best-value detectors and the derived detectors are placed at the same variables and

locations. The program is executed under the same set of inputs that were used to derive

the best-value detectors. The same set of faults is injected in both cases.

Figure 28, Figure 29, Figure 30 and Figure 31 compare the coverage of the derived

detectors with coverage of the best-value detectors for crashes, fail-silent violations

(FSV), hangs and manifested errors. The results are summarized below.

Crashes - the coverage of the derived detectors is between 75% (replace) and 100%

(schedule2, print_tokens2) of the coverage that can be obtained by the best-value

detectors (Figure 28)

10 Note that the best-value detectors are different from the ideal detectors we introduced in Chapter 2. An ideal detector makes use of
complete timing and data information to detect an error in a variable, whereas the best-value detector employs only data information.

83

Comparison with Best-Value Detectors (Crashes)

0

20

40

60

80

100

replace schedule schedule2 print_tokens print_tokens2 tot_info

Benchmark

P
e
rc

e
n

ta
g

e

Derived

Best-Value

Figure 28: Comparison between best-value detectors and derived detectors for crashes

Comparison with Best-Value Detectors (FSV)

0

20

40

60

80

100

replace schedule schedule2 print_tokens print_tokens2 tot_info

Benchmark

P
e
rc

e
n

ta
g

e

Derived

Best-Value

Figure 29: Comparison between best-value detectors and derived detectors for FSV

Comparison with Best-Value Detectors (Hangs)

0

20

40

60

80

100

replace schedule schedule2 print_tokens print_tokens2 tot_info

Benchmark

P
e
rc

e
n

ta
g

e

Derived

Best-Value

Figure 30: Comparison between best-value detectors and derived detectors for hangs

Figure 31: Comparison between best value detectors and derived detectors for manifested errors

FSV - the coverage of the derived detectors is between 40% (print_tokens2) and 85%

(tot_info) of the coverage that can be achieved by the best-value detectors (Figure 29).

Comparison with Best-Value Detectors (Manifested Errors)

0
20
40
60
80

100

replace schedule schedule2 print_tokens print_tokens2 tot_info
Benchmark

Percentage

Derived
Best-Value

84

Hangs - the coverage of the derived detectors is between 50% (tot_info) and 100%

(schedule2, print_tokens2) of the coverage of the best-value detectors. (Figure 30).

Manifested errors - the coverage of the derived detectors is between 70% (replace) and

90% (print_tokens2) of the coverage that can be achieved by the best data detectors

(Figure 31)

We examine the reasons for the difference in coverage between the best-value and

derived detectors as follows:

 The best-value detectors are tailored for each input (based on the golden run of

the application for the input) and have 100% knowledge of the application

execution for that input. The derived detectors must work across inputs, or they

will have an increased false-positive rate. One way to address this problem is to

design detectors that are functions of the input or are based on input

characteristics;

 The best-value detectors store the entire history of values observed at the

detector„s location for that variable in the golden run and can check the value of

the variable in the actual run against the value observed in the golden run. The

derived detectors, store only the current and previous value of the variable, and

use a generic rule and exception condition to check for an error. Thus, increasing

the amount of historical information stored in the detector can increase its

coverage.

85

 The derived detectors have much lower coverage compared to the best-value

detectors, with respect to fail-silent violations. This is because the derived

detectors are general across program inputs, whereas the best-value detectors are

specialized for specific inputs. The coverage for crashes however, is not impacted

by the generality of the detector, as typically crashes are caused due to corruptions

of data values that are illegal or invalid across all inputs. However, the coverage

for a fail-silent violation may be affected as a value that is illegal for one input

may be valid for another input, but lead to the program printing the wrong output.

As pointed out earlier, the coverage for FSVs can be improved by making the

detectors a function of the program‟s inputs. This is a subject of future

investigation.

3.8 HARDWARE IMPLEMENTATION RESULTS

The proposed design of the DLX processor, the RSE Interface and the Error Detector

Modules for different applications were synthesized using Xilinx ISE 7.1 tools targeting a

Xilinx Virtex-E FPGA. The Xilinx Virtex series of FPGAs consists mainly of several

type of logic cells: (1) 4-input Look-Up Tables (LUTs) statically programmed during the

bootstrap with the configuration bit-stream, (2) flip-flops (FFs), storage elements in the

user visible system state, and (3) Block RAM (BRAMs), which are memory blocks that

can store up to 4096 bits. Four LUTs and four FFs compose a logic unit called Slice.

86

Area and Clock Period Overhead - Table 11 reports the synthesis results in terms of

area (i.e., FFs, LUTs, BRAM and total Slices) and minimum clock frequency, for the

reference DLX processor and the complete RSE Interface.

Table 11: Area and timing results for the DLX processor and the RSE Framework

 FFs LUTs BRAMs Slices

Clock
Period
[ns]

DLX processor 4873 16395 0 9526 58.8

Complete RSE Interface 2465 2329 0 1420 2.01

The synthesis results (in terms of area and minimum clock period for different

configurations show that, for different workloads, the number of slices required for the

implementation of the Error Detector modules ranges between 2685 and 2915, while the

number of additional BRAMs is 9. The area overhead (with respect to the single

superscalar DLX processor) of the single EDM is about 30%, while the area overhead of

the complete (including the RSE Interface and the Error Detector module) is about 45%.

Performance Overhead - A measure of the performance overhead is given by the

formula:

Overhead = [Extra Clock Cycles * (TCK, with ED - TCK, without EDM)] / (Total Clock Cycles *

TCK, without EDM)

where Twith EDM and Twithout EDM are the total execution times with and without Error

Detector module respectively, Extra clock cycles is the number of additional clock cycles

required to execute the code instrumented with the CHECK instructions, TCK with ED and

TCK without ED are the minimum clock period of the overall system with and without the

Error Detector module, respectively. In our implementation each CHECK instruction is

87

assumed to load 32 bits and hence 6 CHECK instructions are used for loading a single

detector. Due to space constraints, we do not report the results for all the workloads, but

we report only the workload with the largest time overhead, i.e., schedule2. The number

of extra clock cycle is 594, while the total number of clock cycles is nearly 1 million, TCK

with ED is 58.82 ns and TCK without ED is 55.55 ns. Plugging these numbers in the time

overhead formula, we found out that the total execution overhead for the detectors is

about 5.6%.

3.9 RELATED WORK

Broadly, error detection techniques can be classified based on two criteria:

(1) How the detectors are derived (static or dynamic) and,

 (2) How the checking is performed (static or dynamic)

These lead to 4 categories of detectors that span the spectrum of purely static techniques

(e.g. Prefix [52], CCured [60], LCLint [53], Engler et al. [61] to purely dynamic

techniques (e.g. DIDUCE [62], Maxion et al.[63]). This categorization also includes

hybrid techniques in which the detectors are derived statically and checked dynamically

(Voas et al.[57], Zenha-Rela et al. [64] and Hiller et al.[56]) and those in which the

detectors are derived dynamically but checked statically (for example, DAIKON [43]).

These techniques are described in Table 12.

88

Table 12: Descriptions of related techniques and tools

Technique Description Drawbacks

Prefix [52]
Uses symbolic execution through selected paths
in a program to find known kinds of errors (e.g.

NULL pointer dereferences)

1. Requires programmer to write annotations in the
source code

2. High false-positive rate due to infeasible paths

C-Cured [60]

Verifies that points do not write outside their

intended memory objects, thereby ensuring

memory safety

1. Protects only against errors that violate memory

safety – does not protect computation errors
2. Does not handle hardware errors or errors

originating in unverified code.

LCLINT [53]

Checks if a program conforms to its

specification and if it adheres to predefined
programming rules

1. Requires programmer to provide specifications or
write annotations in code

2. Only finds those errors that violate the predefined

rules

Engler et al. [61]

Analyzes source files to find application-

specific programming patterns and identifies
violation of the discovered patterns as bugs

1. May incur false-positives i.e. the violation of the
pattern may not necessarily be a bug.

2. Does not handle runtime errors or hardware faults

– coverage limited to pattern violations

DAIKON [43]
Infers invariants from dynamic execution of

program based on representative training inputs

1. Does not take placement of detectors into account

- program may crash before the execution reaches

the detector location.
2. Requires programmer intervention to filter out

real bugs from false identifications

Voas et al. [57]

Considers a general methodology to embed

detectors in programs to detect errors.
Characterizes properties of good detectors.

1. Does not consider how to derive the detectors

2. Detector placement methodology relies heavily
on programmer‟s knowledge of application.

Zenha-Rela et al.
[64]

Evaluates the coverage provided by existing

assertions in a program vis-à-vis control-flow
error detection techniques and algorithm-based

fault-tolerance

Does not consider deriving or embedding assertions

in a program. Assume that assertions have already
been inserted by programmer.

Hiller et al. [56]

Places error detectors in an embedded system
to detect data errors. Consider different classes

of detectors based on properties of the signals

in an embedded system and the detectors are
placed in the system to maximize the coverage

1. Programmer needs to specify class and
parameters of each detector - detector derivation is

not automated.

2. Detector placement based on extensive fault-
injections, which are time-consuming

DIDUCE [62]

Uses software anomaly detection to locate

corner cases and find bugs. Formulates strict

hypothesis about program behavior in
beginning and gradually relaxes them as

program executes to learn new behavior.

1. Program may crash before reaching detector

point, and the error will not be detected

2. Does not address errors that occur when
invariants are being learned (at the beginning of

program execution)

Maxion et al. [63]
Characterize the generic space of anomaly
detectors for embedded applications.

Do not define specific types of error detectors or
how they are derived from the application.

We published this work in the European Conference on Dependable Systems (EDCC)

[27]. Since then three papers have been published based on the idea of using dynamically

derived program invariants for runtime error detection. These papers use online or offline

profiling of the program to build value-based invariants, and use special hardware to

check the invariants at runtime. Racunas et al. [65] and Dimitrov and Zhou [66] consider

detection of transient errors (similar to our technique), while Sahoo et al. [67] consider

detection of permanent hardware errors. These techniques are considered in this section.

89

3.9.1 Perturbation-based Fault Screening

Perturbation-based fault screening detects deviations in the valid value spaces of static

instructions in a program [65]. They define an instruction‟s valid space as “the set of

result values that could be produced in the next dynamic instance of the instruction

without being consistent with the current application state” [65]. A fault-screener is a

mechanism to detect perturbations. This is similar to our notion of a detector, with the

difference that we focus on selected critical variables (and the static instructions that

compute them), whereas [65] considers all static instructions in the program. The fault-

screeners considered in [65] are as follows:

1) Extended History Scanner: Keeps track of the set of values that a variable can

assume. This is similar to the Multi-Value detector class in Table 6.

2) Dynamic Range Scanner: Checks if a value belongs to one or more range sets.

This is a generalization of the BoundedRange class in Table 6.

3) Invariance Based Scanner: This checks if specific bits of a value are constant.

This is a generalization of the Constant class in Table 6.

The other two fault-scanners considered in [65], namely TLB-based scanner and Bloom

filter scanner have no corresponding representation in our technique.

The main difference between our technique and the one in [65] is that we employ

detectors learned from multiple runs of the program over different inputs. The learning

algorithm is performed offline and the invariants learned are inserted as detectors in the

code. The technique in [28] on the other hand, learns the invariants while the program is

90

executing and detects violations of the invariants as errors. This involves running the

learning algorithm online, and extensive hardware support is required to keep the

performance overheads low. Further, the fault-screeners are specific to a single execution

of the application, and are discarded at the end of the execution. Our detectors on the

other hand, are general across application inputs and are persistent across multiple

executions. This allows them to detect errors even during the startup phase of the

application, before the invariants are established. Finally, while a direct comparison of

coverage between the two techniques is not possible (due to differences in the

experimental techniques used), our technique detects between 50 to 75 % of manifested

errors in an application, while the technique in [65] detects between 25 % and 60 % of

manifested errors.

3.9.2 Limited Variance in Data Values (LVDV)

This technique uses hardware support to track program invariants at run-time, and uses

the learned information to detect both hardware transient errors and selected software

bugs [66]. The invariant considered in the paper is a value-based invariant known as

“limited variance in data values (LVDV)”. This capitalizes on the observation that in a

typical, error-free execution of the program, multiple instances of a static instruction

differ only a small extent in the result bits [66]. Any large-scale deviation in the result

bits is attributed to either a soft error (caused by radiation) or a software bug (introduced

by the application developer).

91

The paper uses a hardware cache called an LVDV table to store the invariant bits of an

instruction‟s result [66]. The structure is tagged with the instruction‟s address and is

referenced during every cycle with the program counter (PC) of an instruction. The

LVDV table is similar to the detector table in our technique, with the difference that the

detector table is stored separately from the main processor, and is accessed using special

CHECK instructions.

The LVDV technique operates in two modes – soft-error protection and software bug

detection. For soft error protection, the invariants are learned on the fly during the initial

phase of the program‟s execution and are used for detection in the subsequent phases.

The main problem with this technique is that the program may experience errors in the

initial phase or may exhibit substantially different behavior in later phases compared to

the initial phase. The former may result in false-negatives and the latter may result in

false-positives. In the software bug detection mode, the invariants learned during an

execution of the program are reused during another execution. This identifies unusual or

corner cases in programs, where bugs are likely to congregate. The goal of the LVDV

technique is to present the violated invariants to the programmer, who can then make a

judgment about whether the violation was due to a software error. However, this may

result in both error-propagation (as the program is not stopped due to the error) as well as

false-positives (as a large deviation in a value need not signify a software bug).

92

3.9.3 Software Anomaly Treatment (SWAT)

The SWAT technique detects permanent hardware errors by monitoring software for

anomalies or symptoms [67]. Examples of symptoms include high activity in the

operating system and fatal traps executed by the application. In addition, SWAT uses

program-level invariants inserted by the compiler to detect residual errors that do not

manifest as symptoms [30]. The invariants are derived by executing the program over

multiple inputs and collecting dynamic traces. The traces are then analyzed offline to

extract invariants on data values in the program. The only kinds of invariants considered

in [67] are range-based, i.e. check if a value lies within a range.

Of the techniques considered in this section, the SWAT technique is closest to our

work [67]. Both techniques use an offline process to derive error detectors based on

dynamic execution traces of the application. The main difference between SWAT and our

technique is that SWAT targets permanent hardware errors whereas we target transient

hardware and software errors. Examples of permanent errors include stuck-at-faults in the

decode unit or latch outputs of the integer ALU. These errors typically cause corruptions

of values in multiple instructions and are consequently easier to detect than transient

errors. However, false-positives present a much more severe problem as a permanent

error will not disappear upon re-execution and SWAT uses diagnosis mechanisms to deal

with false-positives. Table 13 summarizes the other differences between the techniques.

93

Table 13: Comparison of our technique with SWAT

Category Our Technique SWAT

Detector Locations Focuses on critical locations where detection
coverage is likely to be highest

Focuses on values stored to memory as
these have high potential to catch faults

Detector Types Considers six different classes of detectors and eight

different exception classes (48 in all)

Considers only single detector type

encompassing value ranges of variables

Detector Derivation Based on a probability model to choose the detector
and exception class

None required as only a single detector type
is considered

Hardware/Compiler

support

No compiler support required as we insert detectors

into the program binary

Hardware support in the form of reconfigurable
monitor on the same die

Compiler support for inserting invariants in

the program as checking code.

Hardware support for error detection,
diagnosis and recovery in firmware

Benchmarks and

Experimental
Methodology

Siemens suite (100 to 1000 lines of C) SpecInt 2K (> 10000 lines of C code)

Enhanced Simplescalar simulator for coverage

evaluation and synthesis on FPGA hardware for
performance evaluation

Virtutechs Simics full system simulator

augmented with the Wisconsin GEMS
timing models for both coverage and

performance evaluation

Detection Coverage 50 to 75 % coverage for all manifested errors in the

program

33 % coverage for errors that propagate to

software and cause failures

Training Set/False-

Positives

Train with 200 inputs, test with 1000 inputs

False positive rate is about 2 %

Train with 12 inputs, unclear how many

inputs used for testing

False positive rate is less than 5 %

3.10 CONCLUSIONS

This chapter proposed a novel technique for preventing a wide range of data errors from

corrupting the execution of a generic application. This technique consists of an automated

methodology to derive fine-grained, application-specific error detectors by an algorithm

based on dynamic traces of application execution. A set of error detector classes,

parameters and locations, are derived in order to maximize the error detection coverage

for a target application. The chapter also presents an automatic framework for

synthesizing the detectors in hardware to enable low-overhead run-time checking of the

application execution. The coverage of the derived detectors is evaluated using fault-

injections and the hardware implementation of the detectors is synthesized to obtain area

and performance overheads.

94

CHAPTER 4 STATIC DERIVATION OF ERROR

DETECTORS

4.1 INTRODUCTION

This chapter presents a methodology to derive error detectors for an application based on

compiler (static) analysis. The derived detectors protect the application from data errors.

A data error is defined as a divergence in the data values used in the application from an

error-free run of the program. Data errors can result from incorrect computation and

would not be caught by generic techniques such as ECC in memory. They can also arise

due to software defects (bugs).

In the past, static analysis [53]and dynamic analysis [43] approaches have been proposed

to find bugs in programs. These approaches have proven effective in finding known kinds

of errors prior to deployment of the application in an operational environment. However,

studies have shown that the kinds of errors encountered by applications in operational

settings are often subtle errors (such as in timing and synchronization)[6], which are not

caught by static and dynamic methods.

Furthermore, programs upon encountering an error, may execute for billions of cycles

before crashing (if they crash)[14], during which time the error may propagate to

permanent state[38]. In order to detect runtime errors, we need mechanisms that can

provide high-coverage, low-latency error detection to preempt uncontrolled system crash

95

or hang and prevent error propagation that can lead to state corruption. This is the focus

of this chapter.

Duplication has traditionally been used to provide high-coverage at runtime for software

errors and hardware-errors [9]. However, in order to prevent error-propagation and

preempt crashes, a comparison needs to be performed after every instruction, which in

turn results in high performance overhead. Therefore, duplication techniques compare the

results of replicated instructions at selected program points such as stores to memory [68,

69]. While this reduces the performance overhead of duplication, it sacrifices coverage as

the program may crash before reaching the comparison point. Further, duplication-based

techniques detect all errors that manifest in instructions and data. It has been found that

less than 50% of these errors typically result in application failure (crash, hang or

incorrect output) [70]. Therefore, more than 50% of the errors detected by duplication

(benign errors) are wasteful.

The main contribution of this chapter is an approach to derive runtime error detectors

based on application properties extracted using static analysis. The derived detectors

preempt crashes and provide high-coverage in detecting errors that result in application

failures. The coverage of the derived detectors is evaluated using fault-injection

experiments. The key findings are as follows:

1. The derived detectors detect around 75% of errors that propagate and cause

crashes. The percentage of benign errors detected is less than 3%.

96

2. The average performance overhead of the derived detectors across 14 benchmark

applications is 33% (with hardware support for path-tracking).

3. The detectors can be implemented using a combination of software and

programmable hardware.

4.2 RELATED WORK

This section considers related work on locating software bugs using static and dynamic

analysis as well as on runtime detection of hardware and software errors.

4.2.1 Static Analysis Techniques

A multitude of techniques have been proposed to find bugs in programs based on static

analysis of the application‟s source code [52, 53, 71, 72]. These techniques validate the

program based on a well-understood fault model, usually specified based on common

programming errors (e.g. NULL pointer dereferences). The techniques attempt to locate

errors across all feasible paths in the program (a program path that corresponds to an

actual execution of the program). Determining feasible paths is known to be an

impossible problem in the general case. Therefore, these techniques make approximations

that result in the creation of spurious paths, which are never executed. This in turn can

result in the approach finding errors that will never occur in a real execution, leading to

false detections.

Consider for example, the code fragment in Figure 32. In the code, the pointer str is

initialized to NULL and the pointer src is initialized to a constant string. The length of

97

the string src is computed in a while loop. If the computed length is greater than zero, a

new buffer of that length is allocated on the heap and the stored in the pointer pointed to

by str. Finally, the string pointed to by the pointer src is copied into the buffer pointed to

by the pointer str.

int size = 0;

char* str = NULL;
char* src = “A String”;

while (src[size]!=‟\0‟)

 ++size;
if (size>0) {

 str = malloc(size+1);

}
strcpy(str,src size);

Figure 32: Example code fragment to illustrate feasible path problem faced by static analysis tools

Consider a static analysis tool that checks for NULL pointer dereferences. In the above

program, the tool needs to resolve whether the value of str is NULL before the strcpy

statement. For str to be NULL, the then branch of the if statement should not be executed,

which in turn means that the predicate in the if statement, namely (size>0) should be

false. The value of size is initialized to zero outside the while loop and incremented inside

the loop. The tool needs to statically evaluate the while loop in order to conclude that the

value of size cannot be zero after execution of the loop and before the if predicate
11

.

Many static analysis tools would not perform such an evaluation in the interest of

scalability. In fact, the evaluation of the loop may not even terminate in the general case

(although in this example, it would terminate since the string is a constant string).

Therefore the tool would report a potential NULL pointer dereference of str in the call to

strcpy.

11 In this example, it is enough to evaluate one iteration of the loop to arrive at the conclusion that size cannot be zero. But in the
general case, it may be necessary to evaluate the entire loop.

98

The problem arises because the control path in which the then part of the if statement is

not executed does not correspond to a real execution of the program. However, the static

analysis tool does not have enough resolution to determine this information and

consequently over-approximates the set of feasible paths in the program.

In the general case it is impossible for a static analysis tool to resolve all feasible paths in

the program. In practice different static analysis tools provide varying degrees of

approximations to handle the feasible path problem. We consider examples of four static

analysis tools as follows:

LCLINT performs data-flow analysis to find common programming errors in C

programs [53]. The analysis is coarse-grained and approximates branch predicates to be

both true and false, effectively considering all paths as feasible. LCLINT may produce

many spurious warnings and requires programmer annotations to suppress such warnings.

ESP also uses data-flow analysis to determine if the program satisfies a given temporal

property [71]. However, the dataflow analysis is path-sensitive and takes into account

specific execution paths in the program. In order to perform exact verification, any

branch in the program that affects the property being verified must be modeled. The main

approximation made by ESP is that it is sufficient to model those branches along which

the property being verified differs on both sides of the branch. ESP is able to correctly

identify feasible paths when two branches are controlled by the same predicate, or when

one branch predicate implies another. However, for more complex branch predicates,

ESP relies on programmer supplied annotations to resolve feasible paths in the program.

99

Prefix avoids the feasible path problem by performing symbolic simulation of the

program as opposed to data-flow analysis [52]. The Prefix tool follows each path through

a function and keeps track of the exact state of the program along that path. In order to

keep the simulation tractable, only a fixed number of paths are explored in each function

(typically 50). The main approximation made by Prefix is that the incremental benefit of

finding more defects as the number of paths increases is small. It is unclear if the

assumption holds for operational defects that may manifest along infrequently executed

paths in the program.

SLAM is a model checking tool developed at Microsoft to verify properties of device

drivers [72]. SLAM uses a technique known as predicate abstraction[73] to prune

infeasible paths in the program. Given a C program, SLAM produces an equivalent

boolean program in which all predicates are approximated as Boolean variables. In a

Boolean program, there exist only a finite number of values that the predicates can

assume, as opposed to potentially infinite values in the original program. Hence, it is

easier to find feasible paths in the Boolean program than in the original program. The

main problem is that a feasible path in the Boolean program need not correspond to a

feasible path in the original program, and this can result in false-positives.

4.2.2 Dynamic Invariant Deduction

These techniques derive code-specific invariants based on dynamic characteristics of the

application. An example of a system that uses this technique is DAIKON [43], which

derives code invariants such as the constancy of variables, boundedness of a variable‟s

100

range, linear relationships among sets of program variables and inequalities involving

two or more program variables. DAIKON‟s primary purpose is to present the invariants

to programmers, who can validate them based on their mental model of the application.

The invariants are derived based on the execution of the application with a representative

set of inputs, called the training set. Inputs that are not in this set may result in the

invariants being violated even when there is no error in the application (false-positives).

In order to avoid false-positives during application deployment in operational settings,

the training set must well represent the application‟s execution in operational settings.

DAIKON derives invariants at entries and exits of procedures in the program. The

assumption is that invariants represented as function pre-conditions and post-conditions

are more useful to the programmer in finding bugs in the application. This limits the use

of the generated invariants as assertions for error-detection, since the program may crash

before reaching the assertions inserted by DAIKON.

A recent study uses DAIKON to infer data-structure invariants and repair data structures

at runtime [74]. The idea is to infer constraints about commonly used data-structures in

the program and monitor the data structure with respect to these constraints at runtime. If

a constraint violation is detected, the data-structure is “repaired” to satisfy the constraint.

The repaired data-structure may or may not be the same as the original data-structure, and

hence the program may produce incorrect output after the repair (although it continues

without crashing). In general, however, continuing to execute the program after an error

has been detected can lead to harmful consequences. Further, the technique described in

[74] considers only errors in the program data structure being monitored. It is intriguing

101

to analyze how the technique can be extended to detect general faults in the application‟s

data. To detect general faults, the fault must propagate to the data-structure‟s fields and

violate one or more of the derived invariants for the data-structure. Our experience

indicates that it is more likely that the application crashes due to a general error in its

data, than for the error to propagate to specific locations in the program‟s data, unless the

locations are chosen taking error propagation into consideration. This observation forms

the basis for our detector placement technique in Chapter 2.

DIDUCE [62] is a dynamic invariant detection approach that uses invariants learned

during an early phase of the program‟s execution (training phase) to detect errors in

subsequent phases of the execution. The main assumption made by DIDUCE is that

invariants learned during the training phase well represent the entire application‟s

execution. It is unclear if this assumption holds in practice, especially for applications

that exhibit phased behavior
12

. Further, when DIDUCE detects an invariant violation it

does not stop the program but saves the program state for reporting back to the user, so

that spurious invariant violations

do not stop program execution

13
. This is useful from the

point of view of debugging operational failures, but not from the point of view of

providing online error-detection (and hence recovery) for applications.

12 Application behavior varies in phases during program execution
13.The DIDUCE paper does not present the percentage of spurious invariants found by the tool.

102

4.2.3 Rule-based Detectors

Rule-based detectors detect errors by checking whether the application satisfies

predefined properties specified as rules. The checking can be done either statically at

compile-time or dynamically at runtime.

Dynamic Rule-based detectors: Hiller et al. [56] provide rule-based templates to the

programmer for specifying runtime error detectors for embedded applications. Examples

of rules include a variable being constant, a variable belonging to a range and a

monotonically increasing variable increasing by a bounded amount. However, the

programmer needs to choose the right templates as well as the template parameters based

on their understanding of the application semantics. In a companion paper, Hiller et al.

[40] describe an automated methodology to place detectors in order to maximize error

detection coverage. The method places detectors on executable paths in the application

that have the highest probability of error propagation. Fault-injections into the application

data are used to measure the error propagation probabilities along application paths.

While the above technique is useful if the programmer has extensive knowledge of the

applications and fault-injections can be performed, it is desirable to derive and place

detectors without requiring such knowledge and without requiring fault-injections.

Static Rule-based detectors: Engler et al. [61] also use rule-based templates to find bugs

in programs. The main differences are (1) The rules learned are based on commonly

occurring patterns in the application source code rather than being specified by the

programmer and (2) The rules are checked at compile-time rather than at runtime.

Violations of the learned rules are considered as program bugs. The main assumption

103

here is that programmers follow implicit rules in writing code that are not often

documented, and a violation of such rules represents a program error. Static analysis of

the application is used to extract the rules and statistical analysis is used to determine if a

rule is significant from the point of view of error detection. The technique has been used

to find errors and vulnerabilities in the Linux and BSD operating system kernels. Li et al.

[75] extend the ideas presented in Engler et al.[61] to extract programming rules using a

data-mining technique called frequent item-set mining. Their system, PR-Miner, extracts

implicit programming rules based on static analysis of the application without requiring

rule-based templates. The rules are extracted from localized code sections (such as

functions) and applied to the entire code base. Violations of the rules are reported as

bugs. The technique has been applied to large code-bases including Apache and MySQL,

in addition to the Linux kernel.

Static rule-based techniques are useful for finding common programming errors such as

copy-and-paste errors [75] or an error due to the programmer forgetting to perform an

operation, such as releasing locks [61]. It is unclear if they can be used for detecting more

subtle errors that occur in well-tested code, such as timing and synchronization errors, as

these errors may not be easily localized to particular code sections[7]. Further, these

techniques have large false-positive rates i.e. many errors do not correspond to real bugs.

This leads to false detections and the programmer needs to filter out the real detections

from the false ones.

104

4.2.4 Full Duplication Techniques

Duplication has traditionally been used to provide high-coverage at runtime for both

software errors and hardware-errors [9]. Duplication based approaches are useful for

protecting a system from transient hardware faults. However, they offer limited

protection from software errors and permanent hardware faults. This is because both the

original program and the duplicated program can suffer from common mode failures.

Further, full duplication techniques result in the detection of many errors that have no

impact on the application (benign errors)[70]. This constitutes a wasteful detection (and

consequent recovery) from the application‟s viewpoint.

Duplication can be performed either in software or in hardware.

Software-based duplication approaches replicate the program at the source-level [45],

instruction level [68] or at the compiler intermediate code level [69]. In order to prevent

error-propagation and preempt crashes, software-based approaches must compare the

duplicated programs after every instruction. However, such a comparison results in high

performance overhead (2x-3x) [45]. Therefore, software duplication approaches perform

the comparison only at certain instructions such as stores and branches[68, 69] in the

program. This results in less than 100% coverage as the program may crash before

reaching the comparison point. Even with this optimization, software-based duplication

incurs relatively high performance overhead (60-90%).

Hardware-based duplication approaches such as those used in IBM G5 processors [10]

execute redundant copies of each instructions transparent to the application and compare

105

the results of the execution using special-purpose hardware. These techniques reduce the

performance overhead of duplication, but have significant hardware design complexity

and area overheads (30-35%)[10]. Simultaneous redundant-threading [76] is a hardware-

based replication technique in which identical copies of the application are executed as

independent threads in a Simultaneous Multithreaded (SMT) processor. Slipstream

processors[77] explores a similar idea in the context of Chip Multiprocessor (CMP)

systems. These techniques mask the performance overhead of replication by loose

coupling among the redundant threads executing multiple copies of the same program,

but lead to inefficient use of processor resources.

4.2.5 Diverse Execution Techniques

Diverse execution techniques can detect common mode failures that occur during

duplication. Diversity can be implemented at multiple levels as considered by the

following techniques:

N-version programming (NVP) is a design diversity technique [78] in which two or

more versions of the same program are implemented by independent development teams.

The versions are executed simultaneously and the results of their execution compared.

The assumption made by NVP is that the versions produced by the independent teams

suffer from different kinds of errors and hence an error in any one version of the software

will be masked. However, Knight and Leveson [79] show that in practice, even

106

independently produced versions of the software are likely to exhibit similar failures
14

.

Further, NVP requires a tremendous cost in programmer time and resources in order to

produce software versions that are truly independent. This limits the applicability of NVP

to mission-critical systems rather than systems built with COTS (Commercial-Off-the-

Shelf) components.

Data Diversity [80] is a variant of NVP in which a single version of the software is

executed twice with minor changes in its inputs. The assumption is that software

sometimes fails for certain values in its input space and by performing minor

perturbations in the input values, it is possible to mask the failure while producing

acceptable output. Data diversity can provide protection from both software errors as well

as hardware errors (transient and permanent). The data diversity technique has been

applied to certain classes of systems such as real-time control systems in which minor

changes in the inputs produce acceptable outputs from the application semantics point of

view. However in general-purpose applications, it may be unacceptable to perform minor

perturbations in input values as these perturbations can result in totally different output

values (or even in application failure). This may be unacceptable for the application.

ED4I [81] is a software-based diversity technique which transforms the original program

into one in which each data operand is multiplied by a constant value k. The value of k is

determined empirically to maximize the error-detection coverage based on the usage

profiles of processor functional units during program execution. The original program

14 Although the errors made by the teams may be different, the error manifestations are similar.

107

and the transformed program are both executed on the same processor and the results are

compared. A mismatch indicates an error in the program. Since the transformed program

operates on a different set of data operands than the original program, it is able to mask

certain kinds of errors in processor functional units and memory (both transient and

permanent). However, the technique cannot detect software errors that result in incorrect

computation of data values in both the original program and the transformed program.

This is because diversity is introduced in the data values but not in the instructions that

compute the data values.

TRUMP [82] is a diversity technique that uses AN-codes [83] for error detection. Similar

to ED4I, TRUMP multiplies each value used in the program by a constant to produce a

transformed program. However, instead of comparing the value produced by the original

program and the transformed program, TRUMP checks if the data value in the

transformed program is divisible by the constant. If this is not the case, then TRUMP

concludes that either the original program value or the transformed program value

suffered an error. TRUMP also suffers from the same disadvantage of ED4I, namely, that

it cannot detect software errors that result in common mode failures between the original

program and the transformed program.

4.2.6 Runtime Error Detection Techniques

Runtime techniques have been proposed to detect errors during program execution. These

techniques detect specific kinds of errors such as memory safety violations [22, 24, 84],

108

race conditions [85], control-flow errors [86-88] and synchronization errors [89, 90].

None of these techniques however, can detect general errors in the program.

The runtime error detection techniques considered in the literature are as follows:

Memory Safety Checking techniques check every program store that is performed

through a pointer (at runtime) to ensure that the write is within the allowed bounds of the

pointer[22, 24, 84]. The techniques are effective for detecting common problems due to

buffer overflows and dangling pointer errors. It is unclear whether they are effective in

detecting random errors that arise due to incorrect computation unless such an error

results in a pointer writing outside its allowed bounds. The techniques also requires

checking every memory write, and this can result in prohibitive performance overheads

(5x-6x)[22]. Smart compile time tricks can reduce the overhead [84], but rely on complex

compiler transformations such as automatic pool-allocation [91] .

Race Detection techniques such as Eraser [85] check for race conditions in a multi-

threaded program. A race condition occurs when a shared variable is accessed without

explicit and appropriate synchronization. A race condition is only one instance of a fault-

class broadly referred to as timing errors. Timing errors can result in corruption of data

values used in the program and cause the program to produce incorrect outputs. The

Eraser technique checks for races in lock-based programs by dynamically monitoring

lock acquisitions and releases. The technique associates lock sets with each shared

variable and dynamically learns these associations during the program‟s execution. An

109

error is flagged when the lockset is violated. It is unclear how representative are lock set

violations of generic timing errors in the program.

Control-flow checking techniques ensure that a program‟s statically derived control-

flow is preserved during its execution [86-88]. This is achieved by adding checks on the

targets of jump instructions and at entries and exits of basic blocks. However, fault-

injection experiments (at the hardware level) have shown that only 33% of the manifested

errors result in violations of program control-flow [92] and can hence be detected by

control-flow checking techniques.

Runtime-verification techniques attempt to bridge the gap between formal techniques

such as model checking and runtime checking techniques. These techniques verify

whether the program violates a programmer-specified safety property [89, 90] by

constructing a model of the program and checking the model based on the actual program

execution. The properties checked usually represent synchronization and timing errors in

the program. However if there is a general error in the program, there is no guarantee that

the program will reach the check before crashing. Therefore, it is unclear if the

techniques provide useful runtime coverage for random hardware or software errors.

4.2.7 Executable Assertions

The only general way to detect runtime-errors is for the programmer to put assertions in

the code, as demonstrated in [54, 93]. Rela et al. [64] evaluate the coverage provided by

programmer-specified assertions in combination with control-flow checking and

110

Algorithm-Based Fault-Tolerance (ABFT)[94]. They find that assertions can significantly

complement the coverage provided by ABFT and control-flow checking.

Leveson et al. [55] compare the error detection capabilities of self-checks (assertions) and

diversity-based duplication techniques. They find that (1) Self-checks provide an order of

magnitude higher error-detection coverage than diversity-based duplication, (2) For self-

checks to be effective in detecting errors, they must be placed at appropriate locations in

the application‟s code and (3) Self-checks derived from analysis of the application code

(by the developer) are much more effective at detecting errors than those derived based

on program specifications alone.

The detectors derived in this chapter can be considered as executable assertions that are

derived automatically based on analysis of the application code (without programmer

intervention) and placed at strategic locations to minimize error propagation. The

detectors can be implemented both in hardware and in software.

4.2.8 Summary

The static techniques we have discussed are geared towards detecting errors at compile-

time, while the dynamic analysis techniques are geared towards providing feedback to the

programmer for bug finding. Both these types are fault-avoidance techniques (fault is

removed before the program is operational) [95]. Despite the existence of these

techniques and rigorous program testing, subtle but important errors such as timing errors

persist in a program [6, 7].

111

Runtime-error detection techniques are geared towards addressing subtle software errors

and also hardware errors. As we have already seen, full reication can detect many of

these errors; but not only does it incur significant performance overheads, it also results

in a large number of benign error detections that have no impact on the application[70].

Thus, there is a need for a technique that takes advantage of application characteristics

and detects arbitrary errors at runtime without incurring the overheads of replication.

The question that we attempt to answer in this chapter is as follows: Is it possible to

derive runtime error (attack) detectors based on application properties to minimize the

detection latency and preempt application failures (compromise)? This is crucial for

performing rapid recovery upon application failure as shown in [8].

4.3 APPROACH

This section presents an overview of the error detector derivation approach.

4.3.1 Terms and Definitions

Backward Program Slice of a variable at a program location is defined as the set of all

program statements/instructions that can affect the value of the variable at that program

location[96].

Critical variable: A program variable that exhibits high sensitivity to random data errors

in the application is a critical variable. Placing checks on critical variables can achieve

high detection coverage.

112

Checking expression: A checking expression is an optimized sequence of instructions

that recompute the critical variable. It is computed from the backward slice of the critical

variable for a specific acyclic control path in the program.

Detector: The set of all checking expressions for a critical variable, one for each acyclic,

intra-procedural control path in the program.

4.3.2 Steps in Detector Derivation

The main steps in error detector derivation are as follows:

A. Identification of critical variables. The critical variables are identified based on an

analysis of the dynamic execution of the program. The application is executed with

representative inputs to obtain its dynamic execution profile, which is used to choose

critical variables for detector placement. Critical variables are variables with the highest

dynamic fanouts in the program, as errors in these variables are likely to propagate to

many locations in the program and cause program failure. This approach was presented in

[17], where it was shown to provide up to 85% coverage with 10 critical variables in the

entire program. However, in this chapter, critical variables are chosen on a per-function

basis in the program i.e. each function in the program is considered separately to identify

critical variables in the function. This is because we consider intra-procedural slices for

extracting backward slices (as explained below).

B. Computation of backward slice of critical variables. A backward traversal of the

static dependence graph of the program is performed starting from the instruction that

computes the value of the critical variable going back to the beginning of the function.

113

The slice is specialized for each acyclic control path that reaches the computation of the

critical variable from the top of the function. The slicing algorithm used is a static slicing

technique that considers all possible dependences between instructions in the program

regardless of program inputs (based on source language semantics). Hence, the slice will

be a superset of the actual dependencies during a valid execution of the program.

C. Check derivation, insertion, instrumentation.

 Check derivation: The specialized backward slice for each control path is optimized

considering only the instructions on the corresponding path, to form the checking

expression.

 Check insertion: The checking expression is inserted in the program immediately

after the computation of the critical variable.

 Instrumentation: Program is instrumented to track control-paths followed at runtime

in order to choose the checking expression for that specific control path.

D. Runtime checking in hardware and software. The control path followed is tracked

(by the inserted instrumentation) in hardware at runtime. The path-specific inserted

checks are executed at appropriate points in the execution depending on the control path

followed at runtime. The checks recompute the value of the critical variable for the

runtime control path. The recomputed value is compared with the original value

computed by the main program. In case of a mismatch, the original program is stopped

and recovery is initiated.

There are two main sources of runtime performance overhead for the detector:

114

(1) Path Tracking: The overhead of tracking paths is significant (4x) when done in

software
15

. Therefore, a prototype implementation of path tracking is performed in

hardware. This hardware is integrated with the Reliability and Security Engine

(RSE)[1]. RSE is a hardware framework that provides a plug-and-play environment

for including modules that can perform a variety of checking and monitoring tasks in

the processor‟s data-path. The path-tracking engine is implemented as a module in the

RSE.

(2) Checking: In order to further reduce the performance overhead, the check execution

itself can be moved to hardware. This would involve implementing the checking

expressions directly in the RSE and compiling them to Field-Programmable Gate

Arrays (FPGAs). This is an area of future investigation.

4.3.3 Example of Derived Detectors

The derived detectors are illustrated using a simplified example of an if-then-else

statement in Figure 33. A more realistic example is presented in Section 4.4. In the

figure, the original code is shown in the left and the checking code added is shown in the

right. Assume that the detector placement analysis procedure has identified f as one of the

critical variables that need to be checked before its use in the following basic block. For

simplicity, only the instructions in the backward slice of variable f are shown in Figure

33.

15 Based on a previous software-only evaluation of the technique

115

Figure 33: Example code fragment with detectors inserted

There are two paths in the program slice of f, corresponding to each of the two branches.

The instructions on each path can be optimized to yield a concise expression that checks

the value of f along that path (shown in yellow in Figure 33). In the case of the first path

(path=1), the expression reduces to (2 * c - e) and this is assigned to the temporary

variable f2. Similarly the expression for the second path (path=2) corresponding to the

else branch statement reduces to (a + e) and is also assigned to f2. Instrumentation is

added to keep track of paths at runtime.

At runtime, when control reaches the use of the variable f, the correct checking

expression for f is chosen based on the value of the path variable and the value of f2 is

compared with the value of f computed by the original program. In case there is a

mismatch, an error is declared and the program is stopped.

4.3.4 Software Errors Covered

Since the technique proposed in this chapter enforces the compiler-extracted source-code

semantics of programs at runtime, it can detect any software error that violates the source

116

program‟s semantics at runtime. This includes software errors caused by pointer

corruptions in programs (memory corruption errors) as well as those caused by missing

or incorrect synchronization in concurrent programs (timing errors). We consider how the

proposed technique detects these errors:

Memory Corruption Errors: Languages such as C and C++ allow pointers to write

anywhere in memory (to the stack and heap)[97]. Memory corruption errors are caused

by pointers in the code writing outside their intended object
16

 (according to source code

semantics), therby corrupting other objects in memory. However, static analysis

performed by compilers typically assumes that objects are infinitely far apart in memory

and that a pointer can only write within its intended object[30]. As a result, the backward

slice of critical variables extracted by the compiler includes only those dependences that

arise due to explicit assignment of values to objects via pointers to the object. Therefore,

the technique detects all memory errors that corrupt one or more variable in the backward

slice of critical variables, as long as the shared state between the check and the main

program is not affected (e.g. memory errors that affect function parameters will not be

detected, as only intra-procedural slices are considered by the technique).

Figure 34 illustrates an example of a memory corruption error in an application and how

the proposed technique detects the error. In the figure, function foo computes the running

sum (stored in sum) of an array of integers (buf) and also the maximum integer (max) in

the array. If the maximum exceeds a predetermined threshold, the function returns the

16 We use the term object to refer to both program variables as well as heap- and stack- allocated objects.

117

accumulated sum corresponding to the index of the maximum element in the array

(maxIndex).

int foo(int buf[]) {

1: int sum[bufLen];
2: int max = 0; int maxIndex = 0;

3: sum[0] = 0;

4: for (int i = 0; i < bufLen; ++i) {
5: sum[i + 1] = sum[i] + buf[i];

6: if (max < buf[i]) {

7: max = buf[i];
8: maxIndex = i;

9: }

10: }
11: if (max > threshold) return sum[maxIndex];

12: return sum[bufLen];

}

Figure 34: Example of a memory corruption error

In Figure 34, the array sum is declared to be of size bufLen, which is the number of

elements in the array buf. However, there is a write to buf[i+1] in line 5, where i can take

values from 0 to bufeLen. As a result, a buffer overflow occurs in the last iteration of the

loop, leading to the value of the variable max being overwritten by the write in line L5

(assuming that max is stored immediately after the array buf). The value of max would be

subsequently overwritten with the value of the sum of all the elements in the array, which

is something the programmer almost certainly did not expect (this results in a logical

error).

In the above example, assume that the variable max has been identified as critical, and is

being checked in line 9. Recall that the proposed technique will detect a memory

corruption error if and only if the error causes corruption of the critical variable (which is

the case in this example). In this case, the checking expression for max will depend on

whether the branch corresponding to the if statement in line 6 is taken. If the branch is not

taken, the value of max is the value of max from the previous iteration of the loop. If the

118

branch is taken, then the value of max is computed to be the value buf[i]. These are the

only possible values for the max variable, and are represented as such in the detector. The

memory corruption error in line 5 will overwrite the variable max with the value

sum[bufLen], thereby causing a mismatch in the detector‟s value. Hence, the error will be

detected by the technique.

Note that the detector does not check the actual line of code or the variable where the

memory error occurs. Therefore, it can detect any memory corruption error that affects

the value of the critical variable, independent of where it occurs. As a result, it does not

need to instrument all unsafe writes to memory as done by conventional memory-safety

techniques (e.g.[24]).

Race Conditions and Synchronization errors: Race conditions occur in concurrent

programs due to lack of synchronized accesses to shared variables[98]. Static analysis

techniques typically do not take into account asynchronous modifications of variables

when extracting dependences in programs. This also holds for the backward dependence

graph of critical variables in the program. As a result, the backward slice only includes

modifications to the shared variables made under proper synchronization. Hence, race

conditions that result in unsynchronized writes to shared variables will be detected

provided the write(s) are to the variables in the backward slice of critical variables that

are not shared between the main program and the checking expressions. However, race

conditions that result in unsynchronized reads may not be detected unless the result read

by the read propagates to the backward slice of the critical variable. Note that the

technique would not detect benign races (i.e. race conditions in which the final value of

119

the variable is not affected by the order of the writes), as it checks the value of the

variable being written to rather than whether the write is synchronized.

Figure 35 shows a hypothetical example of a race condition in a program. Function foo

adds a constant value to each element of an array a which is passed into it as a formal

parameter. It is also passed an array a_lock, which maintains fine-grained locks for each

element of A. Before operating on an element of the array, the thread acquires the

appropriate lock from the array a_lock. This ensures that no other thread is able to modify

the contents of array a[i], provided the other thread tries to acquire the lock before

modifying a[i]. Therefore, the locks by themselves do not protect the contents of a[i]

unless all threads adhere to the locking discipline. The property of adherence to the

locking discipline is hard to verify using static analysis alone because, (1) The thread

modifying the contents of array a could be in a different module than the one being

analyzed, and the source code of the other module may not be available at compile time,

and (2) Precise pointer analysis is required to find the specific element of a being written

to in the array (it may not even be possible to find this statically if the index is input

dependent). Such precise analysis is often unscalable, and static analysis techniques

perform approximations that may result in missed detections (or false-positives).

The proposed technique, on the other hand, would detect illegal modifications to the

array a even by threads that do not follow the locking discipline. Assume that the

variable a[i] in line 7 has been determined to be a critical variable. The proposed

technique would place a check on a[i] to recompute it in line 8. Now assume that the

variable a[i] was modified by an errant thread that does not follow the locking discipline.

120

This may cause the value of a[i] computed in line 7 to be different from what it should

have been in a correct execution (which is its previous value added to the constant c).

Therefore, the error is detected by the recomputation check in line 8.

1: void foo(int* a, mutex* alock, int n, int c) {

 2: int i = 0;
 3: int sum = 0;

 4: for (i=0; i<n; i++) {

 5: acquire_mutex(alock[i]);
 6: old_a = a[i];

 7: a[i] = a[i] + c;

 8: check(a[i] == old_a + c)
 9: release_mutex(alock[i]);

 10: }

}

Figure 35: Example for race condition detection

The following can be noted in the example: (1) The source code of the errant thread is not

needed to derive the check, (2) The check will fail only if the actual computed value is

different and is therefore immune to benign races that have no manifestation on the

computation of the critical variable, and (3) in this example, it is enough for the technique

to analyze the code of the function foo to derive the check for detecting the race

condition.

4.3.5 Hardware Errors Covered

Hardware transient errors that result in corruption of architectural state are considered in

the fault-model. Table 14 shows a detailed characterization of the hardware errors

covered by the technique. Examples of hardware errors covered include,

 Errors in Instruction Fetch and Decode: Either the wrong instruction is fetched,

(OR) a correct instruction is decoded incorrectly resulting in data value corruption.

121

Table 14: Detailed characterization of hardware errors and their detection by the technique

E
rr

o
rr

Error Description Detected under what condition ?

In
st

ru
ct

io
n
 F

et
ch

 (
IF

)

Incorrect (but valid) instruction is

fetched

If instruction affects critical value

Incorrect (invalid) instruction is

fetched

Invalid memory address is

references

Extra instruction is inserted If critical operand is influenced

Instruction is skipped If instruction is in backward slice of critical variable

Same instruction is repeatedly
fetched

No instruction is fetched

In
st

ru
ct

io
n
 D

ec
o
d

e
S
ta

g
e

(I
D

)

Decoded to invalid op-code

Decoded to valid but incorrect

opcode

If incorrect op-code affects critical data operands

Branch decoded to an invalid

address

Branch decoded to valid but
incorrect address

If the missed instruction is in the backward slice of critical variable (OR) if new
instruction affects critical operand

Wrong register operand(s) retrieved If instruction is in the backward slice of the critical variable and reads from the wrong

register (OR) a register holding a critical data operand is incorrectly written to

E
rr

o
rs

 i
n

 I
n

st
ru

ct
io

n

E
xe

cu
te

 S
ta

g
e

(E
X

)

Computation errors in integer
operations

If instruction belongs to backward slice of critical variable and error is not logically
masked in ALU

Computation errors in FP

operations

If error occurs in exponent or MSB of mantissa and is not logically masked in ALU

Computation errors in load/store
addresses

If address is valid and the instruction belongs to the backward slice of the critical
variable

Errors in resolving branch direction If critical variable‟s value differs on both directions of the branch in question

Errors in branch target address

computation

If address is valid, and new target is not one of allowed targets and the check is reached

M
em

o
ry

 S
ta

g
e

(M
E

M
)

Invalid address is referenced in

Load/Store

Data fetched from incorrect address

for L/S

Data is used in critical value computation

Data not fetched from memory for

L/S

Data is used in critical value computation

Data written to incorrect address for

L/S

Data is used in critical operand computation (OR) critical operand is overwritten

Data not written to memory for L/S Data is used in critical operand computation

Incorrect value is written to the PC

on branch

If address is valid, and new target is not one of allowed targets and the check is reached

Value is not written to the PC on
branch

if critical variable‟s value differs on both directions of the branch

W
ri

te
-b

a
ck

 S
ta

g
e

(W
B

)

ALU instruction not written back Instruction belongs to backward slice of critical variable

ALU instruction written to wrong

register

if register used in critical value computation is overwritten (OR) instruction belongs to

backward slice

Load instruction stalled indefinitely

Load instruction written to wrong

register

if register used in critical value computation is overwritten (OR) instruction belongs to

backward slice

Exception occurs incorrectly during

commit

Exception omitted during commit Assuming critical value computation throws exception

st
o

ra
g

e
el

em
en

ts

a
n
d

 b
u

se
s

Errors in memory Memory operand used in critical value computation but is not used in the checking

expression

Errors in cache If the cached operand is used in original computation and not in checking expression

Errors in registers If original computation and checking expression use different registers and no value

forwarding takes place

Errors in register bus If the same register is reread by the checking expression

Errors in memory bus If operand is reloaded by the checking expression

122

 Errors in Execute and Memory Units: An ALU instruction is executed incorrectly

inside a functional unit, (OR) the wrong memory address is computed for a load/store

instruction, resulting in data value corruption.

 Errors in Cache/Memory/Register File Errors: A value in the cache, memory, or

register file experiences a soft error that causes it to be incorrectly interpreted in the

program (if ECC is not used).

4.4 STATIC ANALYSIS

This section describes the static analysis technique to derive detectors and add

instrumentation for path tracking to a program. The bubble-sort program shown in Figure

36(a) is used as a working example throughout this section. We use the LLVM compiler

infrastructure [99] to derive error detectors for the program. A new compiler pass called

the Value Recomputation Pass (VRP) was introduced into LLVM. The VRP performs the

backward slicing starting from the instruction that computes the value of the critical

variable to the beginning of the function. It also performs check derivation, insertion and

instrumentation. The output of the VRP is provided as input to the optimization passes of

LLVM in order to reduce the check to a minimal expression.

123

void Bubble(int srtElements, int* sortList) {

 int i, j, top;
 bInitarr(sortList, srtElements);

 top=srtelements;

 while (top>1) {//Outer-while-loop
 i=1;

 while (i<top) {// Inner while-loop

 if (sortlist[i] > sortlist[i+1])
 {

 j = sortlist[i];

 sortlist[i] = sortlist[i+1];
 sortlist[i+1] = j;

 } // end-if

 i=i+1;
 } // end-inner-while

 top=top-1;

 } // end-outer-while
}

(a)

loopentry:
É

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [0, loopentry], [tmp.i, endif]

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayElement sortlist, tmp.i

tmp.10 = load [tmp.9]

tmp.12 = add i.1, 1

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]

tmp.15 = setgt tmp.10, tmp.14

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif:
tmp.16 = setlt tmp.12, top

br tmp.16, no_exit, loop_exit

loopexit:

É .

loopentry:
É

br bool tmp.6, label no_exit, label loop_exit

no_exit:
indvar.i = phi [0, loopentry], [tmp.i, endif]

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayElement sortlist, tmp.i

tmp.10 = load [tmp.9]

tmp.12 = add i.1, 1

tmp.13 = getArrayElement sortlist , tmp.12

tmp.14 = load [tmp.13]

tmp.15 = setgt tmp.10, tmp.14

br tmp.15, label then, label endif

then:
store tmp.14, [tmp.9]

store tmp.10, [tmp.13]
br endif

endif:
tmp.16 = setlt tmp.12, top

br tmp.16, no_exit, loop_exit

loopexit:

É .

(b)

Figure 36: (a) Example code fragment (b) Corresponding LLVM intermediate code

LLVM uses Static Single Assignment form (SSA) [100] as its intermediate code

representation. In deriving the backward program slice, two well understood properties of

SSA form are used as follows:

124

 In SSA form, each variable (value) is defined exactly once in the program, and the

definition is assigned a unique name, which facilitates analyzing data dependences

among instructions.

 SSA form uses a special static construct called the phi instruction that is used to keep

track of the data dependences when there is a merging of data values from different

control edges. The phi instruction includes the variable name for each control edge

that is merged and the corresponding basic block. This instruction allows the

specialization of the backward slice based on control-paths by the proposed

technique.

A simplified version of the LLVM intermediate code corresponding to the inner-while

loop in the bubble-sort program is shown in Figure 36b.

4.4.1 Value Recomputation Pass

The VRP takes LLVM intermediate code annotated with critical variables and extracts

their path-specific backward slices. It computes the backward slice by traversing the

static dependence graph of the program starting from the instruction that computes the

value of the critical variable up until the beginning of the function. The VRP outputs

instrumented LLVM intermediate code that tracks paths and invokes detectors. By

extracting the path-specific backward slice and exposing it to other optimization passes in

the compiler, the Value Recomputation Pass (VRP) enables aggressive compiler

optimizations to be performed on the slice that would not be possible otherwise.

125

4.4.1.1 Overall Approach

The algorithm for performing path-specific slicing is shown in Table 15. To the best of

our knowledge, this is the first path-specific static slicing algorithm developed to enable

derivation of error detectors. The algorithm is explained as follows:

Table 15: Pseudocode of backward traversal algorithm

Function visit(seedInstruction, pathID, parent):

 ActiveSet ={ seedInstruction }
 if parent==0:

 SliceList[pathID] = { }

 else:
 SliceList[pathID] = SliceList[parent]

 nextPathID = pathID

 while not empty(ActiveSet):
 I = Remove instruction for ActiveSet

 Visited[BasicBlock(I)] = true

 // Do not consider interprocedural slices
 if I is a function argument or constant:

 terminal = true
 else if I is a non-phi instruction:

 SliceList[pathID] = SliceList[PathID]

 U { I }
 ActiveSet = ActiveSet U operands(I)

 else if I is a phi instruction:

 for each operand of the phi:
 // Check if a loop is encountered

 // or if going back multiple iterations

 if not (Visited [BasicBlock(operand)]
 and not CrossingInsn(I, operand))

 nextPathID = pathID + 1

 result = Visit(operand,
 nextPathID, pathID)

 terminal = terminal OR ~(result)

 else:
 SeedList = SeedList U { operand }

 // Add the path to the pathList if terminal path

 if (terminal)
 PathList = PathList U { pathID }

 return terminal

Function computeSlices (criticalInstruction):

 SeedList = { criticalInstruction }

 PathList = { }
 while not empty(SeedList):

 seedInstruction=Remove instruction from SeedList

 call visit(seedInstruction, 0, 0)
 return PathList, SliceList

The instruction that computes the critical variable in the program is called the critical

instruction. In order to derive the backward program slice of a critical instruction, the

126

algorithm performs backward traversal of the static data dependence graph. The traversal

starts from the critical instruction and terminates when one or more of the following

conditions are met:

 The beginning of the current function is reached. It is sufficient to consider intra-

procedural slices in the backward traversal because each function is considered

separately for the detector placement analysis. For example, in Figure 36a the array

sortList is passed as an argument to the function Bubble. The slice does not include

the computation of sortList in the calling function. If sortList is a critical variable in

the calling function, say foo, then a detector will be derived for it when foo is

analyzed.

 A basic block is revisited in a loop. During the backward traversal, if data

dependence within a loop is encountered, the detector is broken into two detectors,

one placed on the critical variable and one on the variable that affects the critical

variable within the loop. This second detector ensures that the variable within the

loop is computed correctly and hence the variable can be used without recomputing it

in the first detector. Hence, only acyclic paths are considered by the algorithm.

 A dependence across loop iterations is encountered. Recomputing critical variables

across multiple loop iterations can involve loop unrolling or buffering intermediate

values that are rewritten in the loop. This in turn can complicate the design of the

detector. Instead, the VRP splits the detector into two detectors, one for the

dependence-generating variable and one for the critical variable.

127

 A memory operand is encountered. Memory dependences are not considered

because LLVM promotes most memory objects to registers prior to running the VRP.

Since there is an unbounded number of virtual registers for storing variables in SSA

form, the analysis does not have to be constrained by the number of physical registers

available on the target machine. However it may not always be possible to promote a

memory objects to a register e.g. pointer references to dynamically allocated data. In

such cases, the VRP duplicates the load of the memory object, provided the load

address is not modified along the control path from the load instruction to the critical

instruction.

4.4.1.2 VRP Algorithm Details

During the backward traversal, when a phi-instruction is encountered indicating a merge

in control-flow paths, the slice is forked for each control path that is merged at the phi.

The algorithm maintains the list of instructions in each path-specific slice in the array

SliceList. The function computeSlices takes as input the critical instruction and outputs

the SliceList array, which contains the instructions in the backwards slice for each acyclic

path in the function.

The actual traversal of the dependence graph occurs in the function visit, which takes as

input the starting instruction, an ID (number) corresponding to the control-flow path it

traverses (index of the path in the SliceList array), and the index of the parent path. The

computeSlices function calls the visit function for each critical instruction. The visit

function visits each operand of an instruction in turn, adding it to the SliceList of the

128

current path. When a phi instruction is encountered, a new path is spawned for each

operand of the phi instruction (by calling the visit function recursively on the operand

with a new path ID and the current path as the parent). The traversal is then continued

along this new path. Only terminal paths are added to the final list of paths (PathList)

returned by the ComputeSlice procedure. A terminal path is defined as one that terminates

without spawning any new paths (as a result of forking).

Certain instructions cannot be recomputed in the checking expression, because

performing recomputation of such instructions can alter the semantics of the program.

Examples are mallocs, frees, function calls and function returns. Omitting mallocs and

frees does not seem to impact coverage except for allocation intensive programs, as

shown by our results in section 4.6.2. Omitting function calls and returns does not impact

coverage for program functions because the detector placement analysis considers each

function separately (section 4.3.2).

Assuming that the critical variable chosen for the example in Figure 36a is sortlist[i], the

intermediate code representation for this variable is the instruction tmp.10 in Figure 36b.

The VRP computes the backward slice of tmp.10, which consists of the two paths shown

in Figure 37.

Path 0: no_exit loopentry
indvar.i = 0

tmp.i = add indvar.i, 1

tmp.9 =getArrayElement sortlist,tmp.i
tmp.10 = load[tmp.9]

Path 1: endif loopentry
indvar.i = tmp.i

tmp.i = add indvar.i, 1

tmp.9 = getArrayElement sortlist,tmp.i
tmp.10 = load [tmp.9]

Figure 37: Path-specific slices for example

129

4.4.1.3 VRP and Other Optimization Passes

After extracting the path-specific slices, the VRP performs the following operations on

the slices:

 Places the instructions in the backward slice of the critical variable corresponding to

each control path in its own basic block.

 Replaces the phi instructions in the slice with the incoming value corresponding to

the control edges for the path. This allows subsequent compiler optimization passes to

substitute the phi values directly in their uses through either constant propagation or

copy propagation [101].

 Creates copies of variables used in the path-specific slices that are not live at the

detector insertion point. For example, the value of tmp.i is overwritten in the loop

before the detector can be reached and a copy old.tmp.i is created before the value is

overwritten.

 Renames the operands in the slices to avoid conflicts with the main program and

thereby ensure that SSA form is preserved by the slice.

 Instruments program branches with path identifiers considered by the backward

slicing algorithm. This includes introduction of special instructions at branches

pertaining to the paths in the slice, and also at function entry and exit points.

The standard LLVM optimization passes are invoked on the path-specific backward

slices extracted by the VRP. The optimization passes yield reduced instruction sequences

that compute the critical variables for the corresponding paths. Further, since there are no

130

control-transfers within the sequence of instructions for each path, the compiler is able to

optimize the instruction sequence for the path much more aggressively than it would have

otherwise. This is because the compiler does not usually consider specific control paths

when performing optimizations for reasons of space and time efficiency. However, by

selectively extracting the backward slices for critical variables and by specializing them

for specific control paths, the VRP is able to keep the space and time overheads

manageable (see Section 4.4.1.5)

4.4.1.4 VRP Output

The LLVM intermediate code from Figure 36 with the checks inserted by the VRP is

shown in Figure 38.

The VRP creates two different instruction sequences to compute the value of the critical

variable corresponding to the control paths in the code. The first control path corresponds

to the control transfer from the basic block loopentry to the basic block no_exit in Figure

38. The optimized set of instructions corresponding to the first control path is encoded as

a checking expression in the block path0 in Figure 38. The second control path

corresponds to the control transfer from the basic block endif to the basic block no_exit in

Figure 36. The optimized set of instructions corresponding to the second control path is

encoded as a checking expression in the block path1 in Figure 38.

The instructions in the basic blocks path0 and path1 recompute the value of the critical

variable tmp.10. These instruction sequences constitute the checking expressions for the

critical variable tmp.10 and comprise of 2 instructions and 3 instructions respectively.

131

no_exit: .
indvar = phi [0, loopentry], [tmp.i, then], [tmp.i, en dif]

old.tmp..i = tmp..i

tmp.i = add indvar.i, 1

i.1 = cast tmp.i to int

tmp.9 = getArrayIndex sortlist, tmp.i

tmp.10 = load [tmp.9]

pathVal = getState()

br pathVal, path.0, path.1

path0:
new.0.tmp.9 = getArrayIndex sortList, 1

new.0.tmp.10 = load [new.0.tmp.9]

br Check

path1:
new.1.tmp.i = add old.tmp.i, 1

new.1.tmp.9 = getArrayIndex sortlist, new.1.tmp.i

new.1.tmp.10 = load [new.1.tmp.9]

br Check

Check:
new.tmp.10 = phi [new.0.tmp, path0], [new.1.tmp, path1]

compare = seteq new.10, tmp.10

br compare, errorBlock, restBlock

restBlock:

tmp.12 = add int i.1, 1

tmp.13 = getArrayIndex sortlist, tmp.12

tmp.14 = load tmp.13

tmp.15 = setgt tmp.10, tmp.14

br bool tmp.15, label then, label endif

errorBlock:

call errFunc()

Figure 38: LLVM code with checks inserted by VRP

The basic block Check in Figure 38 compares the value computed by the checking

expressions to the value computed in the original program. A mismatch signals an error

and the appropriate error handler is invoked in the basic block error. Otherwise, control

is transferred to the basic block restBlock, which contains the instructions following the

computation of tmp.10 in the original program.

4.4.1.5 Scalability

This section discusses factors that could potentially limit the scalability of the VRP

algorithm and how these are addressed by the proposed technique.

 Number of control paths: This is addressed by considering only intra-procedural,

acyclic paths in the program corresponding to the backward slices of critical variables

in the program. At worst, this can be exponential in the number of branch instructions

132

in the program. In practice however, the number of control paths is polynomial in the

number of branch instructions (unless the program is performing decision tree like

computations).

 Size of checking expression: The size of the checking expression depends on the

number of levels in the dependence tree of the critical variable considered by the

algorithm. Terminating the dependency tree at loop and function boundaries naturally

limits the checking expression‟s size.

 Number of detectors: The number of critical variables per function is a tradeoff

between the desired coverage and an acceptable performance overhead. Placing more

detectors achieves higher coverage but may result in higher overheads. The algorithm

may introduce additional detectors, for example, when splitting a detector into two

detectors across loop iterations, but this reduces the size of each checking expression.

Therefore, for a given number of critical variables, the number of detectors varies

inversely as the size of each checking expression.

4.4.1.6 Coverage

The VRP operates on program variables at the compiler‟s intermediate representation

(IR) level. In the LLVM infrastructure, the IR is close to the program‟s source code

[99]and abstracts many of the low-level details of the underlying architecture. For

example, the IR has an infinite number of virtual registers, uses Static Single Assignment

(SSA), and has native support for memory allocation (malloc and alloca) and pointer

133

arithmetic (getElementPtr
17

 instruction). Moreover, the runtime mechanisms for stack

manipulations and function calls are transparent to the IR. As a result, the VRP may not

protect data that is not visible at the IR level. Therefore, the VRP is best suited for

detecting errors that impact program state visible at the source level. Note that the generic

approach presented in Section 4.3, however, is not tied to a specific level of compilation

and can be implemented at any level.

The VRP operates on LLVM‟s intermediate code, which does not include common

runtime mechanisms such as manipulation of the stack and base pointers. Moreover, the

intermediate code assumes that the target machine has an infinite register file and does

not take into account the physical limitations of the machine.

Data errors in a program can occur in three possible places (locations): (1) Source-level

variables or memory objects, (2) Precompiled Libraries linked with the application, and

(3) Code added by the compiler‟s target-specific code generator for common runtime

operations such as stack manipulation and handling register-file spills. The technique

presented in the chapter aims at detecting errors in the first category, and can be extended

to detect errors in the second category provided the source code of the library is available

or the library is compiled with the proposed technique. However, errors in the third

category, namely those that occur in the code added by the compiler‟s code generator

cannot be detected using the proposed technique unless the error affects one or more

17 This is the general case of the getArrayElement instruction introduced previously

134

source-level variables or memory objects. This is because the code added by the compiler

is transparent to the VRP and hence cannot be protected by the derived detectors.

The steps in compiling a program with LLVM are as follows: First, the application‟s

source code along with the source (or intermediate) code of runtime libraries are

converted to LLVM‟s generic intermediate code form. This intermediate form is in-turn

compiled onto the target architecture‟s object code, which is then linked with pre-

compiled libraries to form the final executable. The process is similar to conventional

compilation, except that the application and the source libraries are first compiled to the

intermediate code format (by a modified gcc front-end) before being converted to object

code. Each level of compilation progressively adds more state (code and data) to the

program. Table 16 shows the data elements of the program‟s state visible at each level of

compilation.

It can be observed from the table that the intermediate code level does not include many

data elements in the final executable as these are added by the compiler and linker. Since

the VRP operates at the intermediate code level, it does not see the elements in the lower

levels and the derived detectors may not detect errors in these levels. This can be

addressed by implementing the technique at lower compilation levels.

Table 16: Information about the program that is available at different levels of compilation

Code Level Elements of program state that are visible

Source Level (1) local variables, (2) global variables and (3) dynamic data allocated on heap

Intermediate Code (1) Branch addresses of if statements, loops , and case statements, (2)
Temporary variables used in evaluation of complex expressions

Object Code (1) Temporary variables to handle register file spills, (2) Stack manipulation

mechanisms and (3) Temporary variables to convert out of SSA form

135

4.4.2 State Machine Generation

The VRP extracts a set of checking expressions for each detector in the program. Each

checking expression in the set corresponds to an acyclic, intra-procedural control path

leading up to the critical variable from the top of the function. The VRP also inserts

instrumentation to notify the runtime system when the program takes a branch belonging

to one of the paths in the set. This is done by inserting a special operation called

EmitEdge that identifies the source and destination basic blocks of the branch with

unique identifiers. The VRP then exports the basic block identifiers of the branches along

each path in a separate text file for each detector in the program.

A post-processing analysis then parses these text files and builds a state-machine

representation of the paths for each check. The state machines are constructed such that

every instrumented branch in the program causes state transitions in one or more state

machines. A complete sequence of branches corresponding to a control path for which a

checking expression has been derived, will drive the state machine for the check to an

accepting state corresponding to the checking expression.

 The algorithm used by the post-processing analysis to convert the control edge

sequences to finite state machines is shown in Table 17. The algorithm processes the

path files for each check, and adds states to the state machine corresponding to the

check. The aim is to distinguish one path from another in the check, while at the same

time introducing the least number of states to the state machine. This is because each

state occupies a fixed number of bits in hardware, and our goal is to minimize the total

136

number of bits that must be stored by the hardware module for path-tracking and

consequently the area occupied by it.

 The algorithm in Table 17 works as follows: It starts in the starting state of the state

machine and processes each edge in the list of edges for the path. It adds a new state

for an edge if and only if there no transition exists for the edge from the current state in

the state machine. If such a transition exists, it transitions to the state leading from the

current state corresponding to the edge, and processes the next edge in the path. It

continues until it has processed all the edges of the path, and marks the last state added

as the accepting state for the path in the state machine. When the algorithm terminates,

it outputs the transition table for the state machines, as well as the list of accepting

states corresponding to each path of the check. The states are programmed into the

hardware module for path-tracking (Section 4.8) at application load time.

Table 17: Algorithm to convert paths to state machines

for each critical variable V in the program:

 open the path-file corresponding to the variable
 for each path in the path-file:

 PathNumber Read path ID in path file

 Read an edge e = (src, sink) from the path file
 S Start_State

 Create an accepting state “A” for the path

 if this is the only edge for the path:
 if Transition[S, A] does not contain e

 Transition[S, A] <- Transition[S,A] U e

 else:
 current = S

 for each edge e in the path

 if there exists a state K such that
 (Transition[current,K] contains e):

 current K
 else:

 Create a new state L

 Transition[current, L] e
 current L

 endfor

 Set current as the accepting state for path
 endfor

 close the path file for the critical variable

endfor

137

Figure 39 shows an example control-flow graph (CFG) of a program for which paths

must be tracked. Each basic block in the CFG has been assigned a unique index by the

VRP. Assume that the critical variable is computed in basic block with identifier 6.

The VRP has identified 4 acyclic paths in the backward slice of this critical variable

labeled A to D. The paths consist of edge sequences that distinguish one path from

another in the set of paths for a detector. Note that the edges in each path correspond to

the control edges that result in the VRP forking a new path during the backward traversal

shown in Table 15.

The state machine derived by the algorithm for the control-flow graph in Figure 39 is

shown in Figure 40.The algorithm has introduced two new states E and F in addition to

four accepting states A, B, C and D that constitute the accepting states for the four paths.

Note that the transitions between states correspond to the edges identified by the VRP to

distinguish one path from another. These correspond to the edges that merge paths in the

SSA graph corresponding to the backward slice of critical variables.

The time-complexity of the algorithm in Table 17 is O(|V| * |P| * |E|), where |V| is the

number of critical variables in the program, |P| is the maximum number of control-paths

in the backward slice of the variable and |E| is the maximum number of control-edges the

control paths corresponding to each critical variable. The space complexity of the

technique is O(|V| *|Ů E|* H), where |H| is the maximum number of shared edges among

control-paths corresponding to the critical variables, and Ů E represents the union of all

the edges in the program‟s control paths.

138

Figure 39: Example Control-flow graph and paths

Figure 40: State machine corresponding to the Control Flow Graph

4.5 EXPERIMENTAL SETUP

This section describes the mechanisms for measurement of performance and coverage

provided by the proposed technique. It also describes the benchmarks used for evaluating

the technique.

139

4.5.1 Performance Measurement

All experiments are carried out on a single core Pentium 4 machine with 1GB RAM and

2.0 Ghz clock speed running the Linux operating system. The performance overheads of

each component introduced by the proposed technique can be measured as follows:

Modification overhead: Performance overhead due to the extra code introduced by the

VRP for instrumentation and checking. This code may cause cache misses and branch

mispredictions and lead to performance overhead.

Checking overhead: Performance overhead of executing the instructions in each check to

recompute the critical variable and compare the recomputed value with the original value.

The overhead of path-tracking is not considered in measuring performance overheads

because the path tracking is done in parallel with the execution of the main program

using a specialized hardware module. The path-tracking module and can execute

asynchronously and needs to be synchronized with the main processor only when the

check is performed (see Section 4.8 for a detailed description).

We implemented the path-tracking module using software emulation and measured the

performance overheads of the application with both path-tracking and checking enabled.

We then measure the application overhead with only path-tracking enabled and subtract it

from the earlier result in order to obtain the checking overheads. In order to obtain the

code modification overheads, we executed the application with both path-tracking and

checking disabled and measured the increase in execution time over the unmodified

application.

140

4.5.2 Coverage Measurements

Fault Injections: In order to measure the coverage of the derived detectors, we inject

faults into the data of the application protected with the derived detectors. A new LLVM

pass inserts calls to a special faultInject function (invoked after the optimization phases)

after the computation of each program variable in the original program. The variable to

be injected is passed as an argument to the faultInject function. The uses of the program

variable in the original program are substituted with the return value of the faultInject

function.

At runtime, the call to the faultInject function corrupts the value of a single program

variable by flipping a single bit in its value. The value into which the fault is injected is

chosen at random from the entire set of dynamic values used in an error-free execution of

the program (that are visible at the compiler‟s intermediate code level). In order to ensure

controllability, only a single fault is injected in each execution of the application.

Error Detection: After a fault is injected, the following program outcomes are possible:

(1) the program may terminate by taking an exception (crash), (2) the program may

continue and produce correct output (success), (3) the program may continue and produce

incorrect output (fail-silent violation) or (4) the program may timeout (hang). The

injected fault may also cause one of the inserted detectors to detect the error and flag a

violation.

When a violation is flagged, the program is allowed to continue (although in reality it

would be stopped) in order that the final outcome of the program under the error can be

141

observed. The coverage of the detector is classified based on the observed program

outcome. For example, a detector is said to detect a crash if the detector upon

encountering the error, flags a violation, after which the program crashes. Hence, when a

detector detects a crash, it is in reality, preempting the crash of the program.

Error Propagation: Our goal is to measure the effectiveness of the detectors in detecting

errors that propagate before causing the program to crash. For errors that do not

propagate before the crash, the crash itself may be considered the detection mechanism

(as the state can be recovered from a clean checkpoint). Hence, coverage provided by the

derived detectors for non-propagated errors is not reported. In the experiments, error

propagation is tracked by observing whether an instruction that uses the erroneous

variable‟s value is executed after the fault has been injected. If the original value into

which the error was injected is overwritten, the error propagation is no longer tracked.

The program is instrumented to track error-propagation and the instrumentation is

automatically inserted by a new LLVM pass that we introduced.

4.5.3 Benchmarks

Table 18 describes the programs used to evaluate the technique and their characteristics.

The first 9 programs in the table are from the Stanford benchmark suite[102] and the next

5 programs are from the Olden benchmark suite[103]. The former benchmark set consists

of small programs performing a multitude of common tasks. The latter benchmark set

consists of pointer-intensive programs commonly used to evaluate memory systems.

142

Table 18: Benchmark programs and characteristics

Benchmark Lines of C Description of program

IntMM 159 Matrix multiplication of integers

RealMM 161 Matrix multiplication of floating-points

FFT 270 Computes Fast-Fourier Transform

Quicksort 174 Sorts a list of numbers using quicksort

Bubblesort 171 Sorts a list of numbers using bubblesort

Treesort 187 Sorts a list of numbers using treesort

Perm 169 Computes all permutations of a string

Queens 188 Solves the N-Queens problem

Towers 218 Solves the Towers of Hanoi problem

Health 409 Discrete-event simulation using double linked lists

Em3d 639 Electro-magnetic wave propagation in 3D (using single linked lists)

Mst 389 Computes minimum spanning tree (graphs)

Barnes-Hut 1427 Solves N-body force computation problem using octrees

Tsp 572 Solves traveling salesman problem using binary trees

4.6 RESULTS

This section presents the performance (Section 4.6.1), and coverage results (Section

4.6.2) obtained from the experimental evaluation of the proposed technique. The results

are reported for the case when 5 critical variables were chosen in each function by the

placement analysis. We do not report results for other cases due to space constraints

(these numbers are available on request).

4.6.1 Performance Overheads

The performance overhead of the derived detectors relative to the normal

(uninstrumented) program‟s execution is shown in Figure 41. The results are

summarized below:

 The average checking overhead introduced by the detectors is 25%, while the

average code modification overhead is 8%. Therefore, the total performance overhead

introduced by the detectors is 33%.

143

 The worst-case overheads are incurred in the case of the tsp application, which has a

total overhead of nearly 80%. This is because tsp is a compute-intensive program

involving tight loops. Placing checks within a loop introduces extra branch instructions

and increases its execution time.

Figure 41: Performance overhead when 5 critical variables are chosen per function

4.6.2 Detection Coverage

For each application, 1000 faults are injected, one in each execution of the application.

The error-detection coverage (when 5 critical variables are chosen in each function) for

different classes of failure are reported in Table 19.

A blank entry in the table indicates that no faults of the type were manifested for the

application. For example, no hangs were manifested for the IntMM application in the

fault injection experiments. The second column of the table shows the number of errors

that propagate and lead to the application crashing. The numbers within the braces in this

column indicate the percentage of propagated, crash-causing errors that are detected

before propagation.

144

Table 19: Coverage with 5 critical variables per function

Apps
Prop.

Crashes (%)

FSV

(%)

Hang

(%)

Success

(%)

IntMM 100 (97) 100 9

RealMM 100 (98) 0

FFT 57 (34) 7 60 0.5

Quicksort 90 (57) 44 100 4

Bubblesort 100 (73) 100 0 5

Treesort 75 (68) 50 3

Perm 100 (55) 16 0.9

Queens 79 (61) 20 3

Towers 79 (78) 39 100 2

Health 39 (39) 0 0 0

Em3d 79 (79) 1

Mst 83 (53) 79 0 5

Barnes-Hut 49 (39) 23

Tsp 64 (64) 0 0

Average 77 (64) 41 35 2.5

The results in Table 19 are summarized as follows:

 The derived detectors detect 77% of errors that propagate and crash the program.

64% of crash-causing errors that propagate are detected before first propagation. These

correspond to 83% of the propagated crash-causing errors that are detected by the derived

detectors.

 The derived detectors detect 41% of errors that result in fail-silent violations

(incorrect outputs) and 35% of errors that result in hangs on average across applications.

 The number of benign errors detected is 2.5% on average across applications. Recall

that these errors have no effect on the execution of the application.

 The worst-case coverage for errors causing crashes (that exhibit error propagation) is

obtained in the case of the Olden program health (39%). The health program is

allocation-intensive, and spends a substantial fraction (over 50%) of its time in malloc

145

calls. Our technique does not protect the return value of mallocs as duplicating malloc

calls changes the semantics of the program. Further, the technique does not place

detectors within the body of the malloc function, as it does not have access to the source-

code of library functions. This can be remedied by releasing versions of libraries

compiled using the technique described in this chapter.

4.6.3 Discussion

The results indicate that our technique achieves 77% coverage for errors that propagate

and cause the program to crash. Full-duplication approaches can provide 100% coverage

if they perform comparisons after every instruction. In practice, this is very expensive

and full-duplication approaches compare instructions only before store and branch

instructions [68, 69]. With this optimization, the coverage provided by full-duplication is

less than 100%. The papers that describe these techniques do not quantify the coverage in

terms of error propagation, so a direct comparison with our technique is not possible.

The performance overhead of the technique is only 33 % (when 5 detectors are placed in

each function), compared to full-duplication, which incurs an overhead of 60-100% when

performed in software. Further, the proposed technique detects just 2.5 % of benign

errors in an application compared to full-duplication, in which over 50% of the detected

errors are benign [12].

146

4.7 COMPARISON WITH DDVF AND ARGUS

4.7.1 DDVF

DDVF [104] is an approach to detect errors in the processor by checking if the program‟s

static dataflow graph (DFG) is followed at runtime – i.e. the runtime DFG corresponds to

the static DFG. The static data-flow graph is constructed by analyzing the program binary

and the runtime dataflow graph is tracked using processor modifications. Since

computing the whole program data-flow graph is infeasible in practice, DDVF computes

the DFG on a per-basic block basis and enforce the DFG for each basic block separately.

In other words, it breaks down the problem of computing the static DFG for the program

into the easier problem of computing the DFG for each basic block in the program. Thus,

it can detect (hardware) errors that affect the intra-block DFG, but not those that affect

the inter-block DFG. Further, it does not track memory dependences in the DFG - instead

it approximates memory to be a single node in the DFG and consider memory loads and

stores as in- and out- edges for the node. In effect, the DDVF scheme tracks intra-block,

register dependences among program instructions. Table 20 compares the coverage of

the DDVF technique with the Critical Variable Recomputation (CVR) technique. From

Table 20, it can be observed that DDVF provides coverage for a much narrower range of

errors and attacks compared to the CVR technique. On the other hand, the coverage

provided by the DDVF technique is not limited to the backward slices of critical variables

in the code. Further, DDVF requires no modifications to the compiler as the signatures

are derived by direct analysis of the binary. This limits its coverage considerably as it

does not consider memory dependences or inter-block control-flow.

147

Table 20: Comparison between the CVR and DDVF techniques in terms of coverage

Error Class Explanation DDVF detected ? CVR detected ?

Code Errors Corruption of program
instructions

Yes, provided the number of bits in
the signatures is large enough

Yes, If instruction belongs to the
backward slice of critical variable (CV)

Control-flow

Errors

Corruption of program‟s

control-flow graph

Errors in Intra-block control-flow,

but not in inter-block control-flow

Yes, If it bypasses an instruction used in

CV computation or results in extra writes

to the CV

Data Value

Corruptions

Corruption of data values

used in program

Errors in cache and registers, but

not computation

Yes, If data value is in backward slice of

critical variable

Software

Errors

Memory corruption

errors, race conditions in
multi-threaded programs

No, because the program binary is

used to derive the signatures

Yes, if the error violated the source-level

properties of the critical variable (i.e. error
leads to undefined source-level behavior)

4.7.2 Argus

In Argus [105], Meixner and Sorin deploy the DDVF scheme in a full-fledged

implementation of a simple in-order processor on a FPGA. They present an enhanced

version of the DDVF scheme called DCS (Dataflow and Control Signature). The main

difference is that instead of embedding the signature of each basic block within itself, the

signature of the (legal) successor blocks of a basic block are embedded within it. At

runtime, the checker determines which of the legal successor‟s should be executed (based

on the program‟s state) and compares the signature computed for the basic block with the

signature stored in the chosen successor. In case of a mismatch, the program will be

halted. A mismatch indicates that either the wrong successor to the basic block was

chosen (control-flow error) or the signature computed for the basic block at runtime was

incorrect (code error).

Argus is also equipped with standard fault-tolerance techniques such as watchdog timers,

self-checking arithmetic and logical units (using modulo arithmetic) and parity bits on the

address/data bus. The paper claims that taken together these techniques offer protection

from 98.8 % of errors (both transient and permanent) for 12 % area overhead and 3.5 %

performance overhead. These results are based on a model of a simple in-order core

148

written in VHDL and synthesized using an FPGA and are likely to be higher in more

complex processors.

Argus provides detection of errors in the code, control and data, but does not protect from

errors where a legal but invalid (for that input) path is executed. Detecting legal but

incorrect paths will require whole program analysis, rather than just basic-block level

analysis as done by Argus. Further, our technique is able to provide protection from a

much wider range of errors as we enforce “source-level invariants” as opposed to Argus,

which only enforces “binary-level” invariants. Consequently, we can detect errors and

attacks that break source-level invariants but not binary-level invariants e.g. memory

corruption errors, race conditions and insider attacks.

4.8 HARDWARE IMPLEMENTATION

This section discusses the hardware module for tracking control paths in the program

based on the finite state machines derived in section 4.4.2. The state machines are

programmed into a reconfigurable hardware module at application load time. They keep

track of the control path executed by the application for the derived detectors.

Related Work: Software-based path-profiling approaches [106] incur high overheads in

space and time (up to 35 %) compared to hardware-based approaches[107, 108].

Vaswani et al. [107] propose a generic co-processor for profiling paths in hardware. The

goal of this approach is to create statistical aggregates of application behavior, rather than

track specific paths. Further, this approach requires a much higher degree of coupling

with the pipeline, compared to our approach.

149

Zhang et al. [108] propose a hardware module that interfaces with the processor pipeline

to track paths for detecting security attacks. However, their approach requires every

branch in the program to be instrumented, which can lead to prohibitive overheads. Our

approach is aimed at tracking specific control-paths in the program (for which checks are

derived), and requires only selected control edges (branches) to be instrumented.

Implementation

As explained in Section 4.3.2, the path-tracking hardware is implemented as a module in

the Reliability and Security Engine (RSE) and monitors the main processor‟s data path. It

keeps track of the control path executed by the program, encoded as finite state machines.

Interface with the main processor: The main processor uses special instructions (called

CHECK) to invoke the RSE modules. The path tracking module supports three primitive

operations encoded as CHECK instructions. The operations are as follows:

emitEdge(from, to): Triggers transitions in the state machines corresponding to one or

more detectors. Each basic block in the program is assigned a unique identifier assigned

by the VRP. This operation indicates that control is transferred from the basic block with

identifier from to the basic block with identifier to.

getState(checkID): Returns the current state of the state machine corresponding to the

check, and is invoked just before the execution of the check in the program.

resetState(checkID): Resets the state-machine for the check given by checkID. This

operation is invoked after the execution of the check in the program.

Module Components: The structure of the path-tracking module is shown in Figure 42.

150

RSE

Interface
from

block

to

block
Edge

Index

Edge Table

edge

index

State TransitionTable

to

from AND

e

m

i

t

emitEdge

check

0

check

1

check

N

s1->s2

s2->s3

State Vector

check

state

0 1 N

edge

index

updateState

getState

resetState

Path-Tracking

Module
MUX

updateState

ORcheckIndex

checkIndex

12 15 1
0

1

current

State

currentState
currentState

Operation

Arg1

Arg2

From main

processor

Figure 42: Hardware path-tracking module

The components of the path-tracking module are as follows:

1) Edge Table: Stores the mapping from control-flow edges to edge-identifiers for

instrumented edges in the program. Each instrumented control-flow edge is assigned

a unique index and is mapped to the identifiers assigned to the source and sink basic

blocks for that edge (by the VRP).

2) State Vector: Holds the current state of the state machine corresponding to the

detectors, with one entry for each detector inserted in the program.

3) State Transition Table: Contains the transitions corresponding to the state machines.

The rows of the state transition table correspond to the edge indices, while the

columns correspond to the checks. The cells of the table contain the transitions that

are fired for each check when an instrumented branch is executed.

