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Abstract — We present an architectural solution that provides 

trustworthy execution of C code that computes critical data, in 
spite of potential hardware and software vulnerabilities.  The 
technique uses both static compiler-based analysis to generate a 
signature for an application, or operating system, and dynamic 
hardware/software signature checking.  A prototype implementa-
tion of the hardware on a soft processor within an FPGA incurs 
no performance overhead and about 4% chip area overhead, 
while the software portion of the technique adds between 1% and 
69% performance overhead in our test applications, depending 
on the selection of critical data. 

I. INTRODUCTION 
ITH shrinking process technology driving an increase 

in the number of transistors per chip, processor 
designers are utilizing these transistors in more creative ways.  
While new innovations are now possible, more complicated 
and tedious validation stages in the design cycle are 
introduced. For example, the complex interactions of multiple 
cores on a chip, new levels of abstraction such as 
virtualization extensions, and huge growth in the size of the 
hardware description language code contribute to more 
processor bugs slipping by validation engineers than ever 
before [1].  The Intel Core 2 Centrino architecture has an 82 
page document dedicated just to workarounds for over 100 
processor errata which have been uncovered thus far [2].  
Though no known working exploits for these errata have been 
released, the list grows every month and has raised lively 
discussion about the security implications of processor bugs 
[3][4].  As with each new processor release, the errata list is 
extended.  It is easy to foresee a future where an operating 
system not implementing workarounds is susceptible to both 
these known and other yet to be discovered low-level 
vulnerabilities. 

Furthermore, these are only examples of unintentional 
implementation bugs due to insufficient validation.  
Unfortunately, it is also possible for a rogue designer to 
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intentionally introduce hard-to-find bugs deep inside a 
processor, with the intention of being able to exploit the 
unknown hardware errors once the chip is being produced and 
distributed on a large scale.  This topic has been a recent focus 
of several large initiatives [5], and has garnered significant 
attention in the research community [6]. 

Both of these situations lead to very real security 
vulnerabilities that challenge traditional thinking in computer 
security.  It is generally considered that by erecting a “virtual 
fence” that protects the computer system, those with malicious 
intent can be kept out.  For example, current software-based 
security techniques tend to focus on remote vulnerabilities, 
such as buffer overflow attacks, format string attacks, and 
other memory corruption attacks, looking to either “plug” 
every potential hole in the software [7][8][9], or to make sure 
the statistical likelihood of a successful attack is extremely 
low [10][11][12].  Several hardware-based runtime security 
techniques have also emerged to prevent similar classes of 
attacks [13][14].  These techniques improve upon the 
performance overheads of software-based techniques. 
However, they still fall short in being able to provide 
guarantees if an attacker is already in the system.  The fact that 
an attacker bypassed the virtual fence in a way not protected 
by these techniques, for example, a potential processor bug, 
means that the virtual fence not useful at this point.  In the 
face of vulnerabilities that utilize processor bugs, it is 
worthwhile to consider security techniques that operate under 
the assumption that a “hole” in the virtual fence may be found 
at any time.  

This paper presents a hardware implemented enforcement 
of “Information Flow Signatures” extracted via program 
analysis.  The enforcement ensures that, during runtime, 
security critical data is computed according to source code 
semantics, even under the threat of hardware or software 
vulnerabilities.  If an attacker attempts to tamper with the 
protected program execution, the system will be notified so 
that it can take appropriate actions.  Though this technique can 
also be used to provide protection against a wide range of 
memory corruption attacks, we focus specifically on the 
hardware-based mechanism for protecting security critical 
data against malicious tampering.  The specific contributions 
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of this study are: 
1. Design, prototype implementation and demonstration of 

Information Flow Signatures (IFS) checking hardware for 
trustworthy execution of instructions computing critical 
data. The key advantages of the IFS technique include: 

o Small hardware footprint 
o Does not affect processor clock frequency 

2. Automated compiler-based application analysis for 
deriving Information Flow Signatures, and application 
instrumentation to facilitate communication between the 
application and IFS checking hardware. 

II. INFORMATION FLOW SIGNATURES FOR DATA INTEGRITY 
The Information Flow Signatures (IFS) technique is used to 

protect the integrity of critical data within an application or 
operating system [15]. This data may be selected as the 
highest priority security variables, such as variables that hold 
information about user-authentication in an SSH application or 
structures containing information about currently running 
processes within an operating system.   
 Once the developer selects the critical data, extraction of the 
Information Flow Signatures takes place as a compiler pass 
that requires no further programmer intervention. The 
backwards slice of instructions and data that can directly or 
indirectly influence the critical data is encoded and added to 
the final binary as part of the program initialization. During 
runtime, the Information Flow Signatures is checked against 
the executing instructions, detecting any abnormalities, which 
can then be handled by code also protected by the technique 
itself. 

A. Assumptions and Threat Model 
In general, the IFS technique described here can be used to 

prevent data corruption attacks.  The aim of the technique is to 
preserve data integrity rather than its confidentiality. Hence, 
the technique does not address side-channel attacks [16].  The 
threat model assumes that the attacker can execute arbitrary 
code and overwrite program variables stored in both memory 
and processor registers.  We assume all malicious memory 
accesses are visible to the processor pipeline.  Thus, malicious 
DMA transfers are not covered by this threat model.  For 
example, an attacker could use an IEEE 1394 interface port to 
initiate transfers to the main memory of a system while 
remaining unnoticed by the processor [17].  We also assume 

that the Information Flow Signature hardware is initialized 
prior to the attack conditions; thus, the technique protects 
against runtime attacks, but only if the correct signatures have 
been loaded into the hardware. We have explored solutions to 
correctly initializing the hardware under the threat of insider 
attacks or an untrusted operating system in [18], but do not 
consider these conditions here. 

B. Compiler Analysis and Runtime Checking 
 The protection scheme consists of two phases:  

1) A compile-time phase to extract the backward slice of 
critical data in the program, and  

2) A runtime-phase to check if the critical data is 
influenced is in violation of the statically derived backward 
slice. The runtime phase is implemented using a 
combination of software and hardware. 

Compile-time Phase. Given code instrumented with 
annotations denoting critical data, compiler-based static 
analysis determines the following: 

1) Instructions that can influence the critical data (according 
to program semantics), and 
2) The set of objects (data) that each instruction (in (1)) is 
allowed to write to 
The compiler generates an Information Flow Signature that 

encodes each instruction in (1) and each object in (2).  All 
instructions in this Information Flow Signature, and the data at 
the beginning of the backwards slice, are marked trusted.  This 
trusted property is propagated at runtime according to the 
propagation rules for each executed instruction and its 
operands as shown in Table 1.  An example backwards slice 
used to derive the Information Flow Signature is shown in 
Figure 1, where the data at address 0xC004 has been marked 
critical.  
Runtime Phase. The following invariants are enforced at 
runtime using a combination of hardware and software: 

1) Level 1 Check: Critical data is modified only by trusted 
instructions and objects (enforced in hardware). 
2) Level 2 Check: Each trusted instruction writes only to its 
statically allowed objects, as defined in the source code and 
derived by the compiler analysis (enforced in software) 
As the trusted property of variables is propagated for all 

instructions and data at runtime, any instruction which was 
originally not in the backwards slice of the critical data that 
tries to influence the critical data, will cause the trusted 
property of critical data to be overwritten.  The MOV 
instruction on the left of Figure 1 shows an example of this 
unsuccessful attack.  Since the Level 1 hardware checker will 
catch this malicious attempt, an attacker must now subvert an 

 
 

Figure 1: An Example Backwards Slice 

 
Table 1: Runtime actions for the Level 1 hardware check 

Destination 
 

(I.pc, I.operands )  

Critical Non-Critical 

(Trusted, Trusted) Invoke 
Level 2 
Check 

Invoke Level 2 
Check, set trusted 

bit of target 
(Trusted, Non-
Trusted) 

Raise 
Alarm 

Raise Alarm 

(Non-Trusted, 
Trusted) 

Raise 
Alarm  

Clear trusted bit 
of target  

(Non-Trusted, Non-
Trusted) 

Raise 
Alarm 

Clear trusted bit 
of target  
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instruction that is trusted into writing to an object other than 
the one it is supposed to.  However, this is protected through 
the Level 2 software checking.  It is called on all trusted 
instructions storing data to memory.  If either the Level 1 or 2 
checks fail, an interrupt is triggered which halts execution of 
the program and raises a security alert.  This interrupt routine 
can itself be protected using the Information Flow Signatures 
technique.  By raising an alert immediately on detecting a 
write to the slice, the integrity of critical data can be ensured, 
and allows for immediate action to be taken by the application 
or operating system.  

For further discussion and resolution of issues regarding the 
effects of conservative compiler analysis in deriving the 
backwards slice, user-input being part of the backwards slice, 
and dynamically mapping trusted data refer to [15]. 

III. HARDWARE IMPLEMENTATION 
The Information Flow Signature technique hardware 

checking mechanism is implemented as a Reliability and 
Security Engine module, as described below. 

A. The Reliability and Security Engine 
The Reliability and Security Engine (RSE) is a framework 

that provides a standard interface between a processor pipeline 
and hardware modules that implement reliability and security 
services for the executing application [19]. Figure 2 illustrates 
a block diagram of the RSE connected to the Gaisler Research 
Leon 3 open-source VHDL processor pipeline [20].   

The modules are running alongside the host processor, 
monitoring the behavior of the executing application.  Probes 
inserted into the pipeline of the host continuously transfer 
select host state information to the RSE modules.  
Reconfigurable hardware slices similar to those in an FPGA 
may be used to implement the modules, allowing for 
instantiation of the desired modules based on the requirements 
of the current application.  Alternatively, modules can be 
implemented as an ASIC IP core, which are imported by a 
processor designer to suit the demands imposed by the 
customers and the market.  
 In this design, we override the SPARC v8 instruction set 
architecture co-processor operation instruction (CPOP1), 
converting it into a CHK instruction.  This CHK instruction is 
used for communication between an instrumented application 

and the RSE modules.  It is ignored by the main pipeline of 
the processor, and considered a NO-OP.  The CHK 
instructions are uniquely identified to specify the module they 
are intended for.  For example, during application 
initialization, the Information Flow Signatures technique uses 
CHK instructions to convey the signatures of the trusted 
instructions and critical data that are required to enforce the 
Level 1 checks in hardware.  
 The RSE also contains a DMA controller connected to the 
system bus in parallel with the processor.  With the RSE, 
module designers need not worry about making direct changes 
to a processor pipeline. This allows one to focus on the 
performance of only the components being added, rather than 
their interaction with the rest of the processor.  Additionally, 
the RSE minimizes the intrusiveness of developing new 
techniques, which decreases the chances of RSE module 
designers from introducing errors that affect the functionality 
of the chip in unexpected ways.  

B. Information Flow Signatures Checking Module 
To propagate the trusted and critical information associated 

with instructions and data, the IFSCM implements a pipeline 
structure similar to that in the main processor.  By using the 
RSE interface for all required pipeline control information, no 
changes to the microprocessor pipeline are required for the 
Information Flow Signatures Checking Module (IFSCM).  We 
use a data storage structure named “Critical Data/Trusted 
Instruction” (CDTI) within the IFSCM to track when this 
information is written to memory, and thus do not require any 
modifications to the processor caches or system busses.  In 
order to alleviate any storage limitations that may arise from a 
fixed-size CDTI, we also propose modifications to the TLB 
that allow for unlimited trusted instructions and data in 
Section V.A.  However, the currently implemented fixed-sized 
CDTI is shown to be adequate for the medium-sized 
applications we have examined.  

The Level 1 check described in Section II.B is executed in 
hardware by the IFSCM.  This guarantees that the check has a 
low performance overhead and that it is performed on every 
executed instruction.  The Level 2 check is performed using a 
software interrupt routine, which is only called when the Level 
1 check finds a trusted instruction is writing to memory.  

A prototype of the IFSCM is implemented in Field 
Programmable Gate Array (FPGA) hardware interfacing with 
the Leon 3 open-source VHDL processor.  The signals read by 
the IFSCM from the Leon 3’s RSE interface include: 1) the 
register file control, 2) the current instruction and its pointer, 
3) an indicator for pipeline stalls, flushes, and 4) the cache 
control.  These signals are used directly from the processor’s 
pipeline without modifications.  Figure 3 shows the checking 
module.   It contains a pipelined structure similar to the main 
processor’s pipeline, and a small register file to track 
intermediate trusted data before it is written to the CDTI.  
Signals read from the processor pipeline are used to control 
this checking pipeline.  Outputs from the checking module 
trigger an interrupt within the processor, allowing the software 
to handle Level 2 checks and security violations.  
The CDTI. Using the CDTI to store the trusted and critical 
bits obviates the need to use system RAM to mark instructions 
and data as trusted or critical.  Thus, we relieve the need to 

 
Figure 2: The Leon 3 processor with the RSE Interface 
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add an extra bit to the main bus width within the main 
processor, or to tag caches with extra information.  Such 
approaches, which have been used in [13] and [14] for 
different processor-level security enhancements, require 
significant effort to modify and re-validate the design of the 
processor and call for changing architectural characteristics, 
such as bus widths, of current systems.  

The current implementation of the CDTI allows for up to 16 
4KB pages to be labeled with trusted instructions and trusted 
or critical data.  This corresponds to over 16,000 instructions 
or memory locations.  A 16-entry CAM is used to store the 
memory pages that are loaded into the CDTI.  A 4KB dual-
ported RAM is used to store the associated signatures of 
trusted instructions and trusted or critical data for the loaded 
pages.  The signatures are stored as bit-masks for the memory 
pages, signifying if a memory location is trusted or critical.  
The RAM storing the signatures is indexed using tags from the 
CAM.  This structure is similar to a combined instruction and 
data TLB holding information about working pages. 
IFSCM Runtime Operation. The operation of the checking 
module in Figure 3 is as follows: 
• During program initialization: RSE CHK instructions from 

the main processor pipeline enter the CHK handler within 
the IFSCM and are used to initialize the CDTI.  

• During runtime: the fetch stage checks if an instruction is 
trusted within the CDTI, based on the program counter 
value read from the RSE interface. 

• Trusted instructions have their operands are retrieved in the 
register stage of the module. 

• The store check stage of module enforces Level 1 checking 
rules for store instructions, before they enter the memory 
stage of the processor (e.g. if a trusted store instruction 
uses non-trusted operands, the checking module raises an 
alarm before the memory operation occurs). 

• CDTI access looks up and writes back the trusted and 
critical bit variable information in the CDTI using cache 
control signals from RSE interface. 

• In the check stage, trusted instruction operands are checked 
and the destination of untrusted instructions is checked 
and actions are taken as shown in Table 1. 

• In the writeback stage, trusted bit information is propagated 
back to the IFSCM register file.  

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
The RSE and IFCSM are implemented on the Leon 3 soft 

processor. The system on a chip includes split 16 KB L1 
instruction and data caches, an FPU, a DDR memory 
controller and an ethernet controller.  Synthesis of the system 
is done using Synplify Pro 8.1, and map, place and route are 
completed using the Xilinx XST 8.2 toolchain.  The Xilinx 
Virtex-II Pro 30 FPGA chip is targeted, with a 65 MHz 
nominal clock speed for the Leon 3 system.   
 Our software toolchain is built upon the IMPACT compiler 
[21].  Its advanced pointer analysis capabilities are ideal for 
the backwards slicing required by the Information Flow 
Signatures technique, allowing the technique to be 
implemented as a compiler pass that requires no programmer 
intervention.  All software performance measurements include 
initialization times, thus measuring the added overhead of 
using CHK instructions to initialize the Level 1 checking 
hardware, and loading the Level 2 checking tables in software. 

The applications tested here include the Power and 
Traveling Salesman (TSP) applications from the Olden 
benchmark suite [22].  These two programs were determined 
to have security-critical data which can be impacted by an 
attacker.  The Olden benchmarks have a significant amount of 
pointer manipulation and have been used to benchmark 
several previous works.  Also, their functionality is more 
constrained than, for example, HTTP or SSH servers (both of 
which are analyzed in [15]). 
Olden Power. The Olden Power benchmark implements a 
power-pricing algorithm.  Given a set of demands represented 
by leaves in a tree, it computes the required power output 
using an iterative optimization problem solver and returns the 
pricing for the given demands.  In this application, we chose 
the data of the tree holding the set of power demands by the 
clients as critical.  If corrupted, this data could be used to 
influence prices computed by the application. 
Olden TSP. The Traveling Salesman Problem benchmark 
solves the well-known optimization problem using a 
partitioning algorithm.  The data structure holding the graph 
used in the problem is a balanced binary tree.  We select the 
pointer to this tree, used throughout the program to access the 

 
Figure 3: Diagram of the Information Flow Signature 

Checking Module and Photo of the FPGA Board 
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tree nodes, as our security-critical data.   Malicious tampering 
with this pointer could lead to an incorrect tree being used for 
computing the solution.  

Table 2 shows the compiler analysis results for the chosen 
critical variables in Power and TSP. 

B. Results 
Hardware Area Overhead. Synthesis results for hardware 
area overheads are displayed Table 3.  We find that the largest 
contribution to the area overhead is the CDTI, at 
approximately 4.2%.  This is not surprising, since the RSE and 
IFCSM are essentially a set of registers controlled by signals 
from the main pipeline of the Leon 3 processor, and add less 
than 0.4% area overhead in this case. The CDTI, however, 
implements a TLB-like structure, with a 16-entry cam in 
addition to 4 KB of internal RAM.  These area overhead 
results suggest that on multi-billion transistor chips containing 
two or more levels of cache hierarchy, the addition of the RSE 
and IFSCM will have negligible chip area overheads.  
Hardware Performance Overhead. Timing constraints were 
met for the clock frequency of the system defined for the Leon 
3.  Thus, the RSE and IFSCM have no components that are on 
the critical timing path.  This is because the hardware 
components used within the IFSCM and CDTI are similar to 
those used through the rest of the system. 
Software Performance Overhead. Since Level 1 checking is 
run for all instructions, the performance difference between 
Power and TSP centers on the frequency of the Level 2 
checking.  In Power, the critical data that we selected was 
written to sparingly but frequently read from throughout the 
application.  Thus, the Level 2 software checks rarely needed 
to be called, as they are executed only when trusted data is 
modified.  So, even though the backwards slice of the critical 
data contained about 7% of the application, it only contributed 
a 1% performance overhead during execution, as shown in 
Figure 4. 

On the other hand, the backwards slice of the critical data 
we chose within TSP included less than 2% of the instructions 
of the application.  However, these instructions modified the 
critical data a substantial number of times during the run of the 
benchmark.  Thus, Level 2 software checks needed to be 

invoked quite frequently during execution, leading to the 69% 
performance degradation. 

V. DISCUSSION AND FUTURE WORK 

A. Looking Forward 
Level 2 Checks in Hardware. It is possible to lessen the 
overhead introduced with Level 2 checks in software by 
moving them to hardware.  Complications arise due to the fact 
that a trusted memory store instruction may be allowed to 
write to multiple different objects, as defined by the compiler 
analysis in Section II.B.  However, our experience shows that 
nearly all instructions are only allowed to write to a single 
memory object according to application semantics.  Thus, by 
augmenting the CDTI with a hardware lookup table that 
includes the address range of one object that the trusted 
instruction is allowed to write to, there is no need to use 
software Level 2 checks for most of the trusted instructions.  
The area overhead of such a hardware lookup table will be 
several times greater than the current CDTI structure. 
Extending the CDTI. In order to handle arbitrarily large 
applications and be able to protect significant portions of an 
operating system with Information Flow Signatures, the CDTI 
must be extended to handle an unlimited number of trusted 
instructions and critical data objects in memory.  This can be 
achieved by piggybacking on the page-handling mechanism 
already implemented within the MMU.  By extending the RSE 
to receive signals from the TLB that control selection, 
insertion and removal of TLB entries, the IFSCM could use 
these signals to control the CDTI.  The CDTI will then be 
synchronized with the set of working memory pages being 
used by the processor.  Pages being removed or inserted into 
the CDTI can be written and read from main memory using 
the RSE DMA controller.  Assuming a 256-bit memory bus 
which is typical of today’s system architectures, this would 
add 4 extra memory fetches and 4 memory writes per TLB 
miss of a dirty page.  The Information Flow Signatures stored 
in main memory could be protected using the IFSCM 
hardware itself, as a range in main memory could be reserved 
for this critical data.  This will require the IFSCM to have 
knowledge of the physical addresses being generated by the 
MMU, in order to check they do not match against the 
designated area for storing Information Flow Signatures. 

 
Figure 4: Performance Overheads 

 
Table 3: Hardware Area Overheads in ASIC gates  
Baseline + RSE and IFSCM 

Pipeline 
+ CDTI 

3.355 million 
(100%) 

3.368 million 
(100.36%) 

3.502 million 
(104.20%) 

 

Table 2: Compiler Analysis Results for Benchmarks 
Benchmark 
Application Power TSP  

Total Number of 
Instructions 10388  5144  

Number Trusted 
Instructions 726 (7.0%) 118 (2.3%) 

Number of 
Trusted and 
Critical Memory 
Locations 

30 1 
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IFSCM on SuperScalar Processors. Ironically, the 
complexity introduced by superscalar processor architecture is 
helpful to the Information Flow Signatures technique.  For 
example, because of the reorder buffer and store buffers 
present on these processors, the technique can actually trigger 
an alarm before an instruction or memory operation is 
committed.  Incorporating control signals from these 
structures into the RSE is straightforward, and has been 
demonstrated previously on a DLX superscalar processor [19]. 
Multicore Architectures. Designing the RSE for many-core 
architectures presents several challenges.  In order for the 
Information Flow Signatures technique to work fully, 
instructions executed on each core must be checked against a 
global view of the signatures.  Is this best implemented 
through a single Information Flow Signatures module that has 
a CDTI containing all working pages from each core?  Or, if 
multiple modules protecting each core separately are used, 
what is the best method of maintaining coherence between 
them?  These questions raise topics similar to those in Intel 
processor errata.  For example, erratum AH39 for the Core 2 
Duo Centrino architecture states “Cache Data Access Request 
from One Core Hitting a Modified Line in the L1 Data Cache 
of the Other Core May Cause Unpredictable System 
Behavior” [2].  Such bugs beg for a more general question: if a 
component of a processor is faulty, to what extent can we rely 
on it to provide information to security techniques?   

VI. CONCLUSIONS 
Due to the trend in increasing processor design complexity, 

greater numbers bugs are introduced in each new architecture.  
The security implications of processor errata are significant: 
we suggest that the current paradigm of protecting a system 
using a virtual fence will not suffice in the near future, as 
unknown vulnerabilities will be present in the processor or 
computer system. 

In this paper we present the hardware architecture used to 
enforce the Information Flow Signatures security technique.  
This combined hardware-software technique allows for 
trustworthy execution of instructions which influence security-
critical data, even in the face of vulnerabilities that exist 
within a system.  The technique detects any deviation from the 
behavior of the application described by the source code.  By 
using the Reliability and Security Engine as an abstraction to 
signals of the pipeline, we are able to implement the 
Information Flow Signatures Checking Module without 
modification to the processor pipeline.  The module itself 
proves have a small footprint of less than 5% the size of the 
processor, and has no affect on the performance of the 
processor.  Future extensions to the hardware can lower the 
performance overhead introduced by the software portion of 
the technique. 
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