
 1

Abstract — We present an architectural solution that provides

trustworthy execution of C code that computes critical data, in
spite of potential hardware and software vulnerabilities. The
technique uses both static compiler-based analysis to generate a
signature for an application, or operating system, and dynamic
hardware/software signature checking. A prototype implementa-
tion of the hardware on a soft processor within an FPGA incurs
no performance overhead and about 4% chip area overhead,
while the software portion of the technique adds between 1% and
69% performance overhead in our test applications, depending
on the selection of critical data.

I. INTRODUCTION
ITH shrinking process technology driving an increase

in the number of transistors per chip, processor
designers are utilizing these transistors in more creative ways.
While new innovations are now possible, more complicated
and tedious validation stages in the design cycle are
introduced. For example, the complex interactions of multiple
cores on a chip, new levels of abstraction such as
virtualization extensions, and huge growth in the size of the
hardware description language code contribute to more
processor bugs slipping by validation engineers than ever
before [1]. The Intel Core 2 Centrino architecture has an 82
page document dedicated just to workarounds for over 100
processor errata which have been uncovered thus far [2].
Though no known working exploits for these errata have been
released, the list grows every month and has raised lively
discussion about the security implications of processor bugs
[3][4]. As with each new processor release, the errata list is
extended. It is easy to foresee a future where an operating
system not implementing workarounds is susceptible to both
these known and other yet to be discovered low-level
vulnerabilities.

Furthermore, these are only examples of unintentional
implementation bugs due to insufficient validation.
Unfortunately, it is also possible for a rogue designer to

This work was supported in part by the U.S. Department of Commerce under
Grant SBAHQ-05-I-0062, NSF grants CRI CNS 05-51665, CNS 05-24695,
CNS 04-06351, Gigascale Research Center (GSRC/Marco), Hewlett Packard,
Intel Corporation, and Motorola Corporation.

intentionally introduce hard-to-find bugs deep inside a
processor, with the intention of being able to exploit the
unknown hardware errors once the chip is being produced and
distributed on a large scale. This topic has been a recent focus
of several large initiatives [5], and has garnered significant
attention in the research community [6].

Both of these situations lead to very real security
vulnerabilities that challenge traditional thinking in computer
security. It is generally considered that by erecting a “virtual
fence” that protects the computer system, those with malicious
intent can be kept out. For example, current software-based
security techniques tend to focus on remote vulnerabilities,
such as buffer overflow attacks, format string attacks, and
other memory corruption attacks, looking to either “plug”
every potential hole in the software [7][8][9], or to make sure
the statistical likelihood of a successful attack is extremely
low [10][11][12]. Several hardware-based runtime security
techniques have also emerged to prevent similar classes of
attacks [13][14]. These techniques improve upon the
performance overheads of software-based techniques.
However, they still fall short in being able to provide
guarantees if an attacker is already in the system. The fact that
an attacker bypassed the virtual fence in a way not protected
by these techniques, for example, a potential processor bug,
means that the virtual fence not useful at this point. In the
face of vulnerabilities that utilize processor bugs, it is
worthwhile to consider security techniques that operate under
the assumption that a “hole” in the virtual fence may be found
at any time.

This paper presents a hardware implemented enforcement
of “Information Flow Signatures” extracted via program
analysis. The enforcement ensures that, during runtime,
security critical data is computed according to source code
semantics, even under the threat of hardware or software
vulnerabilities. If an attacker attempts to tamper with the
protected program execution, the system will be notified so
that it can take appropriate actions. Though this technique can
also be used to provide protection against a wide range of
memory corruption attacks, we focus specifically on the
hardware-based mechanism for protecting security critical
data against malicious tampering. The specific contributions

Hardware Implementation of Information Flow
Signatures Derived via Program Analysis

Paul Dabrowski, William Healey, Karthik Pattabiraman, Shelley Chen§, Zbigniew Kalbarczyk, and
Ravishankar K. Iyer

Center for Reliable and High Performance Computing,
University of Illinois (Urbana-Champaign)

{pdabrows, whealey, pattabir, kalbar, rkiyer}@uiuc.edu

§SAIC
Champaign, IL

shelley.chen@saic.com

W

 2

of this study are:
1. Design, prototype implementation and demonstration of

Information Flow Signatures (IFS) checking hardware for
trustworthy execution of instructions computing critical
data. The key advantages of the IFS technique include:

o Small hardware footprint
o Does not affect processor clock frequency

2. Automated compiler-based application analysis for
deriving Information Flow Signatures, and application
instrumentation to facilitate communication between the
application and IFS checking hardware.

II. INFORMATION FLOW SIGNATURES FOR DATA INTEGRITY
The Information Flow Signatures (IFS) technique is used to

protect the integrity of critical data within an application or
operating system [15]. This data may be selected as the
highest priority security variables, such as variables that hold
information about user-authentication in an SSH application or
structures containing information about currently running
processes within an operating system.
 Once the developer selects the critical data, extraction of the
Information Flow Signatures takes place as a compiler pass
that requires no further programmer intervention. The
backwards slice of instructions and data that can directly or
indirectly influence the critical data is encoded and added to
the final binary as part of the program initialization. During
runtime, the Information Flow Signatures is checked against
the executing instructions, detecting any abnormalities, which
can then be handled by code also protected by the technique
itself.

A. Assumptions and Threat Model
In general, the IFS technique described here can be used to

prevent data corruption attacks. The aim of the technique is to
preserve data integrity rather than its confidentiality. Hence,
the technique does not address side-channel attacks [16]. The
threat model assumes that the attacker can execute arbitrary
code and overwrite program variables stored in both memory
and processor registers. We assume all malicious memory
accesses are visible to the processor pipeline. Thus, malicious
DMA transfers are not covered by this threat model. For
example, an attacker could use an IEEE 1394 interface port to
initiate transfers to the main memory of a system while
remaining unnoticed by the processor [17]. We also assume

that the Information Flow Signature hardware is initialized
prior to the attack conditions; thus, the technique protects
against runtime attacks, but only if the correct signatures have
been loaded into the hardware. We have explored solutions to
correctly initializing the hardware under the threat of insider
attacks or an untrusted operating system in [18], but do not
consider these conditions here.

B. Compiler Analysis and Runtime Checking
 The protection scheme consists of two phases:

1) A compile-time phase to extract the backward slice of
critical data in the program, and

2) A runtime-phase to check if the critical data is
influenced is in violation of the statically derived backward
slice. The runtime phase is implemented using a
combination of software and hardware.

Compile-time Phase. Given code instrumented with
annotations denoting critical data, compiler-based static
analysis determines the following:

1) Instructions that can influence the critical data (according
to program semantics), and
2) The set of objects (data) that each instruction (in (1)) is
allowed to write to
The compiler generates an Information Flow Signature that

encodes each instruction in (1) and each object in (2). All
instructions in this Information Flow Signature, and the data at
the beginning of the backwards slice, are marked trusted. This
trusted property is propagated at runtime according to the
propagation rules for each executed instruction and its
operands as shown in Table 1. An example backwards slice
used to derive the Information Flow Signature is shown in
Figure 1, where the data at address 0xC004 has been marked
critical.
Runtime Phase. The following invariants are enforced at
runtime using a combination of hardware and software:

1) Level 1 Check: Critical data is modified only by trusted
instructions and objects (enforced in hardware).
2) Level 2 Check: Each trusted instruction writes only to its
statically allowed objects, as defined in the source code and
derived by the compiler analysis (enforced in software)
As the trusted property of variables is propagated for all

instructions and data at runtime, any instruction which was
originally not in the backwards slice of the critical data that
tries to influence the critical data, will cause the trusted
property of critical data to be overwritten. The MOV
instruction on the left of Figure 1 shows an example of this
unsuccessful attack. Since the Level 1 hardware checker will
catch this malicious attempt, an attacker must now subvert an

Figure 1: An Example Backwards Slice

Table 1: Runtime actions for the Level 1 hardware check

Destination

(I.pc, I.operands)

Critical Non-Critical

(Trusted, Trusted) Invoke
Level 2
Check

Invoke Level 2
Check, set trusted

bit of target
(Trusted, Non-
Trusted)

Raise
Alarm

Raise Alarm

(Non-Trusted,
Trusted)

Raise
Alarm

Clear trusted bit
of target

(Non-Trusted, Non-
Trusted)

Raise
Alarm

Clear trusted bit
of target

 3

instruction that is trusted into writing to an object other than
the one it is supposed to. However, this is protected through
the Level 2 software checking. It is called on all trusted
instructions storing data to memory. If either the Level 1 or 2
checks fail, an interrupt is triggered which halts execution of
the program and raises a security alert. This interrupt routine
can itself be protected using the Information Flow Signatures
technique. By raising an alert immediately on detecting a
write to the slice, the integrity of critical data can be ensured,
and allows for immediate action to be taken by the application
or operating system.

For further discussion and resolution of issues regarding the
effects of conservative compiler analysis in deriving the
backwards slice, user-input being part of the backwards slice,
and dynamically mapping trusted data refer to [15].

III. HARDWARE IMPLEMENTATION
The Information Flow Signature technique hardware

checking mechanism is implemented as a Reliability and
Security Engine module, as described below.

A. The Reliability and Security Engine
The Reliability and Security Engine (RSE) is a framework

that provides a standard interface between a processor pipeline
and hardware modules that implement reliability and security
services for the executing application [19]. Figure 2 illustrates
a block diagram of the RSE connected to the Gaisler Research
Leon 3 open-source VHDL processor pipeline [20].

The modules are running alongside the host processor,
monitoring the behavior of the executing application. Probes
inserted into the pipeline of the host continuously transfer
select host state information to the RSE modules.
Reconfigurable hardware slices similar to those in an FPGA
may be used to implement the modules, allowing for
instantiation of the desired modules based on the requirements
of the current application. Alternatively, modules can be
implemented as an ASIC IP core, which are imported by a
processor designer to suit the demands imposed by the
customers and the market.
 In this design, we override the SPARC v8 instruction set
architecture co-processor operation instruction (CPOP1),
converting it into a CHK instruction. This CHK instruction is
used for communication between an instrumented application

and the RSE modules. It is ignored by the main pipeline of
the processor, and considered a NO-OP. The CHK
instructions are uniquely identified to specify the module they
are intended for. For example, during application
initialization, the Information Flow Signatures technique uses
CHK instructions to convey the signatures of the trusted
instructions and critical data that are required to enforce the
Level 1 checks in hardware.
 The RSE also contains a DMA controller connected to the
system bus in parallel with the processor. With the RSE,
module designers need not worry about making direct changes
to a processor pipeline. This allows one to focus on the
performance of only the components being added, rather than
their interaction with the rest of the processor. Additionally,
the RSE minimizes the intrusiveness of developing new
techniques, which decreases the chances of RSE module
designers from introducing errors that affect the functionality
of the chip in unexpected ways.

B. Information Flow Signatures Checking Module
To propagate the trusted and critical information associated

with instructions and data, the IFSCM implements a pipeline
structure similar to that in the main processor. By using the
RSE interface for all required pipeline control information, no
changes to the microprocessor pipeline are required for the
Information Flow Signatures Checking Module (IFSCM). We
use a data storage structure named “Critical Data/Trusted
Instruction” (CDTI) within the IFSCM to track when this
information is written to memory, and thus do not require any
modifications to the processor caches or system busses. In
order to alleviate any storage limitations that may arise from a
fixed-size CDTI, we also propose modifications to the TLB
that allow for unlimited trusted instructions and data in
Section V.A. However, the currently implemented fixed-sized
CDTI is shown to be adequate for the medium-sized
applications we have examined.

The Level 1 check described in Section II.B is executed in
hardware by the IFSCM. This guarantees that the check has a
low performance overhead and that it is performed on every
executed instruction. The Level 2 check is performed using a
software interrupt routine, which is only called when the Level
1 check finds a trusted instruction is writing to memory.

A prototype of the IFSCM is implemented in Field
Programmable Gate Array (FPGA) hardware interfacing with
the Leon 3 open-source VHDL processor. The signals read by
the IFSCM from the Leon 3’s RSE interface include: 1) the
register file control, 2) the current instruction and its pointer,
3) an indicator for pipeline stalls, flushes, and 4) the cache
control. These signals are used directly from the processor’s
pipeline without modifications. Figure 3 shows the checking
module. It contains a pipelined structure similar to the main
processor’s pipeline, and a small register file to track
intermediate trusted data before it is written to the CDTI.
Signals read from the processor pipeline are used to control
this checking pipeline. Outputs from the checking module
trigger an interrupt within the processor, allowing the software
to handle Level 2 checks and security violations.
The CDTI. Using the CDTI to store the trusted and critical
bits obviates the need to use system RAM to mark instructions
and data as trusted or critical. Thus, we relieve the need to

Figure 2: The Leon 3 processor with the RSE Interface

 4

add an extra bit to the main bus width within the main
processor, or to tag caches with extra information. Such
approaches, which have been used in [13] and [14] for
different processor-level security enhancements, require
significant effort to modify and re-validate the design of the
processor and call for changing architectural characteristics,
such as bus widths, of current systems.

The current implementation of the CDTI allows for up to 16
4KB pages to be labeled with trusted instructions and trusted
or critical data. This corresponds to over 16,000 instructions
or memory locations. A 16-entry CAM is used to store the
memory pages that are loaded into the CDTI. A 4KB dual-
ported RAM is used to store the associated signatures of
trusted instructions and trusted or critical data for the loaded
pages. The signatures are stored as bit-masks for the memory
pages, signifying if a memory location is trusted or critical.
The RAM storing the signatures is indexed using tags from the
CAM. This structure is similar to a combined instruction and
data TLB holding information about working pages.
IFSCM Runtime Operation. The operation of the checking
module in Figure 3 is as follows:
• During program initialization: RSE CHK instructions from

the main processor pipeline enter the CHK handler within
the IFSCM and are used to initialize the CDTI.

• During runtime: the fetch stage checks if an instruction is
trusted within the CDTI, based on the program counter
value read from the RSE interface.

• Trusted instructions have their operands are retrieved in the
register stage of the module.

• The store check stage of module enforces Level 1 checking
rules for store instructions, before they enter the memory
stage of the processor (e.g. if a trusted store instruction
uses non-trusted operands, the checking module raises an
alarm before the memory operation occurs).

• CDTI access looks up and writes back the trusted and
critical bit variable information in the CDTI using cache
control signals from RSE interface.

• In the check stage, trusted instruction operands are checked
and the destination of untrusted instructions is checked
and actions are taken as shown in Table 1.

• In the writeback stage, trusted bit information is propagated
back to the IFSCM register file.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
The RSE and IFCSM are implemented on the Leon 3 soft

processor. The system on a chip includes split 16 KB L1
instruction and data caches, an FPU, a DDR memory
controller and an ethernet controller. Synthesis of the system
is done using Synplify Pro 8.1, and map, place and route are
completed using the Xilinx XST 8.2 toolchain. The Xilinx
Virtex-II Pro 30 FPGA chip is targeted, with a 65 MHz
nominal clock speed for the Leon 3 system.
 Our software toolchain is built upon the IMPACT compiler
[21]. Its advanced pointer analysis capabilities are ideal for
the backwards slicing required by the Information Flow
Signatures technique, allowing the technique to be
implemented as a compiler pass that requires no programmer
intervention. All software performance measurements include
initialization times, thus measuring the added overhead of
using CHK instructions to initialize the Level 1 checking
hardware, and loading the Level 2 checking tables in software.

The applications tested here include the Power and
Traveling Salesman (TSP) applications from the Olden
benchmark suite [22]. These two programs were determined
to have security-critical data which can be impacted by an
attacker. The Olden benchmarks have a significant amount of
pointer manipulation and have been used to benchmark
several previous works. Also, their functionality is more
constrained than, for example, HTTP or SSH servers (both of
which are analyzed in [15]).
Olden Power. The Olden Power benchmark implements a
power-pricing algorithm. Given a set of demands represented
by leaves in a tree, it computes the required power output
using an iterative optimization problem solver and returns the
pricing for the given demands. In this application, we chose
the data of the tree holding the set of power demands by the
clients as critical. If corrupted, this data could be used to
influence prices computed by the application.
Olden TSP. The Traveling Salesman Problem benchmark
solves the well-known optimization problem using a
partitioning algorithm. The data structure holding the graph
used in the problem is a balanced binary tree. We select the
pointer to this tree, used throughout the program to access the

Figure 3: Diagram of the Information Flow Signature

Checking Module and Photo of the FPGA Board

 5

tree nodes, as our security-critical data. Malicious tampering
with this pointer could lead to an incorrect tree being used for
computing the solution.

Table 2 shows the compiler analysis results for the chosen
critical variables in Power and TSP.

B. Results
Hardware Area Overhead. Synthesis results for hardware
area overheads are displayed Table 3. We find that the largest
contribution to the area overhead is the CDTI, at
approximately 4.2%. This is not surprising, since the RSE and
IFCSM are essentially a set of registers controlled by signals
from the main pipeline of the Leon 3 processor, and add less
than 0.4% area overhead in this case. The CDTI, however,
implements a TLB-like structure, with a 16-entry cam in
addition to 4 KB of internal RAM. These area overhead
results suggest that on multi-billion transistor chips containing
two or more levels of cache hierarchy, the addition of the RSE
and IFSCM will have negligible chip area overheads.
Hardware Performance Overhead. Timing constraints were
met for the clock frequency of the system defined for the Leon
3. Thus, the RSE and IFSCM have no components that are on
the critical timing path. This is because the hardware
components used within the IFSCM and CDTI are similar to
those used through the rest of the system.
Software Performance Overhead. Since Level 1 checking is
run for all instructions, the performance difference between
Power and TSP centers on the frequency of the Level 2
checking. In Power, the critical data that we selected was
written to sparingly but frequently read from throughout the
application. Thus, the Level 2 software checks rarely needed
to be called, as they are executed only when trusted data is
modified. So, even though the backwards slice of the critical
data contained about 7% of the application, it only contributed
a 1% performance overhead during execution, as shown in
Figure 4.

On the other hand, the backwards slice of the critical data
we chose within TSP included less than 2% of the instructions
of the application. However, these instructions modified the
critical data a substantial number of times during the run of the
benchmark. Thus, Level 2 software checks needed to be

invoked quite frequently during execution, leading to the 69%
performance degradation.

V. DISCUSSION AND FUTURE WORK

A. Looking Forward
Level 2 Checks in Hardware. It is possible to lessen the
overhead introduced with Level 2 checks in software by
moving them to hardware. Complications arise due to the fact
that a trusted memory store instruction may be allowed to
write to multiple different objects, as defined by the compiler
analysis in Section II.B. However, our experience shows that
nearly all instructions are only allowed to write to a single
memory object according to application semantics. Thus, by
augmenting the CDTI with a hardware lookup table that
includes the address range of one object that the trusted
instruction is allowed to write to, there is no need to use
software Level 2 checks for most of the trusted instructions.
The area overhead of such a hardware lookup table will be
several times greater than the current CDTI structure.
Extending the CDTI. In order to handle arbitrarily large
applications and be able to protect significant portions of an
operating system with Information Flow Signatures, the CDTI
must be extended to handle an unlimited number of trusted
instructions and critical data objects in memory. This can be
achieved by piggybacking on the page-handling mechanism
already implemented within the MMU. By extending the RSE
to receive signals from the TLB that control selection,
insertion and removal of TLB entries, the IFSCM could use
these signals to control the CDTI. The CDTI will then be
synchronized with the set of working memory pages being
used by the processor. Pages being removed or inserted into
the CDTI can be written and read from main memory using
the RSE DMA controller. Assuming a 256-bit memory bus
which is typical of today’s system architectures, this would
add 4 extra memory fetches and 4 memory writes per TLB
miss of a dirty page. The Information Flow Signatures stored
in main memory could be protected using the IFSCM
hardware itself, as a range in main memory could be reserved
for this critical data. This will require the IFSCM to have
knowledge of the physical addresses being generated by the
MMU, in order to check they do not match against the
designated area for storing Information Flow Signatures.

Figure 4: Performance Overheads

Table 3: Hardware Area Overheads in ASIC gates
Baseline + RSE and IFSCM

Pipeline
+ CDTI

3.355 million
(100%)

3.368 million
(100.36%)

3.502 million
(104.20%)

Table 2: Compiler Analysis Results for Benchmarks
Benchmark
Application Power TSP

Total Number of
Instructions 10388 5144

Number Trusted
Instructions 726 (7.0%) 118 (2.3%)

Number of
Trusted and
Critical Memory
Locations

30 1

 6

IFSCM on SuperScalar Processors. Ironically, the
complexity introduced by superscalar processor architecture is
helpful to the Information Flow Signatures technique. For
example, because of the reorder buffer and store buffers
present on these processors, the technique can actually trigger
an alarm before an instruction or memory operation is
committed. Incorporating control signals from these
structures into the RSE is straightforward, and has been
demonstrated previously on a DLX superscalar processor [19].
Multicore Architectures. Designing the RSE for many-core
architectures presents several challenges. In order for the
Information Flow Signatures technique to work fully,
instructions executed on each core must be checked against a
global view of the signatures. Is this best implemented
through a single Information Flow Signatures module that has
a CDTI containing all working pages from each core? Or, if
multiple modules protecting each core separately are used,
what is the best method of maintaining coherence between
them? These questions raise topics similar to those in Intel
processor errata. For example, erratum AH39 for the Core 2
Duo Centrino architecture states “Cache Data Access Request
from One Core Hitting a Modified Line in the L1 Data Cache
of the Other Core May Cause Unpredictable System
Behavior” [2]. Such bugs beg for a more general question: if a
component of a processor is faulty, to what extent can we rely
on it to provide information to security techniques?

VI. CONCLUSIONS
Due to the trend in increasing processor design complexity,

greater numbers bugs are introduced in each new architecture.
The security implications of processor errata are significant:
we suggest that the current paradigm of protecting a system
using a virtual fence will not suffice in the near future, as
unknown vulnerabilities will be present in the processor or
computer system.

In this paper we present the hardware architecture used to
enforce the Information Flow Signatures security technique.
This combined hardware-software technique allows for
trustworthy execution of instructions which influence security-
critical data, even in the face of vulnerabilities that exist
within a system. The technique detects any deviation from the
behavior of the application described by the source code. By
using the Reliability and Security Engine as an abstraction to
signals of the pipeline, we are able to implement the
Information Flow Signatures Checking Module without
modification to the processor pipeline. The module itself
proves have a small footprint of less than 5% the size of the
processor, and has no affect on the performance of the
processor. Future extensions to the hardware can lower the
performance overhead introduced by the software portion of
the technique.

REFERENCES
[1] B. Bentley, “Validating the Intel(R) Pentium(R) 4 microprocessor”,

Proceedings of the Design Automation Conference, 2001.
[2] Intel Corp., “Intel Core 2 Duo and Intel Core 2 Solo Processor for Intel

Centrino Duo Processor Technology: Specification Update”, Jan 2008.

[3] “Theo de Raadt Details Intel Core 2 Bugs,”
http://hardware.slashdot.org/article.pl?sid=07/06/28/1124256. [Accessed
Feb 15 2008].

[4] Linus Torvalds, “Core 2 Errata -- problematic or overblown?”
http://www.realworldtech.com/forums/index.cfm?action=detail&id=805
52&threadid=80534&roomid=2. [Accessed Feb 15 2008.]

[5] “NSF Awards $36 Million Toward Securing Cyberspace”, NSF Press
Release. http://www.nsf.gov/news/news_summ.jsp?cntn_id=104352
[Accessed Feb. 15, 2008]

[6] C. E. Irvine, K. Levitt, “Trusted Hardware: Can It Be Trustworthy?” In
the Proceedings of Design Automation Conference, 2007.

[7] Miguel Castro, Manuel Costa, and Tim Harris. “Securing software by
enforcing data-flow integrity,” In Symposium on Operating System
Design and Implementation (OSDI), Seattle, WA, Nov. 2006.

[8] G. C. Necula, S. McPeak, W. Weimer “CCured: type-safe retrofitting of
legacy code,” In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages Portland,
Oregon, January 16 - 18, 2002. POPL '02. ACM Press.

[9] D. Dhurjati, S. Kowshik, V. Adve, “SAFECode: enforcing alias analysis
for weakly typed languages,” In Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '06). ACM Press, PP. 144-157.

[10] S. Bhatkar, D. DuVarney, and R. Sekar. “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits,” In
V. Paxson, editor, Proceedings of the 12th USENIX Sec. Symp., pages
105--20. USENIX, Aug. 2003.

[11] J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent runtime randomization
for security,” In A. Fantechi, editor, Proceeding of the 22nd Symp. on
Reliable Distributed Systems. IEEE Computer Society, Oct. 2003.

[12] E. D. Berger, B. G. Zorn, “DieHard: probabilistic memory safety for
unsafe languages,” In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI '06). ACM Press, 2006.

[13] M. Dalton, H. Kannan, C. Kozyrakis, “Raksha: A Flexible Information
Flow Architecture for Software Security,” in Proc. of the ACM Intl.
Symp. on Computer Architecture, June 9–13, 2007, San Diego.

[14] G. Suh, J. Lee, and S. Devadas, “Secure Program Execution via
Dynamic Information Flow Tracking,” 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems. Boston, Massachusetts. October 2004.

[15] W. Healey, et. al. “Ensuring Critical Data Integrity via Information Flow
Signatures,” University of Illinois Technical Report. UILU-ENG-07-
2216. CRHC-07-09.

[16] D. Boneh, R. A. DeMillo, R. J. Lipton, “On the Importance of
Eliminating Errors in Cryptographic,” Computations Journal of
Cryptology: The Journal of the International Association for
Cryptologic Research, vol. 14, pp. 101-119, 2001.

[17] Adam Boileau. “Hit by a Bus: Physical Access Attacks with Firewire.”
Presented at Ruxcon 2k6, 2006.

[18] R. Iyer, P. Dabrowski, N. Nakka, Z. Kalbarczyk, ”Reconfigurable
Tamper resistant Hardware Support Against Insider Threats,” In
Proceedings of the 2007 ARO/FSTC Workshop on Insider Attack and
Cyber Security, 2007.

[19] Nakka, N., et. al., “An Architectural Framework for Providing
Reliability and Security Support,” In Proceedings of the 2004
international Conference on Dependable Systems and Networks, 2004.

[20] Jiri Gaisler, Gaisler Research. Leon 3 Synthesizable Processor.
http://www.gaisler.com

[21] UIUC Open-IMPACT Effort. The OpenIMPACT IA-64 Compiler.
http://gelato.uiuc.edu

[22] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting
Dynamic Data Structures on Distributed-Memory Machines,” ACM
Transactions on Programming Languages and Systems, 17(2):233–263,
1995

